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Abstract

A non-linear time-domain simulation has been developed to study the interaction
between longitudinal beam dynamics and RF stations in the LHC rings. The mo-
tivation for this tool is to determine optimal LLRF configurations, to study system
sensitivity on various parameters, and to define the operational and technology limits.
It will be also used to study the effect of RF station noise, impedance, and perturbations
on the beam life time and longitudinal emittance. It allows the study of alternative
LLRF implementations and control algorithms. The insight and experience gained
from our PEP-II simulation is important for this work. In this paper we discuss prop-
erties of the simulation tool that will be helpful in analyzing the LHC RF system and
its initial results. Partial verification of the model with data taken during the LHC RF
station commissioning is presented.
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Abstract

A non-linear time-domain simulation has been devel-

oped to study the interaction between longitudinal beam

dynamics and RF stations in the LHC rings. The motivation

for this tool is to determine optimal LLRF configurations,

to study system sensitivity on various parameters, and to

define the operational and technology limits. It will be also

used to study the effect of RF station noise, impedance,

and perturbations on the beam life time and longitudinal

emittance. It allows the study of alternative LLRF imple-

mentations and control algorithms. The insight and expe-

rience gained from our PEP-II simulation is important for

this work. In this paper we discuss properties of the simula-

tion tool that will be helpful in analyzing the LHC RF sys-

tem and its initial results. Partial verification of the model

with data taken during the LHC RF station commissioning

is presented.

SYSTEM DESCRIPTION AND

MOTIVATION

The LHC and PEP-II LLRF systems follow the same

fundamental architecture. Detailed descriptions of the sys-

tems have been presented for LHC [1] and PEP-II [2]. Both

systems employ feedback techniques to regulate the cavity

voltage and phase, to reduce the impedance seen by the

beam, and to increase the beam stability.

For PEP-II, the beam stability for the modes driven by

the cavity fundamental impedance was critical, especially

at high currents. Linear models had been developed, but

they had failed to predict the system limitations. The PEP-

II time-domain simulation we developed had good agree-

ment with the measured growth rates of the cavity driven

modes. The simulation was subsequently used to study

the RF configurations that would maximize the achievable

currents, predict the architecture’s limits, determine imper-

fections in the LLRF, and test upgrades, without spending

valuable machine time [3]. Through this work, improve-

ments such as the comb phase rotation and the new driver

amplifiers were implemented and reduced the interaction

between the beam dynamics and the RF station.

With the LHC simulation we will evaluate the regulation

of the cavity signals, study the necessary technical spec-

ifications of the various sub blocks, understand how the

technical implementation impacts the system performance,

predict limits of accelerator performance, and consider the
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effect of possible modifications and upgrades. In addition,

the simulation will be used to study how the noise and im-

perfections in the LLRF systems can contribute to growth

in longitudinal emittance and reduction in beam life time.

We would like to estimate the effect of different control al-

gorithms to mediate this problem.

Even though the critical issues are different for the two

facilities, in both cases they result from the interaction be-

tween the longitudinal beam dynamics and the LLRF sys-

tem. This fact allows us to use our simulation model and

our experience from the PEP-II operations and analysis, as

a basis for the LHC studies. In both cases we model the

subsystems that act in a fast time scale and affect the beam-

RF station interaction.

The simulation model will also be helpful during the

LHC commissioning, since it will be used in the devel-

opment of the LHC identification and configuration tools

described in this paper. These tools allow us to optimally

configure the RF stations and remotely access the RF sys-

tem for tuning and measurements. During operations the

tools will help compare the machine’s performance with

the one predicted by the simulation.

An earlier simulation effort by J. Holma [4] was used to

study and set-up the loops on a full-scale test bunch that

included the LLRF, klystron, and cavity. This initial model

did not include the beam dynamics.

MODEL DESCRIPTION

A detailed block diagram and description of the LHC

LLRF components can be found in [1]. The components

modeled in our simulation model include the accelerating

super-conducting cavity with an R/Q of 45 and a res-

onance frequency of 400.8 MHz, the 300 kW klystron,

the klystron polar loop, the impedance controlling feed-

back (both digital and analog paths), and the beam. The

klystrons used at PEP-II and LHC are inherently non-

linear. The klystron polar loop used at the LHC acts around

the klystron to reject power supply perturbations and com-

pensate the gain and phase shift of the klystron for different

operation points. To accurately describe the system, re-

duced models of the individual components are included in

the simulation. The waveguide, cable, and processing de-

lays are included, and the gains and phases of the RF feed-

back components are adjusted in a similar manner as for the

real machine. The 1-Turn feedback (comb), which acts to

reduce the impedance at the synchrotron sidebands, has not

reached the hardware commissioning phase yet, but will be

validated when data is available during commissioning.

The simulation is developed as a block system in



Simulink. The slow loop dynamics (software control reg-

ulators) are sufficiently slow compared to the time scale of

the simulation that they are calculated as initial conditions

(constants) in Matlab. A simplified version of the simula-

tion block diagram can be seen in Figure 1.
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Figure 1: Simulation block diagram.

VALIDATION

For the initial simulation validation, we used transfer

function measurements of the LHC RF stations during the

RF hardware commissioning. In Figure 2 we show the

klystron transfer functions from the measurements and the

(a) LHC Measured Klystron Transfer Function
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(b) SLAC Simulated Klystron Transfer Function

Figure 2: Klystron Transfer Functions

simulation, as measured from the input of the Driver to the

output of the Klystron as shown in the block diagram (Fig-

ure 1). The klystron transfer function exhibits a secondary

resonance at 404.8 MHz with a Q of 1100. The simulation

shows these characteristics with good agreement in ampli-

tude. The phase discrepancy between the plots is due to

delay calibration offsets included in the network analyzer

used for the LHC measurements and is consistent in all the

LHC measurements shown in this paper.

The superconducting cavity and the klystron polar loop

are then measured in the real machine and the simula-

tion. The resulting transfer functions from the input of the

klystron polar loop to the output of the cavity can be seen

in Figure 3 showing once again good agreement. In the

(a) LHC Measured Open Loop RF station Transfer Function.

Two different klystrons shown, the one with an incorrect reso-

nance at 403.8 MHz.
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(b) SLAC Simulated Open Loop RF station Transfer Function

Figure 3: Open Loop RF station Transfer Functions.

simulated plot, one can see the effect of the system delay.

Finally, in Figure 4 we show the transfer function of the

RF station, with the RF feedback loop regulating the sys-

tem. The RF feedback’s amplitude and phase are adjustable

in the simulation, as in the real machine.

As can be seen from these figures, there is a close agree-

ment between the and the measurements of the real RF sys-

tem at LHC.

IDENTIFICATION AND

CONFIGURATION TOOLS

The LHC RF station configuration and measurement of

variables can only be conducted remotely during opera-

tions, due to the location of the stations. The LLRF con-

troller’s parameters for each station are calculated based on

an analytic model of the system. This model is dependent

of the operating point of the RF station and it is measured

and calculated through an identification process while the

system is operating. The identification tool should be able

to measure the transfer function of the RF station in open

loop during commissioning and in closed-loop when the

system is operating with beam in the machine.

The identification tool operates by injecting a band-

limited low-level noise signal into the system. The time-

domain input signal and the response of the RF station to



(a) LHC Measured Closed Loop RF station Transfer Function
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(b) SLAC Simulated Closed Loop RF station Transfer Function

Figure 4: LHC Measured Closed Loop RF station Transfer

Functions.

that excitation are measured simultaneously. The transfer

function is estimated by using a correlation algorithm be-

tween the input/output time-domain signals. To get an an-

alytical representation of the estimated transfer function, a

linear reduced model of the RF station is fitted to the es-

timated data. This model is the base for the design of the

LLRF controller of the station [5].

The simulation allows to set and test different algorithms

of identification and reduced models to define the analytic

transfer function of the RF stations before the final com-

missioning of the tool. Results from these test are depicted

in Figure 5, where the transfer functions of the klystron

and cavity are estimated and the corresponding analytical

model is fitted.

CONCLUSION AND FUTURE

DIRECTIONS

The LHC simulation has successfully passed the first

validation effort. The simulation development has been

helpful in reaching a deeper understanding of the LHC

LLRF. It is being used to develop the identification and

configuration algorithms, which will be very helpful dur-

ing commissioning and operations to measure the system.

In addition, the simulation is a path to develop an optimal

control algorithms.

To expand the simulation model’s capabilities, the 1

Turn Feedback (comb) and the Klystron Driver Smoother

module [6] (which reduces the gap transients), are currently

added to the model. The 1 Turn Feedback will be validated

when RF hardware commissioning data becomes available.
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Figure 5: RF station transfer function based on simulated

data and fitted linear model.

The development of algorithms to commission and opti-

mally configure the actual hardware with and without beam

is an essential task, which is being developed. Also, we

plan to study the effect of noise, perturbations signals, non-

linearities, finite precision arithmetic, cross talk in RF pro-

cessing, and mismatch in I,Q downconversion on the sys-

tem performance. We would like to explore the effect of

these perturbations on the growth of the longitudinal emit-

tance. Since the time range of the simulation is too small,

a diffusion model will be developed, which would use our

simulation results to determine these effects. Future direc-

tions also include the definition of the acceptable injected

noise level for the RF station identification and the optimal

configuration setting.

ACKNOWLEDGMENTS

The authors would like to thank the CERN RF group for

their interest in this work, the valuable data, their help and

ideas. We would also like to acknowledge the support for

this LHC collaboration from the SLAC ATR department

and the US LARP program.

REFERENCES

[1] P. Baudrenghien et. al., “The LHC Low Level RF”, EPAC

’06, Edinburgh, Scotland, June 2006.

[2] C. Rivetta et. al., “Modeling and Simulation of Longitudi-

nal Dynamics for Low Energy Ring-High Energy Ring at the

Positron-Electron Project”, Phys. Rev. ST-AB, 10, 022801

(2007).

[3] T. Mastorides et. al., “Analysis of Longitudinal Beam Dy-

namics Behavior and RF System Operative Limits at High

Beam Currents in Storage Rings.”, Phys. Rev. ST-AB, to be

published June 2008.

[4] J. Holma, “The Model and Simulations of the LHC 400 MHz

Cavity Controller”, CERN-AB-2007-012, CERN, Feb. 2007.

[5] D. Teytelman,“A Non-invasive Technique for Configuring

Low Level RF Feedback Loops in PEP-II”, Proc. IEEE Parti-

cle Accelerator Conference, Knoxville, TN 2005 and SLAC-

PUB-11252, May 2005.

[6] J. Tückmantel, “Adaptive RF Transient Reduction for High

Intensity Beams with Gaps”, EPAC ’06, Edinburgh, Scotland,

June 2006.


