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Analytical analysis of longitudinal space charge effects for a bunched beam with radial
dependence ∗
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The longitudinal space-charge (LSC) force can be a major cause of the microbunching instability
in the linac for an x-ray free-electron laser. In this paper, the LSC-induced beam modulation is
studied using an integral equation approach that takes into account the transverse (radial) variation
of the LSC field for both the coasting-beam limit and a bunched beam. Variation of the beam
energy and the transverse beam size is also incorporated. We discuss the validity of this approach
and compare it with other analytical analyses as well as numerical simulations.
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I. INTRODUCTION

To ensure the successful commissioning and operation
of an x-ray free-electron laser (FEL), the highest quality
electron beam is prepared [1]. However, such a high-
quality electron beam is subject to various instabilities
along the accelerator system. Indeed, the FEL is one
of the collective instabilities happening in the undulator.
Because of the fact that the electron beam born in the
radio frequency (rf) gun has very small energy spread,
Landau damping is typically ineffective in suppressing
all of the unwanted instabilities [2–4]. Because of in-
evitable density granularity of the electron beam from
the rf cathode, the longitudinal space-charge (LSC) effect
can induce a large energy modulation on the beam, that
leads to instability downstream when the beam is accel-
erated and compressed [3, 5]. In this paper, we study the
LSC effect, taking into account acceleration and the vari-
ation of transverse beam size during the acceleration. We
study this analytically via an integral equation approach,
which is then compared to direct numerical simulations,
and also to other analytical approaches [6].

The paper is organized as follows. In Sec. II, we intro-
duce a coasting-beam theory. We first work out details
for a one-dimensional (1D) theory, and then extend the
theory to the case where the impedance has a radial de-
pendance. In Sec. III, we advance the theory to study
a bunched-beam case, where a multifrequency theory is
developed. Again, both a 1D theory and a theory for
the impedance with a radial dependence are developed.
In Sec. IV, we apply this general framework to the case
where the impedance comes from the LSC effect. The
LSC impedance of a δ-ring with a radius r is presented.

∗Work supported by the U.S. Department of Energy under con-
tract number DE-AC02-76SF00515. This work was performed in
support of the Linac Coherent Light Source project at Stanford
Linear Accelerator Center.
†Electronic address: jhwu@SLAC.Stanford.EDU

With this r -dependent impedance, we provide some ex-
amples to compare our results with other analytical the-
ories and numerical simulation in Sec. V. We conclude
with a discussion in Sec. VI.

II. COASTING-BEAM THEORY

We first study the case where the electron beam is
approximated as a coasting beam. This approximation
has been adopted in previous work [2–4, 6, 7]. For a
coasting-beam case, the study gives a single-frequency
theory. We derive integral representations for the density
modulation and the energy modulation for the case where
the electron beam is being accelerated, and its transverse
size varies along the beam line.

A. One-dimensional formulae

We describe the electron beam by a distribution func-
tion f(x, x′, y, y′, z, γ; s). Here, x, y, and z are the in-
ternal coordinates in the electron beam; x′ and y′ are
the slopes of the trajectories; γ is the electron total en-
ergy in units of the electron rest energy mc2 with m the
electron mass and c the speed of light in vacuum; and
s = c

∫ √
1− γ−2dt is the position along the beam line.

The distribution function immediately after the energy
kick due to the wakefield (at τ + 0) is related to that
immediately before (at τ − 0) by

f(Xτ ; τ + 0) = f(Xτ −∆X; τ − 0) (1)

≈ f(Xτ ; τ − 0)−∆γ
∂f(Xτ ; τ − 0)

∂γτ
;

where X ≡ (x, x′, y, y′, z, γ) for the six-dimensional phase
space coordinates, and ∆X = (0, 0, 0, 0, 0, ∆γ). Here,
we focus on the longitudinal phase space only. Sum-
ming up the wakefield contribution over the entire trajec-
tory, (i.e., τ ∈ [0, s],) and using the boundary notations
f [Xτ→s; (τ → s) + 0] = f [X(s); s] and f [Xτ→0; (τ →
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0)− 0] = f0(X0), the evolution of the distribution func-
tion under the influence of the wakefield is

f [X(s); s] = f0(X0)−
∫ s

0

dτ
∂f(Xτ ; τ − 0)

∂γτ

dγ

dτ
. (2)

The rate of energy change due to the wakefield is

dγ

dτ
= −re

∫
dk1

2π
Z(k1; τ)Nb(k1; τ)eik1zτ . (3)

In Eq. (3), re is the electron classical radius, N is the
total number of electrons, Z(k1; s) is the longitudinal
impedance, and we have introduced the density bunching
factor b(k; s) as

b(k; s) =
1
N

∫
dXe−ikzf(X; s), (4)

where k is the wavenumber characterizing the frequency
dependence of the density bunching factor. Using Eq.
(2) and the density bunching factor defined in Eq. (4) ,
we have

b[k(s); s] = b0[k(s); s]− ik

N

∫
dτR56(τ → s)

×
∫

dXτe−ikz(Xτ )f (Xτ ; τ − 0)
dγ

dτ
, (5)

where

b0(k; s) =
1
N

∫
dX0e

−ikzf0 (X0) (6)

is the bunching factor without wakefield. We have in-
troduced the transfer matrix as X(s) ≡ R(τ → s)X(τ).
Plugging Eq. (3) into Eq. (5), we have

b[k(s); s] = b0[k(s); s] + ikre

∫
dτR56(τ → s) (7)

×
∫

dk1

2π
Z(k1; τ)b(k1; τ)

∫
dX0e

−ikz+ik1zτ f0 (X0) ,

where zτ = z0 +R56(0 → τ)∆γ0, and z = z0 +R56(0 →
s)∆γ0.

We assume that the initial distribution function can be
decomposed into two parts

f0 (X0) = f̄0 (X0) + f̂0 (X0) , (8)

where f̄0 (X0) is the average distribution function, and
f̂0 (X0) is the initial microbunching. For microbunching
wavelengths much smaller than the electron beam length,
we can assume a uniform longitudinal distribution, hence
a coasting beam in z, and Gaussian in ∆γ for the average
distribution function, in other words, we assume

f̄0 (X0) =
n0√

2πσ∆γ

exp

{
− ∆γ2

2σ2
∆γ

}
, (9)

where n0 = N/L is the average line density with L being
the electron beam length. Within the linear theory, we

can neglect f̂0 (X0) in completing the integral in Eq. (7).
In doing so, we get

b[k(s); s] = b0[k(s); s] +
∫ s

0

dτK(τ, s)b[k(τ); τ ], (10)

with the kernel of the integral equation as

K(τ, s) = ik(s)R56(τ → s)
I(τ)Z[k(τ); τ ]

IA

× exp
{−k2

0R2
56(τ → s)σ2

∆γ/2
}

, (11)

where

R56(τ → s) ≡
∫ s

τ

dx

γ(x)3[1− γ(x)−2]
. (12)

It is worth emphasizing that, for a uniform average dis-
tribution in z and single-frequency initial microbunching,
there is only a single frequency selected in the k-integral
in Eq. (7). When we work on a Gaussian distribution
in z, we deal with a multifrequency theory, which will be
explored later.

According to Eq. (3), the resulting accumulated en-
ergy modulation spectrum is

∆γ[k(s); s]=−
∫ s

0

dτ
I0Z[k(τ); τ ]b[k(τ); τ ]

IA

×exp
{−k2R2

56(τ → s)σ2
∆γ/2

}
, (13)

where I0 = ecn0 is the peak current with e the electron
charge, and IA ≈ 17045 Amp the Alfvén current.

B. Radial Dependance

If the transverse dynamics and the longitudinal dy-
namics are separable, we can assume that the distribu-
tion function is factorable

f(X; s) = fr(r; s)fz(z; s), (14)

with the normalization of∫
drfr(r; s) = 1. (15)

Then the three-dimensional (3D) problem can be simpli-
fied to a one-dimensional problem.

1. Transverse averaging approach

One approach is to average out the transverse vari-
ables. The energy change rate is then

dγ(r, z; s)
ds

= −re

∫
dz′dr′w (z − z′, r, r′) f (z′, r′; s)

= −re

∫
dr′

∫
dk

2π
Z (k; r, r′) eikz

×
∫

dz′e−ikz′fr (r′; s) fz (z′; s)

= −re

∫
dk

2π
Z̄[k(s); r, s]Nb[k(s); s]eikz,(16)
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where the wakefield is introduced as

w(z, r, r′, s) =
∫

dk

2π
Z(k; r, r′, s)eikz (17)

and the averaged impedance is defined as

Z̄(k; r, s) =
∫

dr′Z(k; r, r′, s)fr(r′; s). (18)

The bunching factor is simplified as

b(k; s)=
1
N

∫
dXe−ikzf(X; s)=

1
N

∫
dze−ikzfz(z; s), (19)

according to Eqs. (14) and (15).
Plugging Eq. (16) into Eq. (5), we have

b[k(s); s] = b0[k(s); s] + ikre

∫
dτR56(τ→s)

∫
dX0 (20)

×
∫

dk1

2π
Z̄(k1; r, τ)b(k1; τ)e−ikz+ik1zτ f0 (X0) .

Linearizing the system and completing the integrals as in
the 1D case, we formally get the same equation for the
evolution of the bunching factor as in Eq. (10). However,
the kernel of the integral equation is different from that
given in Eq. (11). Here, the kernel is

K(τ, s) = ik(s)R56(τ → s)
I(τ) ¯̄Z[k(τ); τ ]

IA

× exp
{−k2

0R2
56(τ → s)σ2

∆γ/2
}

, (21)

where the twice-averaged impedance is defined as

¯̄Z(k; s) =
∫

drZ̄(k; r, s)fr(r; s). (22)

According to Eq. (16), the resulting accumulated en-
ergy modulation spectrum is

∆γ[k(s); s]=−
∫ s

0

dτ
I0

¯̄Z[k(τ); τ ]b[k(τ); τ ]
IA

×exp
{−k2R2

56(τ → s)σ2
∆γ/2

}
, (23)

which should be compared to Eq. (13) for the 1D case.

2. Radial variable as parameter

Should we not perform the average in Eq. (18), we can
keep the r-dependence. A similar treatment was recently
adopted in Refs. [6, 7]. In our approach, we introduce a
radially dependent bunching factor

b(k; s, r) =
1
N

∫
dze−ikzf(r, z; s)

= fr(r; s)
1
N

∫
dze−ikzfz(z; s), (24)

so that

b(k; s) =

∫∫
Σ⊥

drb(k; s, r)

Σ⊥
, (25)

where Σ⊥ ≡
∫∫

dr is the transverse area. Assuming that
the system has cylindrical symmetry, the 3D problem is
reduced to a two-dimensional (2D) problem.

It is worthwhile to point out that in Refs. [6, 7], the
r-dependance comes in as a parameter, i.e., f(X; s) =
fr(r)fz(z; s), but not fr(r; s) as in Eq. (14) of our pa-
per. Without the s-dependence, fr(r) describes a con-
stant transverse beam size.

The energy changes at the rate

dγ(r, z; s)
ds

= −re

∫
dz′dr′w (z − z′, r, r′) f (z′, r′; s)

= −re

∫
dr′

∫
dk

2π
Z (k; r, r′) eikz

×
∫

dz′e−ikz′fr (r′; s) fz (z′; s) (26)

= −re

∫
dr′

∫
dk

2π
Z[k(s); r, r′]Nb[k(s); s, r′]eikz.

Therefore, the bunching factor evolves as

b[k(s); s, r] = b0[k(s); s, r] (27)

+
∫ s

0

dτ

∫
dr′K(τ, s, r, r′)b[k(τ); τ, r′]

with

K(τ, s, r, r′) = ik(s)R56(τ → s)
I(τ)Z[k(τ); τ, r, r′]

IAΣ⊥
.

(28)
The corresponding evolution for the energy modulation
is then

∆γ(s, r)=−
∫ s

0

dτ

∫
dr′

I0Z[k(τ); τ, r, r′]b[k(τ); τ, r′]
IAΣ⊥

.

(29)
Hence, the average energy modulation is

∆γ(s) =

∫∫
Σ⊥

dr∆γ(s, r)

Σ⊥
. (30)

Depending on the details of the radial dependence of
fr(r; s) and the radial dependence of Z[k; s, r, r′], we de-
cide whether to take the transverse average approach or
keep the radial variable as parameters.

III. BUNCHED-BEAM THEORY

In reality, the electron beam’s longitudinal distribu-
tion is not uniform, so we need to improve the theory to
deal with a bunched beam. As mentioned above, with
a nonuniform longitudinal distribution, a multifrequency
theory is needed. This will be explored in this section.
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A. One-dimensional formulae

For a 1D theory, the derivation up to Eq. (7) stays
the same. For a Gaussian longitudinal distribution, we
assume

f̄0(X0) =
N

2πσ∆γσz
exp

{
− ∆γ2

2σ2
∆γ

− z2

2σ2
z

}
. (31)

Here we use the same notation for f̄0(X0) as in Eq. (9).
Completing the integral in Eq. (7), we obtain the evo-

lution of the bunching factor as

b [k(s); s] = b0 [k(s); s] (32)

+
∫ s

0

dτ

∫
dk(τ)
2π

K [k(τ), k(s); τ, s] b [k(τ); τ ] ,

with the integral kernel

K[k(τ), k(s); τ, s] = ik(s)R56(τ → s)
I(τ)Z [k(τ); τ ]

IA

× exp
{
− [k(s)− k(τ)]2σ2

z

2
(33)

− [k(s)R56(s)− k(τ)R56(τ)]2σ2
∆γ

2

}
.

The corresponding accumulated energy modulation spec-
trum is

∆γ[k(s); s] = −
∫ s

0

dτ

∫
dk(τ)
2π

I0Z[k(τ); τ ]b[k(τ); τ ]
IA

× exp
{
− [k(s)− k(τ)]2σ2

z

2
(34)

− [k(s)R56(s)− k(τ)R56(τ)]2σ2
∆γ

2

}
.

It is now clear that the frequency is evolving along
the beam line. Hence, it is intrinsically a multifrequency
theory.

B. Radial dependance

We can further take the radial dependance into con-
sideration. With the transverse averaging approach, we
simply replace Z [k(τ); τ ] in Eqs. (32)–(34) by ¯̄Z [k(τ); τ ]
defined in Eq. (22).

A similar derivation is easily obtained if we keep the
radial variable as parameters. We omit detailed expres-
sions here.

Once again, based on the detailed radial dependence,
we have to choose either the transverse average approach,
or to keep the radial variable as parameters.

IV. LSC IMPEDANCE WITH RADIAL
DEPENDENCE

Having set up the framework in Secs. II and III,
we work out some details in the next case where the
impedance originates from the LSC effect. We first find
the LSC impedance with a radial dependence.

A. Green function for a δ-ring

What we need is the Green function for a δ-ring. For
a δ-ring at r′, the LSC impedance is derived to be

Z(k; r, r′) =
k

γ

[
Θ(r′ − r)

2
γ

K0

(
kr′

γ

)
I0

(
kr

γ

)

+ Θ(r − r′)
1

kr′
K0

(
kr

γ

) {
2I1

(
kr′

γ

)

+
kr′

γ

[
I0

(
kr′

γ

)
+I2

(
kr′

γ

)]}]
, (35)

where Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 is the
Heaviside step function; K0, I0, I1, and I2 are modified
Bessel functions. We omit the derivation for Eq. (35)
here.

For fr(r; s) being a parabolic distribution in r, one can
get a closed form for the average impedance defined in
Eq. (18). We omit the expressions for this closed form
here.

V. COMPARISON

We now compare the results of our approaches to the
results of other analytical approaches [6], and also to nu-
merical simulations.

A. Comparison with other analytical approach

Compared to theories in Refs. [6, 7], our approach has
the advantage of treating the real beam line, where the
beam energy and the transverse beam size are varying,
and the electron beam is bunched. Nevertheless, we make
some comparison with Ref. [6] for a coasting beam with
a constant energy and a constant transverse beam size.
In their paper, they introduce a dimensionless parameter
q = kmr0/γz, with km = 2π/λm where λm is the modu-
lation wavelength; r0 is the typical transverse beam size;
and γz is the longitudinal Lorentz factor. Their theory
reduces to 1D formulae when q →∞. Hence, we compare
with the case of a small q = 1. In Figs. 1 and 2, we study
the same examples as in Figs. 10, 11, 14, and 15 of Ref.
[6]. The results are almost the same. For these stud-
ies, we show the radial dependence of the LSC-induced
normalized longitudinal electric field Êz. The initial lon-
gitudinal density modulation can be nonuniform trans-
versely due to transverse granularity. For the case shown
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in Fig. 1, the initial longitudinal density modulation is
Gaussian transversely, i.e., â1d = e−r̂2/(2σ2) with σ = 0.1
and r̂ ≡ r/r0. The induced Êz is also nonuniform trans-
versely. When the system evolves, the maximum Êz can
be shifted to r̂ 6= 0 quickly. For the case shown in Fig. 2,
the initial longitudinal density modulation is transversely
uniform. In this case, the transverse dependence of Êz

evolves much more slowly than in the case of Fig. 1. In
these figures, ẑ is the normalized distance s along the
beam line. We show Êz at ẑ = 0, the beginning of the
beam line, and at ẑ = 10, the end of the beam line for
this calculation.

FIG. 1: Example of Figs. 10 and 11 of Ref. [6]. The initial

density modulation is â1d = e−r̂2/(2σ2) with σ = 0.1 and
q = 1. The solid curve (blue) is at ẑ = 0, and the dashed
curve (red) is at ẑ = 10. Notations have same meaning as in

Ref. [6] and are defined in the text. The Êz is normalized.

B. Comparison with PARMELA

Having compared our results to the results in Ref. [6]
where they are applicable, we now deal with a realistic
beam line. The example which we study is a beam with
energy E = 5.7 MeV and peak current of 100 A. We
study a 3 m long drift space, with betatron focusing,
hence the rms transverse beam size σr varies from 0.5 mm
to 3.7 mm. The initial density modulation is 5 % with
wavelength of 0.5 mm. This yields q ∈ [1.0, 7.2], taking
r0 =

√
3σr. We show in Fig. 3 the results of the four

approaches developed in this paper. As a comparison, a
PARMELA simulation [8] for a bunched beam, with rms
bunch length σz = 0.83 mm, is also presented. Notice
that in Fig. 3, ∆E = (∆γ)mc2 is the energy modulation.

VI. DISCUSSION

As shown in Fig. 3, the coasting-beam theory oversim-
plifies the LSC calculation in situations where the beam

FIG. 2: Example of Figs. 14 and 15 of Ref. [6]. The initial
density modulation is â1d = 1 with q = 1. The solid curve
(blue) is at ẑ = 0, and the dashed curve (red) is at ẑ = 10.
Notations have same meaning as in Ref. [6] and are defined

in the text. The Êz is normalized.

FIG. 3: Comparison of four different analytical approaches
developed in this paper with PARMELA simulation. The
long-dashed curve (red) is the 1D coasting-beam approach,
the dashed curve (green) is the coasting beam with radial
dependence approach, the dash-dotted curve (purple) is the
1D bunched-beam approach, the solid curve (blue) is the
bunched-beam approach with radial dependence, and the “4”
(black) is the PARMELA simulation.

is bunched. Even with radial dependence, the coasting-
beam theory [6] can not capture some important fea-
tures observed in simulations of a bunched beam. These
profound features, showing mixing in the phase space,
are crucial in answering questions of how fast the mi-
crobunching is damped or amplified along the beam line.
This is particularly important in the front end of the ac-
celerator, where the electron beam energy is low, and
the longitudinal distribution function is not frozen. As
shown, the analytical approach developed in this paper
for a bunched beam with radially dependent impedance
shows good agreement with the PARMELA numerical
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simulations.

Acknowledgments

This work was supported by the US Department of
Energy under contract No. DE-AC02-76SF00515. This
work was performed in support of the Linac Coherent
Light Source project at Stanford Linear Accelerator Cen-

ter (SLAC). The authors would like to thank Dr. Cecile
Limborg-Deprey of SLAC, Dr. Michael Borland of Ar-
gonne National Laboratory, and Dr. Robert A. Bosch
of Synchrotron Radiation Center (SRC), University of
Wisconsin-Madison (UWM) for many stimulating discus-
sions. The authors would like to thank Ms. Sharon L.
West of SLAC and Dr. Robert A. Bosch of SRC, UWM
for editing the final version of the paper.

[1] R. Akre, D. Dowell, P. Emma, J. Frisch, S. Gilevich,
G. Hays, Ph. Hering, R. Iverson, C. Limborg-Deprey, H.
Loos, A. Miahnahri, J. Schmerge, J. Turner, J. Welch,
W. White, and J. Wu, Phys. Rev. ST Accel. Beams 11,
030703(2008).

[2] S. Heifets, G. Stupakov, and S. Krinsky, Phys. Rev. ST
Accel. Beams 5, 064401(2002); Z. Huang and K.-J. Kim,
Phys. Rev. ST Accel. Beams 5, 074401(2002).

[3] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl.
Instrum. Methods Phys. Res., Sect. A528, 355(2004).

[4] Z. Huang, M. Borland, P. Emma, J. Wu, C. Limborg, G.
Stupakov, and J. Welch, Phys. Rev. ST Accel. Beams 7,
074401(2004).

[5] T. Shaftan and Z. Huang, Phys. Rev. ST Accel. Beams 7,
080702(2004).

[6] G. Geloni, E. Saldin, E. Schneidmiller, and M. Yurkov,
Nucl. Instrum. Methods Phys. Res., Sect. A554, 20
(2005).

[7] R.C. Davidson and E.A. Startsev, Phys. Rev. ST Accel.
Beams 7, 024401 (2004).

[8] C. Limborg-Deprey, P. Emma, Z. Huang, and J.Wu, Pro-
ceedings of the Ninth European Particle Accelerator Con-
ference, EPAC’04, (EPS-AG/CERN, Lucerne, Switzer-
land, 2004), p. 1506.


