
A PARALLEL CONTROLS SOFTWARE APPROACH FOR PEP II: AIDA &
MATLAB MIDDLE LAYER ∗

W. Wittmer† , W. Colocho, G. White,
SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

Abstract

The controls software in use at PEP II (Stanford Con-
trol Program - SCP) had originally been developed in the
eighties. It is very successful in routine operation but due
to its internal structure it is difficult and time consuming
to extend its functionality. This is problematic during ma-
chine development and when solving operational issues.
Routinely, data has to be exported from the system, ana-
lyzed offline, and calculated settings have to be reimported.
Since this is a manual process, it is time consuming and
error-prone. Setting up automated processes, as is done
for MIA (Model Independent Analysis), is also time con-
suming and specific to each application. Recently, there
has been a trend at light sources to use MATLAB[1] as the
platform to control accelerators using a ”MATLAB Mid-
dle Layer” [2] (MML), and so called channel access (CA)
programs to communicate with the low level control sys-
tem (LLCS). This has proven very successful, especially
during machine development time and trouble shooting. A
special CA code, named AIDA (Accelerator Independent
Data Access [3]), was developed to handle the communi-
cation between MATLAB, modern software frameworks,
and the SCP. The MML had to be adapted for implementa-
tion at PEP II. Colliders differ significantly in their designs
compared to light sources, which poses a challenge. PEP
II is the first collider at which this implementation is being
done. We will report on this effort, which is still ongoing.

INTRODUCTION

When new methods to correct the optics of an accelera-
tor emerge, an implementation can take considerable effort
and time. For machine development (MD), ad hoc experi-
ments, and where resources are scarce, fully integrated ap-
plications are not developed to integrate these new meth-
ods. Experiments and measurements, which are performed
irregularly, are not automated. These “manual” measure-
ments are time consuming and error prone. Analyzing the
data from these measurements is usually performed after
the MD has finished and if parts of the data are unusable it
is not possible to quickly repeat a partial measurement.

In light sources this problem has been overcome by using
MATLAB. Several CA tools have been written to import
data directly into MATLAB and enable device set points
to be changed. These mostly interact with EPICS, which
provides the low level control. Setting up the basic data ac-
quisition, processing and hardware control, as pre-prepared

∗Supported by US DOE under Contract DE-AC03-76SF00515
† wittmer@slac.stanford.edu

matlab scripts, permits MDs to be performed efficiently
and without time consuming preparations.

Consequently, a suit of MATLAB functions, referred to
as the MML, has been developed, which handles many of
the common tasks. This allows one to rapidly create scripts
for non-routine tasks. The biggest advantage of this pack-
age is that it is easily portable between different accelera-
tors. It has been ported from SSRL, where it was originally
developed, to more than ten different light sources all over
the world. The MML interface to the LLCS, is handled by
two simple functions for input and output, and the machine
dependent features (lattice, naming convention, et cetera)
are handled centrally by a machine specific configuration
file. Adapting these files to a given machine, make the ba-
sic functionality immediately available and extensions are
simple.

IMPLEMENTATION AT PEP II

The above described characteristics of the MATLAB
MML package, make it suitable for used as a platform for
MD at PEP II. A further advantage is that the MIA pack-
age is also based on MATLAB, so communication between
MIA and the machine is greatly simplified through this ap-
proach. The main difficulty to overcome was to establish
the communication between the MATLAB MML and the
LLCS. Since EPICS is not used at PEP II greatly, a dif-
ferent route, similar to the one at NSLS, had to be taken.
Fortunately, a software project was already under way at
SLAC, called AIDA, which provides a unified mechanism
for scientific applications to access the various control sys-
tems of the different accelerators at SLAC. This had to be
expanded to provide the needed functionality.

AIDA - ACCELERATOR INDEPENDENT
DATA ACCESS

AIDA is middleware for fast data exchange. It connects
online physics applications software to the various control
systems and data sources these programs require to do anal-
ysis and optimization of scientific machines. Such data
sources include device control, online beam model param-
eters, archived process variable history, relational database
access, and so on. As such, it is used by programs like or-
bit correction, emittance, and general purpose experimen-
tal tools like ”Correlation Plots” [5], etc, to connect them to
control systems such as EPICS [6], legacy control system
programs, and ”persistent” data stores like Oracle, EPICS
archiver and so on.

SLAC-PUB-12973

Contributed to Particle Accelerator Conference (PAC 07), 06/25/2007--6/29/2007, Albuquerque, New Mexico

AIDA is not for real-time control, but it is fast (2ms
round trip for simple data over a 100mbs, network as is typ-
ical in an accelerator laboratory). Its client side is Java [7].
This means of course it can be used as the data access layer
of modern software. Notably though, this feature means it
can be accessed directly from MATLAB, with no interme-
diate wrapping such as Mex files necessary [8].

Initially AIDA was prototyped to verify whether pro-
jected ILC online physics applications programs, could be
written independently of the accelerator subsystem control
systems with which they would have to interact. The ra-
tionale was that there would probably be a number of such
control systems in ILC, each quite different, and high level
applications would be required to talk to all of them in their
own language. After a successful prototype was developed,
it was deployed for the B-factory accelerator at SLAC.

AIDA is now being used for commissioning LCLS. For
LCLS it bridges the legacy control system and modeling
environment, which is implemented on HP Alpha machines
running VMS, to Unix and Windows users running MAT-
LAB based GUI applications.

The AIDA Programming Interface

Technically, AIDA acts as a name service and common
Applications Programming Interface (API). AIDA presents
the same API to client applications for all data sources.
That is, whether you are getting the value of a magnet, or
the value of all Beam Position Monitors in a beamline, or
the transfer matrix from one device to another, the methods
you call are the same. Each request to get data or set it,
includes a ”name//attribute” pair to identify the data source
to be contacted (notice that more than 1 service may be in-
volved with a device - the present value may be acquired
by AIDA via EPICS, its Twiss may come from a model
server, its history from Oracle etc). Since AIDA can get
any type through the same API, including structured val-
ues, the client side type must be specified. Other AIDA
API methods allow this to be done by casting.

Rich Server Side, not Rich Client Side Middle-
ware.

The important characteristic of AIDA for its use in mid-
dleware for optimizing the B-factory, has been that it allows
the use of high level applications code on the server side (as
opposed to the client). That is, rather than simply access a
database of controls API like EPICS, AIDA servers can of-
fer rich functionality, like beam synchronous acquisition of
a whole accelerator including subtraction of a reference or-
bit, accessible in one client call. For instance:

da = DaObject;
% Specify a timing definition
da.setParam(’BPMD=38’);
% Require diff to the "GOLD" orbit
da.setParam(’CNFTYPE=GOLD’);
% Set num ring turns to average

da.setParam(’N=1024’);
% Make the actual acquisition
DaValue v = da.getDaValue(’P2BPMHER//BPMS’);

Two things are of note for middleware implementations,
are illustrated in this example. Firstly, the acquisition is
parameterized by timing, by a reference orbit (so a ”differ-
ence” orbit shall be returned), and by an indication of turns
to average. Secondly, notice that the data returned will be
structured. In this specific case it’s a 2d vector of vectors.
The inner vector gives the name, x, y, z, tmit, hardware
status, and an acquisition diagnostic value, for each beam
position monitor in the beamline whose orbit was acquired.
The outer vector includes them all, sorted by z position.

A DaValue is in fact a dynamically constructed self-
describing data structure. On the wire it’s a CORBA[9]
Any type, though AIDA wraps it into a much more user
friendly dynamic type called a DaValue. If a client program
knows the structure of what it’s going to get, it can access
the elements directly. Additionally, DaValue includes fa-
cilities for a client to dynamically inspect it (like Java ”in-
trospection”) recursively.

This facility for pushing the smarts into the server (so
called Service Oriented Architecture), has technical and or-
ganizational advantages. The technical advantage is the
facility to interface modern applications to mature con-
trol systems that already include much analysis code and
therefore can’t be accessed through a simple name/value
paradigm. Organizationally, it allows computer profession-
als to implement the server side in a rigorous way, while al-
lowing the physics professionals to concentrate on the data
analysis.

MML - MATLAB MIDDLE LAYER

As preparation to the adaption of the two interface files
and the machine specific configuration file of the MML,
the new interfaces provided by AIDA had to be tested. The
following capabilities, provided through AIDA, have been
tested: synchronized orbit data acquisition, magnet control,
analog channel data acquisition, SCP archive and EPICS
channel archiver data access. The capability to change the
master oscillator has been recently added and its test is be-
ing prepared.

This testing also provided important insight how to per-
form this adaption. Contrary to the other CA codes, AIDA
provides two different approaches to setup the interface be-
tween MML and LLCS as described above. We have cho-
sen the method that allows to use the MML without having
to change interface.

The machine specific configuration file has to be written
from scratch and cannot be derived from the files for other
light sources due to the fundamental differences between
colliders and light sources. This effort is ongoing. First,
applications have been written for simple tasks using the
schematics of this approach and will be included once the
setup of the MML for PEP II has been completed. These

first implementations already show the benefit from this ap-
proach.

Simultaneous Orbit Measurement with two BPM
Systems. As an example, part of the data analysis for the
newly installed BPM (beam position monitor) electronics
in the LER (low energy ring) [10] is presented below. The
simple task is to plot the orbit data off the old PEP II BPM
electronics plus those newly installed, in one figure. To per-
form this in the SCP would be an excessive project. This is
due to the different underlying data structure for the differ-
ent systems.

With AIDA this was a fast and simple exercise finished
in one afternoon. The interface for importing the orbit data
into MATLAB of the older BPM electronics was already
existing from the testing. The new units are set up as ana-
log channels in the SCP. The access for these were also
existing and a function to import these specific channel had
to written and tested. These two functions were combined
and the MATLAB tools to plot both data sets in one fig-
ure used. The result is shown in fig.1 The main goal of

0 500 1000 1500 2000 2500
−5

0

5

x
(m

m
)

0 500 1000 1500 2000 2500
−5

0

5

y
(m

m
)

0 500 1000 1500 2000 2500
0

2

4

6
x 10

11

tm
it

z (m)

Figure 1: Live orbit data from the LER in PEP II. The blue
trace represents the orbit measurement from the older sys-
tem. The red stars are units flagged as showing bad data.
The green stars are the orbit measurements with the new
system.

this analysis is to track the difference between the position
readings of the two systems. One important aspect is to
make sure only measurements from working units are used
for this comparison. Since this information is part of the
data structure imported into MATLAB all needed informa-
tion is available. Processing and displaying was added to
the function. This script is used to commission the new
system. Using the SCP to perform this task would have
implied checking the data manually every time.

Vacuum monitoring A collider as large as PEPII has
thousands of analog channels monitoring multiple subsys-
tems. Another application of the AIDA/MATLAB software

package is to plot a large number of analog channels on a
condensed way. For example, to plot all the HER vacuum
pumps for a given time period.Anomalous activity can then
be found at a glance. One figure can show 100s of chan-
nels with time in the x axis, channel number in the y axis
and vacuum amplitude as the color scale. Vaccum activity
arround the time of PEP II beam abort is sometimes easily
identified by these plots.

LER Sextupole Orbit Feedback The SCP provides
an orbit feedback in the LER sextupoles. This existing
feedback only monitors and corrects orbit changes in the
vertical plane. Its adaption to correct both planes simulta-
neously would have been too large an effort. The MML
provides the capability of orbit correction so to write a new
routine handling this feedback task would not be a large
effort.

STATUS AND OUTLOOK

So far the major preparation for introducing the MML
for MD studies at PEP II have been successful. The basic
communication between MATLAB and the LLCS provided
by AIDA is completed and all tests passed. The adaption of
the MML is ongoing and will be completed in the following
months. First applications, based on the package AIDA-
MML have been developed and are being used. After the
completion of the package MIA will immediately benefit
through its shared MATLAB platform. Small applications,
like the LER sextupole feedback, are planned for normal
operation. Once the MML is being used during MD shifts
we anticipate its use also during normal operation.

REFERENCES

[1] The MathWorks. http://www.mathworks.com/

[2] J. Corbett, G. Portmann and A. Terebilo, “ACCELERATOR
CONTROL MIDDLE LAYER,” PAC’03, June 2003, Port-
land, p. 2369, http://www.JACoW.org.

[3] Accelerator Independent Data Access (AIDA).
http://www.slac.stanford.edu/grp/cd/soft/aida/

[4] The Linac Coherent Light Source Conceptual Design Report,
SLAC-R-593

[5] Correlation Plot Facility in the SLC Control System. L. Hen-
drickson, N. Phinney, L. Sanchez-Chopitea, S. Clark(SLAC).
SLAC-PUB-5685, Nov 1991. 3pp.

[6] Experimental Physics and Industrial Control System
(EPICS). http://www.aps.anl.gov/epics/index.php

[7] Java Technology. http://java.sun.com/

[8] Using AIDA from Matlab.
http://www.slac.stanford.edu/grp/cd/soft/aida/aida matlab.html

[9] Common Object Request Broker Architecture,
http://www.omg.org/docs/formal/04-03-12.pdf

[10] W. Wittmer, A.S. Fisher, D.J. Martin, J.J. Seebeck’ “Detec-
tion of Instumental Drifts in the PEP II LER BPM System,”
these proceedings.

