
Work supported in part by US Department of Energy contract DE-AC02-76SF00515

Astronomical Data Analysis Software and Systems XVII O5.4

ASP Conference Series, Vol. XXX, 2008
J. Lewis, R. Argyle, P. Bunclarck, D. Evans, and E. Gonzales-Solares, eds.

Organizing the Extremely Large LSST Database for
Real-Time Astronomical Processing

Jacek Becla1, Kian-Tat Lim1, Serge Monkewitz2, Maria
Nieto-Santisteban3, Ani Thakar3

Abstract. The Large Synoptic Survey Telescope (LSST) will catalog billions
of astronomical objects and trillions of sources, all of which will be stored and
managed by a database management system. One of the main challenges is
real-time alert generation. To generate alerts, up to 100K new difference de-
tections have to be cross-correlated with the huge historical catalogs, and then
further processed to prune false alerts. This paper explains the challenges, the
implementation of the LSST Association Pipeline and the database organization
strategies we are planning to use to meet the real-time requirements, including
data partitioning, parallelization, and pre-loading.

1. Introduction

The Large Synoptic Survey Telescope is a proposed ground-based 8.4 meter
telescope with a 3.2 gigapixel camera. Once in production in 2014, it will produce
a new image every 15 seconds, leading to a 55 petabyte raw image archive
10 years later. The survey is expected to catalog 50 billion stars and galaxies
based on over 3 trillion individual astronomical source detections. Among its
main challenges is real-time transient alert generation (Becla et al. 2006). To
generate an alert the pixel data must be reduced and cross-correlated with the
existing catalogs, all in under a minute.

2. Alert Generation

It is expected that LSST will generate some 100 thousand alerts per night.
To generate alerts, each pair of back-to-back exposures, called a visit, must be
processed. The processing will occur at Base Camp, a computing center near
sea level below the mountaintop telescope. To generate alerts for a given visit:

1. The two exposures must be transfered to the Base Camp.
2. The two exposures must be processed by the Image Processing Pipeline.
3. New detections must be generated by differencing with a template image.
4. The new detections must be associated with existing astronomical objects.
5. A decision has to be made which detections should trigger alerts.

1Stanford Linear Accelerator Center, Menlo Park, CA, USA

2California Institute of Technology, Pasadena, CA, USA

3The Johns Hopkins University, Baltimore, MD, USA

SLAC-PUB-12962

November 2007

Contributed to 17th Annual Astronomical Data Analysis Software And Systems Conference (ADASS 2007) , 

9/23/2007-9/26/2007, London, UK



2 Becla et al.

The process of associating new detections with existing astronomical objects
(4th step above) is run as a separate LSST pipeline, the Association Pipeline,
and it involves the following tasks:

1. New detections (difference detections) are cross-correlated with the exist-
ing Object Catalog. The correlation involves a spatial search within a
0.05 arcsec radius. Matching detections are marked.

2. The unmatched detections are cross-correlated with the Moving Object
Catalog, which contains information about known moving objects and
their predicted positions at the time when the exposures were taken.
Matching detections are again marked.

3. Entries in the Object Catalog corresponding to matching detections are
updated. For each remaining unmatched detection, a new entry is created.

The difference detections are then passed to the Alert Generation Pipeline
which examines in detail the detections and their corresponding objects or mov-
ing objects if they exist and decides on their alertability.

All updates to the Object Catalog must be available when subsequent ob-
servations are processed the same night.

It is expected LSST will deal with an average of 40 thousand new detec-
tions and 4 million historical objects per visit, with peaks of 100 thousand and
10 million respectively. New objects per visit should be around 1 thousand.

3. Design Details

It is easy to notice the whole process could be very disk I/O intensive. The main
contributors include (a) locating and reading 4–10 million objects corresponding
to the observed field of view (FOV) out of the 50 billion row / 100 terabyte
Object Catalog, and (b) updating 40–100 thousand rows in the Object Catalog.
“a” implies access to a potentially large volume of data, and “b” implies many
small, sparse updates and writes.

3.1. Minimizing I/O

In order to minimize disk I/O, the cross-match should be done only against the
objects in or near the processed FOV. If we further sequentialize (derandom-
ize) I/O by clustering data accessed together, that reduces the problem from
100,000 × 50 billion to 100,000 × 4 million, or from 100 terabytes to 7 giga-
bytes. In practice, it implies we need to store together objects that are close in
the spatial coordinate system.

Further, the I/O can be reduced by fetching only the columns used during
cross-match. Each row in the Object Catalog consists of close to 300 columns oc-
cupying 1,658 bytes, while the spatial cross-match needs access to only 9 columns:
objectId, ra, decl, and a variability probability for each filter. That reduces the
problem from 7 gigabytes down to 130 megabytes. In row-oriented database sys-
tems, entire rows are stored together on disk. To avoid sparse reading (skipping
unwanted columns) a specialized copy with the 3 columns will be maintained.

Further speed up can be achieved by partitioning the data in round-robin
fashion across several disks. We chose to partition data such that for any given
FOV the corresponding data can be fetched by reading a small number of parti-
tions. Using spreadsheet-based analysis and some testing we determined a good



Organizing the Extremely Large LSST Database for Real-Time Astronomical Processing 3

Figure 1. Globe partitioning

LSST partitioning scheme: the Object Catalog should be divided into declina-
tion stripes, with each stripe partitioned in RA to form a total of 330,000 chunks.
Stripes should be a fraction of a FOV high to minimize wasted I/O around the
circular FOV. The partitioning scheme is shown in Figure 1.

It is worth noting that the optimizations outlined above lead to a compact
FOV data set which easily fits in memory of one of today’s commodity servers.

The LSST Online Control System will know at least 30 seconds in advance
the coordinates of the next FOV. That allows further optimizations: data for
the next FOV can be prepared before the time-critical processing is started. To
take advantage of that, we split the Association Pipeline into 3 distinct phases:

1. pre-process: data is fetched from disk to memory, reorganized and indexed
2. real-time: in-memory snapshot of the data is used, that includes reading

and updating existing data, and writing new data
3. post-process: the changes are written to disk. If some data is needed for

the subsequent FOV, it will be kept in memory.
To avoid losing data, we expect to fully mirror the environment and provide

hot-swap capabilities.
As explained earlier, the Alert Generation Pipeline will need to examine

in detail the potentially alertable detections and corresponding objects, if they
exist. In almost all cases the alertable detections will correspond to variable
objects. Since a very small fraction of all objects are variable (less than 5%), it
makes it easy to fit all variable objects for a given FOV in memory.

All the above optimizations lead to an architecture where there is almost
no disk I/O activity during the time-critical period of the Association Pipeline.
The only remaining disk I/O is triggered by fetching objects which used to be
classified as static objects that are now being reclassified as variable objects. In
practice, there will be less than 1,000 such objects per visit, generating less than
2 megabytes of disk traffic (1,000 × 1,658).

In order to keep up with the data, each pre-process and post-process may not
take longer than the visit duration (30 seconds). In such an environment, during
steady state there should not be more than one pre-process, one real-time and
one post-process running at any given time. That is easily doable on a modest
present-day machine with a disk array capable of delivering O(100) MB/sec.



4 Becla et al.

3.2. Maximizing Computational Efficiency

In order to further speed up the association process, we optimize the in-memory
snapshot of the data by dynamically dividing each stripe into declination zones
(Szalay et al. 2004), as shown in Figure 1. Although the optimal zone height for
cross-matching is equal to a single search radius, we use zones that are several
search radii high to minimize index overhead. Furthermore, we pre-sort data
within zones by RA. During the time-critical period the actual match is done by
matching detections and objects within zones, which can be trivially parallelized.

We also determined that it is faster to push the computation from the
database to the application. In the application we can take advantage of highly-
specialized algorithms to do the computation faster than a typical database does.
Such an approach involves moving data to computation, which is somewhat
counter-intuitive. It works in our environment because we first significantly
reduced the size of the working data set.

4. Results

We ran a set of tests for the average real-LSST scale: 40 thousand detections
and 4 million objects per visit, using a single 2002-era SunFire V240 UltraSparc
IIIi 1.5 GHz server.

As explained above, the prepare phase must finish under 30 seconds. Ac-
cording to the official requirements the time-critical cross-match must finish in
10 seconds.

In the tests we ran, the prepare phase took 9.4 sec, and the real-time phase
took a little more than 1 sec: reading and indexing new detections 0.91 sec and
cross-match 0.14 sec.

The testing involved spatial cross-match only. Examining the full contents
of variable objects (part of Alert Generation) was outside the scope of this year’s
data challenge and was not tested. Given the optimizations planned, namely
keeping the bulk of the data in memory and only fetching 2 megabytes of data
from disk, it is expected this will take 1–2 seconds.

5. Conclusions

One of the important LSST missions is to provide real-time alerts triggered by
transient objects. From the database perspective that implies some 40,000 de-
tections must be rapidly matched against some 4 million entries that have to be
extracted from the historical 50-billion-row Object Catalog. We proved that the
average LSST-scale spatial cross match of the detections with existing objects
can be achieved on a single, modest server. The optimizations include organiz-
ing the data efficiently, replicating, prefetching the working data set to memory
and pushing the computation to the application.

References

Becla J. et al. 2006, in Proc. SPIE Vol. 6270, 62700R

Szalay, A.S. et al. 2004, MSR-TR-2004-32


