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Abstract

The instability in the PEP-II electron ring has been observed while reducing the

clearing gap in the bunch train. We study the ion effects in the ring summarizing

existing theories of the beam-ion interaction, comparing them with observations,

and estimating effect on luminosity in the saturation regime. Considering the gap

instability we suggest that the instability is triggered by the beam-ion instability,

and discuss other mechanisms pertinent to the instability.

0.1 Introduction

The paper is inspired by recent observation of beam instability at PEP-II electron HER [1].
The instability took place when the ion gap was reduced below a certain minimum length
for colliding beams. In the paper, we summarize the theories of the beam-ion interaction
reproducing in the Appendix the main theoretical results of the different regimes of the
linear theory and clarifying the limits of their applicability. We distinguish three regimes
of ion instability emphasizing that experiments can not be described by the linear theo-
ries, show results of the nonlinear analysis, and estimate ion effect on luminosity in the
saturation regime. We also discuss the gap instability and present arguments that the
instability can be triggered by the ions in the ring and discuss other relevant effects.

0.2 Linear theories of the beam-ion interaction

The beam-ion instability is well known since the pioneering paper by Zenkevich and
Koshkarev [2]. Usually it is assumed that ions are generated in collisions of the beam
with the residual gas with the rate per unit length per unit time
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S0 =
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(1)

given in terms of the bunch population Nb, bunch spacing sb, and the ionization cross-
section σ+. The residual gas density ng at normal temperature is defined by the pressure
P ,

ng = 3.2 107 P

nTorr
cm−3. (2)

The cross-sections and densities of the residual gas are given in Table 1 for four main
species at room temperature and pressure 1 nTorr [3]. Below, we take the usual estimate
σi = 2 Mbarn for the cross-section averaged over partial pressure of gas species. It is worth
noticing that actual gas composition is not well known because high flux of synchrotron
radiation photons may dissociate molecules to single-atom species and heavy ions can be
present due to damaged silver, copper, and TiN vacuum surfaces.

Table 1. Cross-sections and partial densities of the residual gas.
A σcol, Mbarn Partial P,% n, 107 cm−3nTorr−1

H2 2 0.35 75 2.4
CO 28 1.9 0.14 0.46
CO2 44 3.0 0.07 0.22
CH4 16 2.1 0.04 0.12

Ions interacting with the train of bunches are trapped at the beam line and oscillate
with the ion frequency Ωi

x,y,

(
Ω(i)

x,y

c
)2 =

2Nbrp

Aσx,y(σx + σy)sb

. (3)

Here, rp is the classical proton radius, c is velocity of light, A is ion atomic number,
and σx,y are transverse rms dimensions of the beam. Oscillations are stable provided that
Ω(i)sb/2c < 1. Usually, this single-turn condition is fulfilled and ions are trapped along
the train. For small Ω(i)sb/2c << 1, the beam can be considered as a coasting beam. It
is worth noting that for new machines, with extremely small beam transverse rms such
as in the Super-B factory, the one-turn stability may not take place at least for hydrogen.
In this case, the average ionization cross-section would be substantially reduced as it is
clear from Table 1.

If there is a gap with the length L = cTg, ions may still remain multi-turn stable if

| cos(ψx,y + αx,y)| < cos(α), (4)

where
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ψx,y = Ω(i)
x,yT0(1 − Tg

T0

), sin(αx,y) =
Ω(i)

x,yTg/2
√

1 + (Ω
(i)
x,yT0/2)2

, (5)

and T0 is revolution period.
These conditions of ion stability are obtained (see, for example, Appendix 1) assuming

train of equidistant bunches moving with zero transverse excitation along the beam line.
In the steady-state case, ions generated at the beam line accumulated until the space-
charge starts driving ions toward the wall. The quasi-steady state ion distribution is
derived in Appendix 2 and is shown in Fig. (1). The density on the beam line is given by
the condition of neutrality dNi/ds = Nb/sb and can be very high.
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Figure 1: Density profile for round geometry. The density rolls off from n(0) = 1.3 1010

cm−3 on the beam line given by the condition of neutrality to the average density across
the beam pipe n ' 107 cm−3.

Suppose now that beam oscillates vertically with the bunch-to-bunch phase modula-
tion y(s, z) = a cos(ωβs/c − Ωz/c), where z, 0 < z < L, is distance of a bunch from the
head of the train and s = ct− z is the bunch location. Then, at a given location s in the
ring, an ion sees the field ∝ a cos(ωβs/c−Ω(t− s/c)) of the bunch z = ct− s. The signal
is modulated with frequency Ω and, if Ω = Ω(i), is in resonance with free ion oscillations
increasing the amplitude of ion oscillations linearly in time. In turn, ion oscillations affect
the beam. Zenkevich and Koshkarev have demonstrated that beam interacting with the
residual gas ionized in collisions is unstable and the amplitudes of the beam and ions
grow exponentially. The instability for a coasting beam took place (see Appendix 5.3)
when the frequency of a revolution harmonic nω0 is within the ion frequency distribution
and the growth rate is maximum for the revolution harmonics nω0 = ωβ + Ωi where Ωi is
linear frequency Eq. (3).
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For bunch trains with a large clearing gaps, the beam-ion instability does not have
resonance character. The instability in this case is the fast-ion instability (FII) discovered
by T. Raubenheimer and F. Zimmermann [4] and is driven by the ions generated by the
beam in one turn. Contrary to the Zenkevich-Koshkarev theory, where the ion density
is a fitting given parameter, the one-turn ion density in the FII is well defined by the
residual gas pressure.

The original linear theory [4] of the FII predicts the quasi-exponential growth of the

amplitude a of oscillations of bunch centers a ∝ e
√

τ/τ0 . It is convenient to describe the
beam-ion interaction in terms of the dimensionless variables

τ =
ωys

c
, ζ =

Ω(i)
y z

c
, (6)

where ωy = Qyω0 and Qy is the betatron tune. In such units, the effective FII growth
rate in the vertical plane is

1

τ0
= Λ0ζ

2,

Λ0 =
2re

γ Ωi,y

〈 S0

σy(σx + σy)
〉 (

c

ωy

)2. (7)

Here re is classical electron radius and γ is relativistic factor. We reproduce this result
in the Appendix 5.1.

It is worth noting that ions in the theory of FII are described, for the cold beam, by
oscillatory equation. Thus, it is implied that ions are one-turn stable what, as it was
mentioned above, may be wrong for a Super-B machine. In this case, the FII would be
substantially suppressed.

The next step in the theory was taken by G. Stupakov [5] who took into account the
variation of the ion frequency around the ring ε = ∆Ωi/Ωi due to variation of the beam
rms at different locations. The growth becomes exponential a ∝ eτ/τS (see Appendix 5.2,
Eq. (78), where

1

τS
=

Λ0 ζ
2

4
√

2 ε ζ
, (for ε ' 0.1), (8)

and is reduced by the factor εζ >> 1 compared to Eq. (7). Eq. (8) is applicable (see
Appendix 5.2, Eq. (8)) if

ε >>

√

Λ0τ

2
. (9)

Otherwise, for ε <<
√

Λ0τ/, the quasi-exponential result Eq. (7) is valid.

It is worth noting that usually Eq. (8) is understood with ζ taken at the tail z = L of
the train, ζ = ΩL/c. That is correct if the growth rate Eq. (8) is relatively small and the
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amplitude of ion oscillations does not grow within the length of the train to values larger
than several rms σy. Otherwise, such ions lose memory of the beam offset and the length
of the train L has to be replaced by such length where that happens.

The growth rate in Zenkevich-Koshkarev theory (see Eq. (92), Appendix 5.3) and the
growth rate Eq. (8 are given by the same expression (apart of the factor π/2) if both are
written in terms of the ion density ni. However, the density is very different being given
by the ions generated in one turn for FII and is determined by the space-charge limit for
multi-turn stable ions.

It would be very difficult to observe the exponential regime directly although some
experiments are quite consistent with the theory [6].

D. Pestrikov [7] noticed that the build-up of ion density along the train leads to
the bunch-to-bunch tune variation along the train. This effect works similar to Landau
damping. Indeed, the beam becomes stable when (see Appendix 2, Eq. (51)) )

Λ0τ

8
> 1. (10)

However, Stupakov [8] noticed that condition Eq. (10) corresponds to a very large
time. In reality, the beam does cease to follow the linear theory much earlier than the
tune variation can take effect.

Results Eqs. (7)-(10) were obtained in the linear approximation and, for completeness,
we reproduce them in Appendix 2. We refine the result of Eq. (8) and show that the
Stupakov’s regime has to be replaced by the original result Eq. (7) at large time. However,
similar to the case of Pestrikov’s regime Eq. (10), the linear theory ceased to be valid
earlier than it can happen.

0.3 Linear theories in PEP-II

In the following we apply results of the linear theory to the PEP-II electron ring lattice
and typical parameters: the beam current 1.75 A, the beam energy E = 9.1 GeV, the
revolution time T0 = 7.3 µs, tune Qy ' 26.5, the typical average transverse rms σx = 0.8
mm, σy = 150 µm, the beam separation sb/c = 4.3 ns, the bunch populationNb = 4.5 1010,
and the typical base pressure P = 2 nTorr.

With such parameters, the production rate of ions S0 = 1.4 109 1/(cm s). For ions
with atomic number A = 28, the ion frequencies Ωi,y ' 50 MHz, Ωi,xsb/2c = 0.04,
Ωi,ysb/2c = 0.10 and ions are one-turn stable. The exponential growth stops according to
Pestrikov’s theory when Λ0τ/8 ' 1, or only after 350 ms, well beyond applicability of the
linear theory. Hence, within the linear theory, only the Stupakov’s regime Eq. (8) may
be applicable.

The variation of the transverse rms σy in the PEP-II electron ring is shown in Fig.
(2). The variation of the rms leads to the ion frequency variation which can be described
by the parameter p(τ),
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p2(τ) = (
1

σy(σx + σy)
)〈 1

σy(σx + σy)
〉−1, (11)

where the angular brackets mean averaging over the ring. Parameter p(τ) is depicted
in Fig. (3).
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Figure 2: Variation of the rms σy in HER PEP-II (90o phase advance optics).

For a periodic lattice with the period τc = 2πlcωβ/c defined by the lattice period lc,
variation of p(τ) can be described as p(τ) = 1 + ε sin(τ/τs). Definition of the modulation
amplitude ε for realistic lattice is given in Appendix 2. Calculations give for two PEP-II
electron ring lattices values

ε = 0.141, (90o lattice),

ε = 0.109, (60o lattice).

With such variation, the growth time in Stupakov’s theory Eq. (8) is τS = 192µs, and
beam should be unstable which seems to be in contradiction with the reality. One may
argue that the beam in collision is stabilized by the beam-beam tune spread which can
be as high as ξBB = 0.1. Indeed, the corresponding frequency spread δωβ ' 13 kHz can
suppress the instability, see below. Dependence of a single beam stability on the gain of
the transverse feeback system (TFB) deserves more careful study.

Comparing the theory and experiment we need to have in mind the following. The
linear theory is applicable only as long as the amplitudes of the beam and ions are small
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Figure 3: Parameter p(s) around the ring calculated for HER PEP-II (90o phase advance
optics).

compared with the beam rms. In the linear theory, the ratio of ion to beam amplitudes is
approximately given by the factor (Λτ/ε)−1. Hence, initially ion amplitude grows faster
than the beam amplitude but later the relation is reverse. Limitation of small amplitudes
means that the beam in observations is practically always beyond the applicability of the
linear theory. The simulations [5], [9] and theory [10] show that the exponential growth
is replaced by much slower growth following a power law a ∝ (τ − τ0)

1/3 when the beam
amplitude a reaches few rms σy. Example of such behavior is shown in Fig. (4).

Can the ion instability affects the projected rms of the beam? The optical model, see
Table 2, predicts transverse rms factor 2-3 smaller than measured.

Table 2. rms of the PEP-II HER beam at the interaction point given by the optical
model

s(m) σx (µ m, MAD) σy (µ m, MAD)
733.10 128.93 1.103

Usually, a TFB has a damping rate ΓFB smaller than the growth rate of instability in
the initial exponential regime. The PEP-II feedback is effective for instabilities with the
growth time larger than, probably, 0.1 ms. When the amplitude is large enough to start
the nonlinear regime, the TFB can stop further growth. We can model the situation by
the equation for the amplitude a(τ) in the form

da(τ)

dτ
=

Γ a(τ)

1 + α (a(τ)/σy)3
− ΓFB a(τ), (12)
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Figure 4: Nonlinear growth of instability. The power law a ∝ (τ − τ0)
1/3 at large τ > τ0

replaces the initial exponential growth of the amplitude for a bunch at the tail of the
train. Numerical results (red line) agrees with analytic estimate for the envelope of
oscillations [10] (blue line).

where a(0) << σy is the initial seed amplitude to start the instability, Γ is the growth
rate of instability in the linear regime without TFB, and α is a parameter of the nonlin-
earity of the beam-ion interaction. Parameter α defines the amplitude asat ' (2− 3)σy at
which the linear regime is replaced by the power law growth, α(asat/σy)

3 ' 1. Without
TFB, Eq. (12) describes initial exponential growth a(τ) = a(0)eΓτ which changes to

a(τ) ' (
3 Γ τ

α
)1/3, for Γτ >> (1/3) ln[

3 Γ τ

α
(
σy

a(0)
)3]. (13)

With the TFB on, the solution of Eq. (12) is shown in Fig.(5). For calculations we
assume α = 0.1, initial amplitude a(0) = 10−3, the ratio ΓFB/Γ = 0.1 and ΓFB/Γ = 0.2.

The amplitude for large Γτ goes to zero if Γ < ΓFB or to a constant value

a∞ = σy [
1

α
(

Γ

ΓFB

− 1)]1/3, Γ > ΓFB. (14)

Effect of the beam-beam tune spread ∆ωβ is equivalent to increasing TFB damping
effectively replacing ΓFB by ΓFB + ∆ωβ. For reasonable 1/Γ ' 200µs, 1/ΓFB = 500µs,
and the beam can be stabilized by quite low beam-beam tune spread ξBB = 0.005.

The TFB defines as well the steady-state amplitude in the model where the instability
saturates asymptotically in time. To illustrate that let us consider a model where the
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Figure 5: Saturation of the instability with the TFB turned on.

amplitude changes according to equation

da(t)

dt
=
a∞ − a0

τ0
[1 − (

a(t) − a0

a∞ − a0

)2] − g a(t). (15)

Parameter g here is the damping rate introduced by the TFB, and τ0 is the growth
time of instability. If g = 0, the amplitude a(t) growth from the initial a(0) approaching
the asymptotic a∞,

a(t) = a0 + (a∞ − a0) tanh(
t

τ0
). (16)

With g > 0, the character of growth is the same but the asymptotic value decreases
as it is shown in Fig. (6). The asymptotic value of a(t) in saturation is shown in Fig. (7)
vs the damping rate g.

As Figs. (6)-(7) show, the steady-state amplitude remains quite noticeable even at
large damping rates of the TFB system. It may explain why the rms defined in collisions
from the luminosity measurements is always several times larger than predicted by the
optical model.

We think that careful study of the apparent discrepancy between optical model and
luminosity measurements are needed to estimate effect of other mechanisms such as par-
asitic dispersion at the interaction region or x/y coupling. Large saturation amplitude
would reduce the luminosity causing periodic variation of a bunch offset at the collision
point. Even if the amplitude in saturation is the same for all bunches, it can possibly
be detected as turn-by-turn luminosity variation for a given bunch unless bunch center
motion is accompanied by similar growth of the bunch transverse rms. The latter effect
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Figure 6: Variation of the a(t) for a model Eq. (15) for several values of the TFB damping
rate g. Parameters used a0 = 0.1, τ0 = 1.0.
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Figure 7: Asymptotic value of a(t) for a model Eq. (15) vs the TFB damping parameter
g. Parameters are the same as in Fig. (6).

is considered in the theory of the single-bunch electron cloud theory where dynamics of
bunch slices can be substantially different. It is doubtful that such effect is noticeable for
beam-ion interaction with much lower ion frequencies.

We also has to have in mind that our estimates use some parameters such as the
average rms of the beam which are not very well known. The actual rms may be different
from the optical model, and measurements may give only projected rms of the beam
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including the centroid offset.

1 The gap instability

The FII instability assumes that ions are cleared out in one turn and instability is caused
by the ions generated in one turn. The clearing gap in the train of bunches is introduced
to reduce the ion density. Operation of high-current machine with a large gap, however,
is difficult because the gap causes transient behavior in the rf system and along the train.
For this reason, the shorter the gap the better and there was attempt to reduce the clearing
gap in PEP-II [1]. In the experiment, the transient variation of the rf phase along the
train, indeed, was reduced for smaller gaps. However, the beam became unstable when
the gap was reduced to approximately 15 bunches. This gap instability had character of
the transient phenomena starting from the head of the train and spreading toward the tail
with the rate which allowed observation of the process in real time. The beam oscillates
with large amplitude but the life time remains relatively good and the beam is not lost
for an hour. The oscillations, however, affect the luminosity. Some of the experimental
results are shown in Figs. (8). We present a preliminary discussion of the instability,
more details will be reported elsewhere.

In Fig. (8) the top pane shows increase of the number of bunches in the train from
1730 bunches with the nominal bunch spacing of 2λrf . The full ring with such bunch
spacing has 1746 bunches. The middle pain shows that with 5 bunches added to the gap
the projected vertical rms σy (averaged over all bunches in the beam) in the high energy
electron (HER) ring started to grow. At the same time, the σy in the low-energy positron
beam (LER) decreased. The strong beam oscillations accompanied the rms growth. The
beam were in collisions and the luminosity drops as it is shown in the bottom pane of
Fig. (8). The average beam currents degraded (mostly in LER) but very slowly (the time
interval shown in Fig. (8) is about 2 hours). Attempts were made to change tunes to
stabilize beams and, eventually, the beam was lost. Later the HER was refilled again,
this time there were no collisions: the LER was empty, and the single HER beam was
stable for the same number of additional bunches which caused instability of the colliding
beams.

To explain the gap instability we analyzed condition Eq. (4) varying the length of the
gap cTg for a given current. We tried to show that for small gap the ion density can be
substantially larger than the density of one-turn ions. Results are plotted in Fig. (9).

Fig. (9) shows that at large gaps almost all ions are unstable. In this case, the ion
density is the density of ions generated in one turn and the maximum accumulated linear
density is dNi/ds = S0T0. The production rate S0 is defined in Eq. (1). For PEP-II
parameters, S0 = 1.4 109 (cm s)−1 and T0 = 7.3 µs give dNi/ds = 1.0 104 1/cm per turn.
The density of one-turn ions
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ni =
S0

2πσyσx

(17)

is ni = 1.3 106 cm−3, giving the tune shift for the last bunch (see Appendix 5.1, Eq.
(57),

∆Qy =
πre

γ
(
c

ωy

)2 niQy, (18)

which is small, ∆Qy = 0.0030 at PEP-II Ib = 1.75 A and σx/y = 800/150µm.
With small gaps, however, almost all ions become stable. In this case, the density

is limited only by the space charge of accumulated ions and by the instability itself.
Usually the linear density in such a case is estimated using the condition of neutrality.
If the latter is understood as equality of the linear density of ions and of the beam,
dNi/ds = Nb/sb, then the linear density of ions would be very large ni = 4.7 1010 cm−3 for
PEP-II parameters. Even if the actual density is only on the level of few percent of that
given by neutrality, the linear density for small gap can be two order of magnitude larger
than density for long gaps. Note that stability first starts in x-plane what may explain
the difference in dynamics of the instability in x/y plains. The frequency of coherent
oscillations observed in the experiment is consistent with the ion frequency. The growth
rate of instability increases proportional to the density and the beam-beam tune spread
which stabilized beam with large gap may become insufficient to stabilize the beam with
reduced gap. Fig. (9) shows that ions are stable in both transverse planes simultaneously
if Tg/T0 < 0.002 and 0.012 < Tg/T0 < 0.014, which is in a reasonable agreement with the
gap length at the onset of instability within uncertainty of the beam rms. It is interesting
also to estimate the time it takes to build up such density, t = (dNi/ds)/S0. For PEP-II,
t = 0.26 s, quite a macroscopic time for observations.

These arguments make plausible that ions trigger the gap instability. It is more compli-
cate to explain the whole picture of instability which can be caused by several mechanisms.
We see several other possible mechanisms affecting the instability.

The huge ion density at small gaps leads to the tune shift which would, certainly, kills
the beam.

For large and different in x/y planes tune shifts, it is possible to hit a coupling reso-
nance. Such a resonance does not kill the beam but can induce oscillations observed in
experiment.

The time evolution of instability may be defined by the width of ion spectrum ∆Ωi

which defines the number of revolution harmonics excited simultaneously. The instability
then can be described as result of a low-Q wake field. The instability is similar then to
the daisy-chain instability where the bump excitation moving from the head of the train
toward the tail. At any given moment of time, the maximum amplitude has a bunch with
the bunch number n ∝ t and the width of the bump has ∆n ' c/(∆Ωisb) bunches.
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Another possibility is that ion tune shift changes the beam optics and, in particular, the
dispersion D∗

x at the interaction point [11] and may lead to synchro-betatron resonances
and the flip-flop beam-beam behavior.

The beam spectrum also depends on the gap. We need to remind, that for uniform
fill the ion instability has a resonance character [2], see Appendix 5.3, and the strongest
revolution harmonics is given by Eq. (91), nω0 = Ω0 + ωy. Other resonance harmonic
have lower growth rate and has to be within the window ∆Ω around the strongest mode.
Such a resonance can be avoided for the uniformly distributed bunches, where in the beam
spectrum there are, ideally, only harmonics separated by ∆ω = 2π/τb. For PEP-II bunch
spacing τb = 4.2 ns, such harmonics are rare, ∆ω ' 238 MHz. For the train with a gap
Tg, each of these harmonics is surrounded by the revolution harmonics with the number
of modes δnω0 ' π/Tg. If the gap is small enough,

nω0 '
π

Tg

≥ Ωy, (19)

one of the revolution harmonics can hit the resonance causing the beam instability.
The amplitude of the resonance harmonics depends on the gap. However, in reality, some
level of revolution harmonics is always present due to uneven fill of rf buckets or the
residual coherent longitudinal motion of bunches and such an explanation seems to be
unlikely.

It is not quite clear why a single electron beam seems to be stable with the same gap
which triggers colliding beams instability. However, because the gap was reduced also
in LER, the e-cloud instability was affected as well what may explain the difference of
stability of a single and colliding beams.

The beams in HER and LER rings are modulated with ion and electron frequencies,
respectively. Because the frequencies are different, the beam-beam force proportional to
the relative offset of two beams at the interaction point is different for different bunches
as it is illustrated in Fig. (10). That may be related to variation of the instability rate
along the train.

Another possible explanation may be related to the difference in the transverse rms of a
single beam and the beam in collision. In Fig. (12) we compare the small gap ion stability
for two species with atomic numbers A = 2 and A = 28. Heavier ions remain stable for
larger gaps. The same is true for dependence on the beam transverse rms: transition to
ion stability for larger rms takes place earlier at larger gaps. However, the beam-beam
blow-up is not large, indicating that the instability have different cause related to the
beam-beam interaction and the ions only start the instability.

To summarize, we can consider the gap instability as a result of transition from the
regime of the FII, where the ion density is the density of ions generated in one turn and
the beam amplitudes are in saturation at relatively low level, to the resonance Koshkarev-
Zenkevich regime were ions are stable and ion density can be larger by several order of
magnitude than in the FII regime. If beams are in collisions, excitation of the electron
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beam and the beam-beam interaction reduces the rms of the positron beam with overall
reduction of luminosity.

However, available results on the gap instability should be considered as preliminary
and more studies are needed. In particular, more accurate data are needed on dependence
on the machine tune and on the TFB damping rate.

2 Conclusion

Observation of the gap instability was a starting motivation for our analysis. We sum-
marize the existing theories of the beam-ion interaction, re-derived the main results of
the theories, and apply them to the realistic parameters and lattice of PEP-II electron
ring. We conclude that none of the theories based on the linear approximation can be ap-
plied to describe the observations. The best linear theory by Stupakov describes only the
first few turns when the instability grows exponentially. The growth rate in this regime
is higher than what can be handled by the transverse feedback. After that the growth
continues following only a power law. With the TFB on, the beam amplitude saturates
at the amplitude depending on the ratio of the growth rates of the instability and the
TFB. For reasonable parameters, the estimated saturation level can be comparable with
the beam rms. That does not necessarily contradict the measured rms which are indeed
larger that predicted by the optical model of the ring but would reduce luminosity causing
turn-by-turn variation of the bunch luminosity. We need to clarify the situation with new
experiments and, maybe, refined theory.

The gap instability, on the other hand, seems to be related to a sharp increase of
the ion density for small gaps where most of ions become stable and can be accumulated
in many turns. The gap instability can be a result of transition from the regime of
the FII, where the ion density is the density of ions generated in one turn and the beam
amplitudes are in saturation at relatively low level, to the resonance Koshkarev-Zenkevich
regime. For small clearing gaps in the bunch train, not only ion density increases, but also
revolution harmonics are present which can hit the beam-ion resonance. Quantitatively
such analysis agrees with observed in experiments. At the present time, we cannot exclude
other mechanisms and more experiments are needed to clarify the gap instability.
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4 Appendix 1. The beam-ion interaction

Interaction of the ion with a beam electron is Coulomb interaction. The field of a rela-
tivistic electron is

eEy =
γe2(Y − y)

[(Y − y)2 + (X − x)2 + γ2(ct)2]3/2
, (20)

where X,Y and x, y are coordinates of an ion and the electron separated by the
distance ct. Neglecting the shift of particles on the time scale σ⊥/γ, the interaction can
be described as a kick to the ion

∆(
Y

dt
) =

∫

dt
eE⊥

Amp

= −2rpc

A

Y − y

(Y − y)2 + (X − x)2
. (21)
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The kick from a Gaussian bunch can be obtained convoluting Eq. (21) with the
bunch transverse distribution centered at yc, xc. It is convenient to introduce additional
integration presenting result in the form

∆(
Y

dt
) = −2rpNBc

A
(Y − yc)

∫

∞

0

dµ
√

1 + 2µσ2
x(1 + 2µσ2

y)
3/2

e
−

µ(X−xc)2

1+2µσ2
x

−
µ(Y −yc)2

1+2µσ2
y . (22)

In the linear approximation, exponent can be replaced by one. Then, carrying out the
integration, one get

∆(
Y

dt
) = −λ0 (Y − yc),

λ0 =
2rpNBc

Aσy(σx + σy)
. (23)

Interaction of the beam with an ion in the zero approximation can be considered
neglecting the transverse motion of the bunches. In this case, the ion motion is defined
by a series of kicks separated in time by sb/c and free motion in between. Considering
the transform of (Y, Ẏ ), it is easy to see that the ion is stable provided the kick is not too
large

λ0sb

4
< 1. (24)

The phase advance per kick ν is related to λ0,

cos ν = 1 − λ0sb

2
. (25)

For small ν << 1, the motion of an ion can be described approximately as oscillations
with frequency Ωy, defined by the phase advance ν = Ωysb/c, or

(
Ωy

c
)2 =

2rpNB c

Aσy(σx + σy)sb

. (26)

The condition of ion stability takes the form Ωysb/2c < 1.
The kick from an ion to a bunch electron can be defined from Eq. (23) using the

Newton’s law γme∆ẏ = −mpA∆Ẏ . The kick per unit length ds to an electron of a
bunch z is given by multiplying ∆ẏ by the number of ions generated by the previous
bunches of the beam dNi = σ+

i ngNB(z/sb)ds. Equation of motion for a bunch in the
linear approximation takes the form

d2y(τ, ζ)

ds2
+ (

ωy

c
)2 y(τ, ζ) =

2rpNB

Aσy(σx + σy)
σ+

i ngNB

∫ z

0

dz′

sb

[Y (s, z, z′) − y(s, z)]. (27)
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5 Appendix 2. Ion distribution

The ion density varies across the beam-pipe by several order of magnitude. Here we derive
the ion distribution in a quasi-static approximation where ions are generated by the beam
with a constant rate S0 per unit time and unit length and are driven to the wall by the
space-charge of accumulated ions. For simplicity, we consider a round beam with uniform
density within the cross-section πσ2 and the round beam pipe with the radius b.

In a steady-state regime, the local ion density n(r) is independent of time. The
continuity equation defines the ion current to the wall which has only radial component
j(r) = v(r)n(r),

v(r)n(r) =
S0

2πb
{Θ(r − σ)(

b

r
) + Θ(σ − r)(

b

σ
)2 r

b
}, (28)

where Θ is a step-function. The ion energy is defined by the initial conditions and
remains constant while ion moves toward the wall. That defines the local velocity v(r).
If an ion is generated at r = 0 with the zero velocity, then

Miv
2(r)

2
+ U(r) = U(0), (29)

where Mi is the ion mass, and U(r) = Ub(r) + Usc(r) is total potential given by the
sum of the space-charge potential of ions Usc and the beam potential Ub(r).

Finally, the Poisson equation defines Usc,

1

r

∂

∂r
r
∂Usc

∂r
= −4πe2n(r). (30)

It is convenient to use the dimensionless x = r/b, xm = σ/b, and normalize potentials

Usc(r) =
Nbe

2

sb

usc(x), Ub(r) =
Nbe

2

sb

ub(x),

ub(x) = −Θ(x− xm) ln(
1

x2
) + Θ(xm − x)[1 − x2

x2
m

+ ln
1

x2
m

]}. (31)

Then, combining equations, we get for v(x) = usc(x) − usc(0) equation

∂

∂x
x
∂v(x)

∂x
= − Λ

√

ub(x) − ub(0) − v(x)
{Θ(x− xm) + Θ(xm − x)

x2

x2
m

}. (32)

Here,

Λ = S0
2bsb

Nbc

√

Aisb

2Nbrp

, (33)

and Ai is ion atomic number.
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Eq. (32) has to be solved with initial conditions v(0) = 0 and v′(0) = 0.
Let us consider the limit x− > 0. Then, substituting v(x) ' −κx2/2 in Eq. (32), we

get

2xκ =
Λ

√

κx2/2 − x2/x2
m

x2

x2
m

, (34)

or

κ
√

κ/2 − 1/x2
m =

Λ

x2
m

. (35)

Usually, parameter Λx2
m << 1. In this case,

κ ' 2

x2
m

+ (
Λ

2
)2. (36)

The density n(x) is given in terms of v(r) by

n(x) =
Nb

4πsbb2
Λ

x
√

ub(x) − ub(0) − v(x)
{Θ(x− xm) + Θ(xm − x)

x2

x2
m

}. (37)

In particular, on the beam line, Eq. (36) gives

n(0) =
Nb

4πsbb2
κ =

Nb

2πsbσ2
(38)

what coincide with the condition of neutrality.
The density profile can be obtained solving Eq. (32) numerically. Result is shown

in Fig. (1) for PEP-II parameters Nb = 4.5 1010, Ai = 28, b = 3 cm, sb = 126 cm,
S0 = 1.4 109 1/(cms). In this case, xm = 0.026, and Λ = 17.4.

In derivation above, all ions were generated at r = 0. It is not difficult to show that
the sane result gives assumption of ions generated uniformly at r < σ.

6 Appendix 3. Linear regime of instability

Here we reproduce the main results of the linear theory of the beam-ion instability. In
the dimensionless variables τ, ζ, Eq. (27) and similar equation for ions take the form

∂2Y (τ, ζ, ζ ′)

∂ζ2
+ p2(τ)Y (τ, ζ, ζ ′) = p2(τ)y(τ, ζ),

d2y(τ, ζ)

dτ 2
+ y(τ, ζ) = Λ0p

2(τ)
∫ ζ

0
dζ ′[Y (τ, ζ, ζ ′) − y(τ, ζ)]. (39)

Solution for ions generated by the bunch z ′ with the zero initial velocity is
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Y (τ, ζ, ζ ′) = y(τ, ζ ′) cos[(ζ − ζ ′)p(τ)] + p(τ)
∫ ζ

0
dζ ′ sin[(ζ − ζ ′)p(τ)]y(τ, ζ ′). (40)

Substituting this result in the LHS of equation for y and integrating by parts, one gets

∂2y(τ, ζ)

∂τ 2
+ y(τ, ζ) = −Λ0p

2(τ)
∫ ζ

0
ζ ′dζ ′ cos[(ζ − ζ ′)p(τ)]

∂y(τ, ζ ′)

∂ζ ′
. (41)

For the first bunch in the train we assume unperturbed motion y(τ, 0) = y0 cos(τ).
Let us introduce slow over τ amplitude a(τ, ζ),

y(τ, ζ) = a(τ, ζ) eiτ + c.c. (42)

Neglecting ∂2a/∂2τ << ∂a/∂τ , we get averaging over τ

∂a(τ, ζ)

∂τ
) =

iΛ0

2

∫ ζ

0
ζ ′dζ ′K(ζ − ζ ′)

∂a(τ, ζ ′)

∂ζ ′
, (43)

with the initial condition a(τ, 0) = y0/2 and, for small τ , a(τ, ζ) = (y0/2)e−iζ . The
kernel is given by averaging over τ ,

K(ζ − ζ ′) = 〈p2(τ) cos[(ζ − ζ ′)p(τ)]〉, (44)

where the angular brackets denote averaging over the ring.
Laplace transform over τ

a(τ, ζ) =
∫ dκ

2πi
eκτ ã(κ, ζ), (45)

gives

ã(κ, ζ) =
a(0, ζ)

κ
+
iΛ0

2κ

∫ ζ

0
ζ ′dζ ′K(ζ − ζ ′)

∂ã(κ, ζ ′)

∂ζ ′
. (46)

The boundary condition takes the form

ã(κ, 0) =
y0

2κ
. (47)

6.1 FII neglecting ion frequency spread

First, we neglect the variation of ion frequency taking p(τ) = 1 and K(ζ − ζ ′) = cos(ζ −
ζ ′). For such a simple kernel, Eq. (46) can be reduced to a differential equation by
differentiating it twice over ζ,

(1 − iΛ0

2κ
ζ)
∂2ã(κ, ζ)

∂2ζ
− iΛ0

2κ

∂ã(κ, ζ)

∂ζ
+ ã(κ, ζ) =

a(0, ζ)

κ
+

∂2

∂ζ2
(
a(0, ζ)

κ
). (48)
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Solution of Eq. (46) is given by the superposition of the Bessel functions

ã(κ, ζ) = c1(κ)I0(
2

α

√

1 − iαζ) + c2K0(
2

α

√

1 − iαζ), α =
Λ0

2κ
. (49)

Initial condition Eq. (47) can be satisfied using identity I1(z)K0(z)+I0(z)K1(z) = 1/z
with the coefficients c1, c2 proportional to K1(2/α) and I1(2/α), respectively. The inverse
Laplace transform gives after changing τ− > Λ0τ/4

a(τ, ζ) =
y0

2

∫ dκ

2πi
e

Λ0κτ

4 [K1(κ)I0(
√

κ(κ− 2iζ)) + I1(κ)K0(
√

κ(κ− 2iζ))]. (50)

Changing variable κ→ (κ+ i)ζ, we can write Eq. (50) in the form

a(τ, ζ) =
y0

2

∫ dκ

2πi
eλζ(κ+i) [K1(ζ(κ+ i))I0(ζ

√
κ2 + 1) + I1(ζ(κ+ i))K0(ζ

√
κ2 + 1)], (51)

where λ = Λ0τ/4.
The contour of integration here is along the imaginary axes in the right half κ-plane.

Expression in the square brackets is proportional to 1/κ at large |κ| → ∞. Hence, the
contour can be shifted to Re(κ) → −∞ where the integral gives a constant. The main
contribution to the integral is given by the pole at κ = 0 in the first term in the square
brackets and the cut in κ-plane from κ = −i to κ = i in the second term. The contribution
of the pole at ζ = −i reproduces the initial condition for a(τ, 0). The asymptotic therefore
is defined by the cut.

The result can be obtained in a simple way using the saddle-point method. In the
asymptotic |ζ(κ+ i)| >> 1, |ζ

√
κ2 + 1| >> 1, the integral

a(τ, ζ) =
y0

4ζ

∫ dκ

2πi

1

(κ2 + 1)1/4
√

(κ+ i)
[ei(1+λ)ζ+ζΨ1 + e−i(1−λ)ζ+ζΨ2 ], (52)

where

Ψ1,2(κ) = ±(1 ± λ)κ∓
√
κ2 + 1. (53)

The saddle points κ± for Ψ2 are

κ± = ± 1 − λ
√

1 − (1 − λ)2
,

√

κ2
± + 1 =

1
√

1 − (1 − λ)2
, (54)

and Ψ2(κ+) =
√

1 − (1 − λ)2. It is easy to see that 1 − (1 − λ)2 > 0 for 0 < λ < 2.

Therefore, for such λ, the second term in Eq. (52) gives exponentially growing

a(τ, ζ) ∝ eζ
√

1−(1−λ)2 . (55)
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The saddle points for Ψ+ can be obtained changing λ → −λ. It is easy to see that
1 − (1 + λ)2 < 0 for all real λ. Therefore, the term ∝ eΨ1 gives only oscillatory terms.

For small λ << 1, Eq. (55) gives

a(τ, ζ) =
y0

2

1

2i
√
π

(
1

2Λ0τζ2
) e

−iζ(1−λ)+ζ

√

Λ0τ

2 (56)

reproducing the main original result [4]. Note that the solution oscillates over ζ as
e−iζ what corresponds to initial y(τ, ζ) ∝ cos(τ − ζ) used in [4]. The saddle-point method
is applicable if ζκ+ >> 1, i.e. for large ζ

√
Λ0τ >> 1.

The factor eiλζ increases tune by

∆Qy =
Λ0

4

Ωz

c
Qy =

πre

γ
(
c

ωy

)2 niQy. (57)

The growth of Eq. (56) is limited by the condition λ < 2. For larger τ ,

Λ0τ

8
> 1, (58)

the exponential growth is suppressed although the saddle-point method is still valid.
This result has been obtained by Pestrikov [7] and interpreted as Landau damping due to
tune variation along the train caused by increasing density of generated ions. Actually,
the large detuning changes dependence on ζ in this regime from eiτ−iζ at small λ << 1 to
eiτ−i(1−λ)ζ . Hence, for λ > 2 the backward wave is transformed to the forward wave what
stops the growth of instability.

As it was pointed out by Stupakov [8], Pestrikov’s regime for real parameters cor-
responds to very large τ . For example, for PEP-II electron ring, parameter Λ0κτ/8 '
2.2 10−5 × number of turns, and the exponential growth stops by Pestrikov only after 350
ms. Much earlier, the growth is changed by the nonlinearity of interaction as it is discussed
later.

6.2 FII with the ion frequency spread

Let us now restrict consideration to small Λ0τ << 1 but take into account the variation
of the ion frequency along the ring. In this case, we can take out the fast oscillations in
ζ explicitly defining the slow amplitude A(τ, ζ) of both variables,

a(τ, ζ) = A(τ, ζ) e−iζ . (59)

Eq. (43) takes the form

∂A(τ, ζ)

∂τ
=
iΛ0

2

∫ ζ

0
ζ ′dζ ′K(ζ − ζ ′) ei(ζ−ζ′) [

∂A(τ, ζ ′)

∂ζ ′
− iA(τ, ζ ′)]. (60)

Neglecting the term ∂A/∂ζ ′ << A(τ, ζ), we get
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∂A(τ, ζ)

∂τ
) =

Λ0

2

∫ ζ

0
ζ ′dζ ′A(τ, ζ ′)K(ζ − ζ ′) ei(ζ−ζ′), (61)

where the kernel K(ζ − ζ ′) depends on p(τ) = 1 + ∆p(τ),

K(ζ − ζ ′) ei(ζ−ζ′) =
1

2
〈p2(τ) [e−i∆p(τ)(ζ−ζ′) + e∆p(τ)(ζ−ζ′)+2i(ζ−ζ′)]〉. (62)

For small ∆p(τ), the factor p2 can be replaced by one and the second term describing
fast oscillations can be neglected. That transforms Eq. (61) to

∂A(τ, ζ)

∂τ
=

Λ0

4

∫ ζ

0
ζ ′dζ ′A(τ, ζ ′) 〈e−i∆p(τ)(ζ−ζ′)〉. (63)

Let us check Eq. (63) for ∆p(τ) = 0. In this case, it can be written as the differential
equation

∂2A(τ, ζ)

∂τ ∂ζ
=

Λ0

4
ζA(τ, ζ) (64)

which has exact solution in the form A(τ, ζ) = f(x), where x = τζ2 and f(x) is a

superposition of the Bessel functions K0(
√

Λ0

4
x) and I0(

√

Λ0

4
x). This result agrees with

Eq. (56).
For a finite ∆p, it is convenient to use Laplace transform over the variable ζ. The

Laplace transform Ã(τ, q) satisfies

∂Ã(τ, q)

∂τ
= −Λ0

4
〈 1

q + i∆p(τ)
〉 ∂Ã(τ, q)

∂q
. (65)

Let us consider a simple model ∆p = ε sin(µτ), where ε << 1 and µ is defined by the
period of variation of the ion frequency Ωy.(For a FODO cells, µ = 2π/µ0, i.e. is inversely
proportional to the phase advance per cell µ0.) Then,

〈 1

q + i∆p
〉 = 〈 q

q2 + (∆p)2
〉 =

1√
q2 + ε2

, (66)

and Eq. (65) takes the form

∂Ã(τ, q)

∂τ
+

Λ0

4
√
q2 + ε2

∂Ã(τ, q)

∂q
= 0. (67)

Eq. (66) can be used to define ε for a realistic lattice calculating 〈q/(q2 + (∆p)2)〉 for
several q and approximating results by 1/(

√
q2 + ε2).

Solution of Eq. (67) is given by an arbitrary function F ,

Ã(τ, q) = F [
Λ0τ

2
− q

√

q2 + ε2 − ε2 ln(q +
√

q2 + ε2)]. (68)
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Inverse Laplace transform gives A(τ, ζ),

A(τ, ζ) =
∫ i∞

−i∞

dq

2πi
eεζqF [

Λ0τ

2ε2
− q

√

q2 + 1 − ln(q +
√

q2 + 1) + ln
1

ε
]. (69)

We can choose F to satisfy the boundary condition A(τ, 0) = y0/2. The simplest way
to do that is to choose F (x) ∝ 1/x,

A(τ, ζ) = y0

∫ i∞

−i∞

dq

2πi

√
q2 + 1 eεζq

q
√
q2 + 1 + ln(q +

√
q2 + 1) − ln(1

ε
) − ν2

, (70)

where

ν2 =
Λ0τ

2ε2
. (71)

The numerator in Eq. (70) is chosen to cancel the residue of the denominator.
Small ε corresponds to large ν and q. Eq. (70) can be simplified, approximately, as

A(τ, ζ) = y0

∫ i∞

−i∞

dq

2πi

q eεζq

q2 − ν2
, (72)

giving

A(τ, ζ) = y0 cosh(εζν) ' y0

2
eζ
√

Λ0τ/2. (73)

This result agrees with Eq. (56) obtained with ε = 0. The main contribution to
the integral Eq. (70) is due to q ' ν. The result is obtained assuming q >> 1 and is
applicable if ν >> 1 or

ε <<

√

Λ0τ

2
. (74)

At large ε, ν is small and the singularity of the denominator in Eq. (70) is close to
the solution q0 of the equation

q0
√

q2
0 + 1 + ln(q0 +

√

q2
0 + 1) − ln(

1

ε
) = 0. (75)

The root q0(ε) ' 1 is real and plotted in Fig.(12).
The denominator in Eq. (70) where q = q0 + δ can be expanded over δ and is equal

to 2δ
√

q2
0 + 1 − ν2. The integration in Eq. (70) gives

A(τ, ζ) =
y0

2
eεζq0 eεζδ, (76)

where
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δ =
ν2

2
√

q2
0 + 1

. (77)

The time depending factor in Eq. (76)

A(τ, ζ) ∝=
y0

2
eεζq0 e

Λ0τζ

4ε

√
q2
0
+1 (78)

reproduces Stupakov’s result [5]. Result Eq. (78) is obtained assuming δ < 1, and is
applicable for

ε2 >>
Λ0τ

√

q2
0 + 1

. (79)

Note that condition Eq. (79) is opposite to the condition Eq. (74).

6.3 Ions in a uniformly filled ring

If a train of bunches does not have a clearing gap or the gap is small, ions are accumulated
continuously and, even for a small gap, the first bunch in the train couples with the last
one. Such beam is unstable and the instability has a resonance character. The ion
density ni is considered as a given constant parameter being limited by the space-charge
of accumulated ions and by instability induced ion drift.

We consider a uniformly filled ring following [2]. In terms of the variables time t,
location of a bunch in a train z > 0, and location of a bunch in the ring s = ct− z, Eqs.
(39) take the form

∂2Y (s, t, t0)

∂t2
+ Ω2Y (s, t, t0) = Ω2[y(ŝ, ct− s) − Y (s, t, t0)],

d2y(s, z)

ds2
+ (

ωy

c
)2 y(s, z) =

4πre

γ
ni[Y (ŝ,

s+ z

c
) − y(s, z)], (80)

where ŝ = s mod(C), C is the ring circumference, C = 2πc/ω0, and t0 is the moment
when the ion was generated. We consider below the growth of instability neglecting initial
conditions and drop dependence on t0. Eqs. (80) can be simplified neglecting corrections
to ion frequency Ω in the first equation and to the tune shift in the second equation
retaining only the driving terms. We also take into account that ions have a frequency
spread described by a normalized distribution function ρ(Ω),

∫

dΩρ(Ω) = 1, and indicate
Ω by the index YΩ(t). Eqs. (80) take the form

∂2YΩ(s, t, t0)

∂t2
+ Ω2YΩ(s, t, t0) = Ω2y(ŝ, ct− s),
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d2y(s, z)

ds2
+ (

ωy

c
)2 y(s, z) =

4πre

γ
ni

∫

dρ(Ω)YΩ(ŝ,
s+ z

c
). (81)

For the uniform fill, YΩ(s, t) has to be periodic for a fixed t, YΩ(s + C, t) = YΩ(s, t).
Hence,

YΩ(s, t) =
∞
∑

m=−∞

BΩ
m(t) eimω0s/c−iΩt, (82)

where BΩ
m(t) are harmonic amplitudes. Similarly, y(s, z) has to be periodic for a fixed

time t = (s+ z)/c. Introducing amplitudes bm(t), we can write

y(s, z) =
∞
∑

m=−∞

bm(
s+ z

c
) e−im

ω0s

c
−i

ωy(s+z)

c . (83)

Eqs. (82),(83) give the driven solution for ions,

YΩ(s, t) = Ω
∫ t

t0
dt′ sin[Ω(t− t′)]y(ŝ, ct′ − s). (84)

Let us look for the solution in the form

bn(t) = αne
µnt, µn = iµ′

n + Γn, (85)

where αn = const, Γn is the growth rate, and µ′

n is the frequency shift.
Then,

YΩ(s, t) = Ω2
∑

n

αn

Ω2 − (ωy + iµn)2
e−i

nω0s

c
+(µn−iωy)t. (86)

Substituting Eqs. (86) into the second of Eqs.(81) we get the dispersion equation for
µn,

[µn − i(ωy + nω0)]
2 + ω2

y =
4πrec

2

γ
ni

∫ Ω2dΩρ(Ω)

Ω2 − (ωy + iµn)2
. (87)

If Γn << ω0, the frequency shift can be determined neglecting the right-hand-side
here,

µ′

n = nω0 + ωy ± ωy. (88)

The growth rate Γn can be approximately determined for small Γn replacing the inte-
gral in Eq. (87) as

∫ Ω2dΩρ(Ω)

Ω2 − (ωy + iµn)2
=

P.V.
∫ Ω2dΩρ(Ω)

Ω2 − (ωy − µ′
n)2

+
iπ

2

∫

ΩdΩρ(Ω) [δ(Ω − ωy + µ′

n) − δ(Ω + ωy − µ′

n)], (89)
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where P.V. in the first term denotes the principal value. Then, using Eq. (88),

Γn = ∓2π2rec
2

γ
ni
nω0 ± ωy

ωy

ρ(|nω0 ± ωy|). (90)

The distribution ρ(Ω) is centered at Ω = Ω0, where Ω0 is the frequency of an ion
oscillating with the zero amplitude. Therefore, the growth rate Γn > 0 for n > 0 for the
resonance revolution harmonics

nω0 = ∓Ω0 + ωy. (91)

.
ρ(Ω) has a long tail for Ω < Ω0 corresponding to ions with large amplitudes and is

nonzero for Ω > Ω0 due to variation of the beam rms σx,y around the ring. The total
bandwidth can be estimated as ∆Ω/Ω0 ' 0.1, and the maximum value ρ(Ω0) ' 1/∆Ω.
The growth Γn > 0 corresponds to the positive sign, giving the maximum growth rate

Γn =
2π2rec

2

γωy

(
Ω

∆Ω
)ni. (92)

The growth rate Eq. (92) is the same as given by Eq. (8) of the FII instability if the
saturation ion density ni is used instead of

S0t∞
2πσxσy

. (93)
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Figure 8: Gap instability. Variation of the number of bunches (top pane), the vertical
rms σy of the electron beam, and the luminosity (bottom pane) with time. The total time
span about 3 hours.
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Figure 9: Multi-turn criterion of stability in x-plane (top) and y-plane (middle). The
bottom pane shows zooming for both planes. Positive values correspond to unstable
ions. For large gaps, almost all ions are unstable. For the gaps Tg/T0 < 0.002 and
0.012 < Tg/T0 < 0.0143, ions are stable in both planes. Note that stability first starts in
x-plane.
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Figure 10: Relative offset of colliding beams modulated with the ion- and electron-
frequencies. Result may be relevant for understanding the pattern of instability along
the train.
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Figure 11: Comparison of the ion stability at small gaps for two species with atomic
numbers A = 2 and A = 28. Heavier ions stay stable for larger gaps.
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Figure 12: The root of Eq. (75) vs ε.
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