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Abstract. We report on the measurement of the CKM angle γ in B± → DK± decays with the BABAR

detector. A general overview of different methods of analysis and a critical discussion of the most sensitive
methods are presented here.

PACS. 13.25.Hw Decays of bottom mesons – 11.30.Er Charge conjugation, parity, time reversal, and
other discrete symmetries – 13.90.+i Other topics in specific reactions and phenomenology of elementary
particles

1 Introduction

CP violation (CPV ) was first established in KL → π+π−

decays in 1964 [1]. It has been accomodated in the Stan-
dard Model (SM) by a CP -violating phase in the matrix
that describes the mixing of the quarks under the weak
interaction, known as the CKM matrix [2]. The unitarity
constraints of the CKM matrix gives us VudV ∗

ub +VcdV
∗
cb +

VtdV
∗
tb = 0, the so-called Unitarity Triangle relation, rep-

resented in Fig. 1. CPV is proportional to the area of the
triangle and requires that the angles and sides are different
from zero. The primary goal of the B-factories is the study
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Fig. 1. Graphical representation of the unitarity constraint
VudV ∗

ub + VcdV ∗
cb + VtdV ∗

tb = 0 as a triangle in the complex
plane.

of CP violation in the Bd and Bu meson system. Overcon-
training of the Unitarity Triangle parameters, measuring
the sides and the angles of the triangle, represents one of
the most stringent tests of the SM. The precise measure-
ment of the angle γ ≡ arg(−VudV ∗

ub/VcdV
∗
cb) is a crucial

goal for this scientific program, yet it is also one of the
most difficult to achieve.

a on behalf of the BABAR collaboration.

2 General overview of the methods

There are several decay modes that can be used to mea-
sure the angle γ, each with its own merits and drawbacks.

In B± → DK± decays1, if we consider the decay
modes of the neutral D meson that are accessible to both
D0 and D̄0, we can reach the final state through two dif-
ferent quark-level processes, as shown in Fig.2. The inter-
ference between the two quark-level processes b → uc̄s and
b → cūs (respectively B− → D0K− and B− → D̄0K−)
introduces a relative phase γ in the decay amplitude.

By neglecting the D0−D0 mixing [3], it is possible
to determine the angle γ without hadronic uncertainties,
since the main contributions to the decay amplitude come
from tree-level transitions. Several decay modes can be

D0�u
s K��u

B� b W�
B� b u

�
K�
�D0

�u s�u W�
Fig. 2. Main diagrams contributing to B± → DK± decay.
The left diagram proceeds via Vcb transition, while the right
diagram proceeds via Vub transition and is color suppressed.

studied, including B± → DK±, B− → D∗K−and B− →
DK∗−, which have the same quark-level process in com-
mon. In the following, whenever we write B± → D(∗)K(∗)±

1 In what follows, the symbol D refers to either D0 or D̄0.
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we intend all the above-mentioned decay modes, unless
explicitely stated. Three different analysis methods have
been used so far:

– GLW method [4]: where the D is recontructed in CP
eigenstates (D0

CP ) decay modes.
– ADS method [5]: with D reconstructed in doubly Cabib-

bo suppressed decay modes.
– Dalitz method [6]: where the D is reconstructed in 3-

body final states and the angle γ is extracted through
an analysis of the distribution of the events in the D
Dalitz plane [7].

The sensitivity of the different methods to γ depends on
the magnitude of the ratio

rB =

∣

∣

∣

∣

A(b → ucs)

A(b → cus)

∣

∣

∣

∣

of the b → ucs amplitude with respect to the b → cus one.
The value of rB is a key quantity which has a significant
impact on the ability to measure the CKM angle γ at
the B-factories and beyond. Note that rB takes different
values for different B decays. Theoretical expectations for
rB are in the range ≈ 0.1 − 0.2 [4,8], in agreement with
the 90% C.L. upper limits on rB set by BABAR (rB <
0.23) [9] and Belle (rB < 0.18) [10] through the study of
B−→DK−, D→K+π− decays.

3 The GLW method: B± → DK± with D0
CP

Decays

This method considers the B± → DK± decays , where
the D decays to a CP eigenstate. The CP observables are:

RCP± ≡ B
(

B− → D0
CP±K−

)

+ B
(

B+ → D0
CP±K+

)

B (B− → D0K−) + B
(

B+ → D0K+
)

≡ 1 + rB
2 ± 2rB cos δB cos γ

ACP± ≡ B
(

B− → D0
CP±K−

)

− B
(

B+ → D0
CP±K+

)

B
(

B− → D0
CP±K−

)

+ B
(

B+ → D0
CP±K+

)

≡ ±2 rB sin δB sin γ

RCP±

where δB is the strong phase difference between the Vub

and the Vcb mediated amplitudes. Here, D0
CP± = (D0 ±

D0)/
√

2 are the CP eigenstates of the neutral D meson
system. The main advantage of this method is that γ can
be extracted in a theoretically-clean manner if one recon-
structs D0

CP -even and D0
CP -odd decays. In fact, the num-

ber of unknowns is three (rB , γ, δB) and we have three
linear independent observables. However, an 8-fold ambi-
guity on the value of γ is not resolved since the ambiguities
on (γ, δB) → (δB, γ) and on the sign of sin γ, which admits
four different solutions, are indistinguishable. In princi-
ple, carrying out analyses for the different decay modes of
B± → DCP X±, where X± = K±, K±π0, K0

S
π±, (Kππ)±,

makes it possible to solve the ambiguity on the magnitude

of sin γ, since each of the decay modes has the same weak
phase γ but a different final-state phase difference δB. The
event yield is similar for the CP -even and the CP -odd de-
cay modes - almost 150 signal events with the present
statistics in B± → DK± decay modes. Fig. 3 shows the
∆E distribution for the signal and background events of
the reconstructed modes: D0

CP+ → π+π−, K+K−, and

D0
CP− → K0

S
π0, K0

S
ω, K0

S
φ. Here, ∆E is the difference be-

tween the measured B meson energy and the energy of
the beam in the center of mass system, and peaks near
zero for signal events.

The total reconstruction efficiencies, based on simu-
lated signal events, are 30-40% for the D0

CP+ modes and

10-20% for the D0
CP−. Experimentally, the RCP± ratios

are computed using the RCP± ≃ R±/R relations, where
the quantities R and R± are defined as:

R =
B(B−→D0K−) + B(B+→D0K+)

B(B−→D0π−) + B(B+→D0π+)
,

R± =
B(B−→D0

CP±K−) + B(B+→D0
CP±K+)

B(B−→D0
CP±π−) + B(B+→D0

CP±π+)
.

Systematic uncertainties are canceled out in the measure-
ment of these double ratios. The results for the RCP and
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Fig. 3. Distributions of ∆E for events enhanced in B−→DK−

signal. Top: B−→DCP+K−; bottom: B−→DCP−K−. Solid
curves represent projections of the maximum likelihood
fit; dashed, dashed-dotted and dotted curves represent the
B−→DK−, B−→Dπ− and background contributions.

ACP observables using BABAR data [11] are reported in
Table 1. The precision of these measurements does not
significantly constrain the value of γ, but when combined
with the existing measurements of the B± → D(∗)K(∗)±

decays, it will improve the knowledge of the angle γ and
of the parameter rB .
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Table 1. Measured ratios RCP± and ACP± for CP -even and CP -odd D decay modes. The first error is statistical, the second
is systematic.

B mode N(BB) · 106 RCP+ ACP+ RCP− ACP−

B± → DK± 232 0.90 ± 0.12 ± 0.04 0.35 ± 0.13 ± 0.04 0.86 ± 0.10 ± 0.05 −0.06 ± 0.13 ± 0.04
B± → D∗K± 123 1.06 ± 0.26+0.10

−0.09 −0.10 ± 0.23+0.03
−0.03 - -

B± → DK∗± 232 1.96 ± 0.40 ± 0.11 −0.08 ± 0.19 ± 0.08 0.65 ± 0.26 ± 0.08 −0.26 ± 0.40 ± 0.12

4 The ADS method: B± → DK±with

Double-Cabibbo-Suppressed D Decays

In the ADS method, the favored B decay (B− → D0K−)
followed by the doubly CKM-suppressed D decay (D0 →
K+π−) interferes with the suppressed B decay (B− →
D0K−) followed by the CKM-favored D decay (D0 →
K+π−). As a result, the two interfering amplitudes be-
come comparable. The CP asymmetry is potentially larger
in these modes than in the GLW method, however the de-
cays have a smaller branching ratio, on the order of 10−7.

The observables sensitive to the CP parameters are

RADS ≡ B ([K+π−]DK−) + B ([K−π+]DK+)

B ([K−π+]DK−) + B ([K+π−]DK+)

≡ rB
2 + rD

2 + 2rBrD cos γ cos(δB + δD)

AADS ≡ B ([K+π−]DK−) − B ([K+π−]DK+)

B ([K+π−]DK−) + B ([K+π−]DK+)

≡ 2 rBrD sinγ sin(δB + δD)

rB
2 + rD

2 + 2rBrD cos γ cos(δB + δD)

where δD is the relative strong phase in the D0 decay and

rD ≡
∣

∣

∣

A(D0→K+π−)
A(D0→K−π+)

∣

∣

∣
is the magnitude of the ratio of the

amplitude of the doubly-Cabibbo-suppressed D0 decay to
that of the Cabibbo-allowed one. The value of rD has been
measured to be rD = 0.060 ± 0.002 [12].

In this method, each B decay mode has two indepedent
equations (RADS , AADS) that cannot be solved for three
unknowns (rB , γ, δB + δD). In order to determine the
value of γ, for a given B decay mode it is necessary to
reconstruct at least two different D0 decay modes, such
as B− → [K+π−]DK−, B− → [K∗+π−]DK− or B− →
[K+ρ−]DK−. In the case of two D0 decay modes, it is
possible to extract the value of γ up to a 16-fold ambiguity,
while in the case of three D0 decay modes there remains
a 4-fold ambiguity [5].

The addition of different B decay modes is helpful to
constrain the value of γ. Particularly interesting are B− →
D∗K− decays, where the D∗ is reconstructed in D0π0 and
D0γ. In fact, there is an effective strong phase shift of π
between the two cases [13], leading to two different R∗

ADS

expressions: 2

R∗
ADS,Dπ0 = r∗2B + r2

D + 2r∗BrD cos γ cos(δ∗B + δD),

R∗
ADS,Dγ = r∗2B + r2

D − 2r∗BrD cos γ cos(δ∗B + δD),

2 Here and in the following the ’*’ symbol indicates that the
specified value refers to the B− → D∗K− decay mode.

where R∗
ADS,Dπ0 (R∗

ADS,Dγ) is the charge-independent ra-

tio for the B− → D∗K−with D∗0 → D0π0 (D∗0 → D0γ).
Hence in the case of B− → D∗K−, it is straightforward
to determine the value for rB through the relation

R∗
ADS,Dπ0 + R∗

ADS,Dγ

2
= r∗B

2 + r2
D.

In Fig. 4 it is shown the mES distribution with fit model
overlaid for candidate signal events. With the present statis-
tics there is no evident signal in B± → D(∗)K(∗)± decay
modes at the B-factories. The experimental observables
RADS have been measured in B± → D(∗)K(∗)± decays
and they were found to be consistent with zero. However,
it is possible to set an upper limit to the value of rB as
shown in Fig. 5. The summary of the results is reported
in Table 2.

Table 2. Measured charge-independent ratios RADS for B± →
D(∗)K(∗)± decay modes. Where a single term for the error is
specified, it includes the statistical and the systematic contri-
bution, otherwise the first error is statistical, the second is sys-
tematic. The 90% C.L. limits reported are evaluated without
any assumptions for the values of γ and δB + δD. The result
for B± → DK∗± is obtained combining the ADS and GLW
measurements.

B mode RADS rB

B± → DK± < 0.029 90% C.L. rB < 0.23
B± → D∗K± < 0.023 90% C.L. r∗B

2 < (0.16)2

B± → DK∗± 0.046 ± 0.031 ± 0.08 0.28+0.006
−0.010

5 The Dalitz method: B± → DK± with a

Dalitz analysis of the D0 → K0
S
π+π− decay

In the previously described methods, if the relative strong
phases δB vanish, the sensitivity to γ is significantly re-
duced. In general, having large interfering amplitudes with
relatively strong phases enhances the sensitivity to the
phase γ. The main advantage of the method [6] is that
it involves the entire resonant structure of the D0 →
K0

S
π+π− three-body decay, with interference between dou-

bly-Cabibbo-suppressed, Cabibbo-allowed and CP -eigenst-
ate amplitudes all providing the sensitivity to γ. No branch-
ing ratio measurements are needed and only charged par-
ticles are involved in the final states, which results in a
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Fig. 4. mES distributions for candidate signal events with the fit model overlaid. (a) DK events. (b) D∗K events with D∗ → Dπ0.
(c) D∗K events with D∗ → Dγ.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

0 0.05 0.1 0.15 0.2 0.25 0.3

rB

R
K

π

N
u
m

b
er

o
f
si
g
n
a
l
ev

en
ts

Fig. 5. Expectations for RKπ and the number of signal events
vs. rB. Dark filled-in area: allowed region for any value of δ,
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limits on rB with and without the constraint on γ. The light
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0.009 .

higher reconstruction efficiency and low background. The
price to pay is that it requires a detailed study of the res-
onances and their interference through a Dalitz plot tech-
nique [14].

Unless otherwise stated, we use the term “Dalitz plot”
to refer to the allowed kinematic region in the two-dimensi-
onal squared space m2

− and m2
+, where K0

S
π− and K0

S
π+

m2
− and m2

+ are the invariant masses of K0
S
π− and K0

S
π+

respectively.

Let us focus on the following cascade decay 3

B− → DK− → (KSπ−π+)DK−, (1)

3 In the following discussion we neglect D0 − D̄0 mixing,
which is a good approximation in the context of the Standard
Model [6].

using the notation of Giri et. al. [6] to define the ampli-
tudes

A(B− → D0K−) ≡ AB ,

A(B− → D0K−) ≡ ABrBei(δB−γ). (2)

The same definitions apply to the amplitudes for the CP
conjugate cascade B+ → DK+ → (KS π+π−)DK+ with
the change of weak phase sign γ → −γ in (2). We have set
the strong phase of AB to zero by convention, so that δB

is the difference of strong phases between the two ampli-
tudes. The value of |AB| is known from the measurement
of the B− → D0K− decay width using flavor specific de-
cays of D0. The amplitude A(B− → D0K−) is color sup-
pressed and cannot be determined from experiment in this
way [5].

Assuming CP is conserved in D0 → K0
S
π+π− decay [15],

we define the decay amplitude of the A(B− → DK−) de-
cays, with D0 → K0

S
π+π− as

AD(m2
−, m2

+) + κrBei(δB−γ)AD(m2
+, m2

−) , (3)

where AD(m2
−, m2

+) is the D0 → K0
S
π+π− decay ampli-

tude. As a consequence of parity and angular momentum
conservation in the B− → D∗K− decay, the factor κ takes
the value +1 for B− → D∗K− (D∗ → D0π0), and −1 for
B− → D∗K− (D∗ → D0γ) [13].

A model dependent parameterization of the Dalitz stru-
cture can be introduced to reduce the number of unknown
parameters to extract from the data. If the functional de-
pendence of both the moduli and the phases of the D0 me-
son decay amplitudes AD(m2

−, m2
+) were known, then the

analysis would be simplified. There would be only three
variables, rB , δB, and γ, that need to be fitted. A plausible
assumption, confirmed by data, is that a significant part of
the three-body D0 → KSπ−π+ decay proceeds via two-
body resonances. The D0 → K0

S
π−π+ decay amplitude

AD(m2
−, m2

+) hence can be determined from an unbinned
maximum-likelihood fit to the Dalitz plot distribution of
a D0 sample from D∗+ → D0π+ decays reconstructed on
data.

A phenomenological model to describe AD(m2
−, m2

+),
based on Breit-Wigner (BW) parameterizations of a set
of resonances, can be used. The decay amplitude of the
model is then expressed as a sum of two-body decay-
matrix elements (subscript r) and a non-resonant (sub-
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script NR) contribution,

AD(m2
−, m2

+) = Σrare
iφrAr(m

2
−, m2

+) + aNReiφNR , (4)

where each term is parameterized with an amplitude ar

(aNR) and a phase φr (φNR). The function Ar(m
2
−, m2

+)
is the Lorentz-invariant expression for the matrix element
of a D0 meson decaying into K0

S
π−π+ through an inter-

mediate resonance r, parameterized as a function of po-
sition in the Dalitz plane. For r = ρ(770) and ρ(1450),
we use the functional form suggested in Ref. [16], while
the remaining resonances can be parameterized by a spin-
dependent relativistic Breit-Wigner distribution [12]. An
analogous phenomenological approach is represented by
the K-matrix formalism [17], which provides a direct way
of imposing the unitarity constraint that is not guaranteed
in the case of the BW model and is suited to the study
of broad and overlapping resonances in multi-channel de-
cays. In the D0 → K0

S
π+π− decay, the K-matrix method

is suited to solve the main limitation of the Breit-Wigner
model to parameterize the ππ S-wave states [18], thus
avoiding the need to introduce the σ scalars.

The Dalitz amplitude AD(m2
−, m2

+) can be written in
this case as a sum of two-body decay matrix elements for
the spin-1, spin-2 and Kπ spin-0 resonances (as in the
Breit-Wigner model), and the ππ spin-0 piece denoted as
F1 is written in terms of the K-matrix. We have

AD(m2
−, m2

+) = F1(s) + Σr 6=ππ S−waveare
iφrAr(m

2
−, m2

+) ,

where F1(s) is the contribution of ππ S-wave states,

F1(s) =
∑

j

[I − iK(s)ρ(s)]
−1
1j Pj(s) .

Here, s is the squared mass of the ππ system (m2
π+π−), I is

the identity matrix, K is the matrix describing the S-wave
scattering process, ρ is the phase-space matrix, and P is
the initial production vector [19]. The index j represents
the jth channel (1 = ππ, 2 = KK, 3 =multi-meson4,
4 = ηη, 5 = ηη′ [20]). The K-matrix parameters can be
obtained from Ref. [20] from a global fit of the available
ππ scattering data from threshold up to 1900 MeV/c2.

The BABAR analysis uses, as a “nominal” model, the
isobar model, which consists of 13 resonances leading to
16 two-body decay amplitudes and phases (see Table 3),
plus the non-resonant contribution.

All the resonances considered in this model are well es-
tablished except for the two scalar ππ resonances, σ and
σ′, whose masses and widths are obtained from our sam-
ple. 5

Their addition to the model is motivated by an im-
provement in the description of the data. The D0 → K0

S
π+π−

Dalitz distribution and the fit projections are shown in
Fig. 6. The possible absence of the σ and σ′ resonances is

4 Multi-meson channel refers to a final state with four pions.
5 The σ and σ′ masses and widths are determined from the

data. We find (in MeV/c2) Mσ = 490 ± 6, Γσ = 406 ± 11,
Mσ′ = 1024 ± 4, and Γσ′ = 89 ± 7. Errors are statistical.

CP parameter B± → D(∗)K±

x− 0.041 ± 0.059 ± 0.018 ± 0.011
y− 0.056 ± 0.071 ± 0.007 ± 0.023
x+ −0.072 ± 0.056 ± 0.014 ± 0.029
y+ −0.033 ± 0.066 ± 0.007 ± 0.018
x∗
− −0.106 ± 0.091 ± 0.020 ± 0.009

y∗
− −0.019 ± 0.096 ± 0.022 ± 0.016

x∗
+ 0.084 ± 0.088 ± 0.015 ± 0.018

y∗
+ 0.096 ± 0.111 ± 0.032 ± 0.017

Table 4. CP -violating parameters x
(∗)
∓ , y

(∗)
∓ obtained from the

CP fit to the B± → D(∗)K± samples. The first error is statisti-
cal, the second is experimental systematic uncertainty and the
third is the systematic uncertainty associated with the Dalitz
model.

considered in the evaluation of the systematic errors, fit-
ting the data using the alternative K-matrix model. Once
the AD(m2

−, m2
+) amplitude is obtained from the fit on

the D∗+ → D0π+ sample, it can be fed into Eq. (3). The
extraction of the angle γ is then performed through a fit
to the Dalitz distribution of the D0 in the B± → DK±

decays. The value of the CP -odd phase γ changes sign
for B+ and B− in Eq. (3), leading to different rates in
corresponding regions of the D0 Dalitz plane for B+ and
B− decays. We introduce here the CP parameters x∓ and
y∓ defined respectively as the real and imaginary parts
of rBei(δB∓γ), for which the constraint rB

2 = x∓
2 + y∓

2

holds. Experimentally, it was demonstrated that x∓ and
y∓ are well-behaving fitting parameters that are unbiased
with gaussian errors [21].

The results for the CP variables, using 347 million of
BB events recorded with the BABAR detector, are reported
in Table 4 [22]. The results of the fit are represented show-
ing the 1σ and 2σ two-dimensional counters in Fig. 7.

A frequentist (Neyman) procedure [12,23] has been
adopted to interpret the measurement of the CP parame-

ters (x
(∗)
∓ , y

(∗)
∓ ) reported in table 4 in terms of confidence

regions on p = (γ, rB , δB, r∗B, δ∗B). For a given p, the five-
dimensional confidence level C is calculated by integrating
over all points in the fit parameter space closer (larger
PDF) to p than the fitted data values. The one- (two-)
standard deviation region of the CP parameters is de-
fined as the set of p values for which confidence level
C is smaller than 3.7% (45.1%). Fig. 8 shows the two-
dimensional projections onto the rB−γ and r∗B−γ planes,
including statistical and systematic uncertainties. The fig-
ure shows that this Dalitz analysis has a two-fold ambi-

guity, (γ, δ
(∗)
B ) → (γ +180◦, δ

(∗)
B +180◦), as expected from

Eq. (3). From the one-dimensional projections we obtain
for the weak phase γ = (92 ± 41 ± 11 ± 12)◦, and for
the strong phase differences δB = (118 ± 63 ± 19 ± 36)◦

and δ∗B = (−62 ± 59 ± 18 ± 10)◦. No constraints on the
phases are achieved at the level of two standard deviations
and beyond. Similarly, for the magnitude of the ratio of
decay amplitudes rB and r∗B we obtain the one (two) stan-
dard deviation constraints rB < 0.140 (rB < 0.195) and
0.017 < r∗B < 0.203 (r∗B < 0.279). In all cases, the first
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Fig. 6. (a) The D̄0 → K0
Sπ−π+ Dalitz distribution from D∗− → D̄0π− events, and projections on (b) m2

+ = m2
K0

S
π+ , (c)

m2
− = m2

K0
S

π− , and (d) m2
π+π− . D0 → K0

Sπ+π− from D∗+ → D0π+ events are also included. The curves are the reference

model fit projections.

Component Re{are
iφr} Im{are

iφr} Fit fraction (%)

K∗(892)− −1.223 ± 0.011 1.3461 ± 0.0096 58.1
K∗

0 (1430)− −1.698 ± 0.022 −0.576 ± 0.024 6.7
K∗

2 (1430)− −0.834 ± 0.021 0.931 ± 0.022 3.6
K∗(1410)− −0.248 ± 0.038 −0.108 ± 0.031 0.1
K∗(1680)− −1.285 ± 0.014 0.205 ± 0.013 0.6
K∗(892)+ 0.0997 ± 0.0036 −0.1271 ± 0.0034 0.5
K∗

0 (1430)+ −0.027 ± 0.016 −0.076 ± 0.017 0.0
K∗

2 (1430)+ 0.019 ± 0.017 0.177 ± 0.018 0.1
ρ(770) 1 0 21.6
ω(782) −0.02194 ± 0.00099 0.03942 ± 0.00066 0.7
f2(1270) −0.699 ± 0.018 0.387 ± 0.018 2.1
ρ(1450) 0.253 ± 0.038 0.036 ± 0.055 0.1
Non-resonant −0.99 ± 0.19 3.82 ± 0.13 8.5
f0(980) 0.4465 ± 0.0057 0.2572 ± 0.0081 6.4
f0(1370) 0.95 ± 0.11 −1.619 ± 0.011 2.0
σ 1.28 ± 0.02 0.273 ± 0.024 7.6
σ′ 0.290 ± 0.010 −0.0655 ± 0.0098 0.9

Table 3. Complex amplitudes are
iφr and fit fractions of the different components (KSπ−, KSπ+, and π+π− resonances)

obtained from the fit of the D0 → KSπ−π+ Dalitz distribution from D∗+ → D0π+ events. Errors are statistical only. Masses
and widths of all resonances are taken from [12] with the exception of K∗

0 (1430)+ taken from [24]. The fit fraction is defined for
the resonance terms as the integral of a2

r|Ar(m
2
−, m2

+)|2 over the Dalitz plane divided by the integral of |AD(m2
−, m2

+)|2. The
sum of fit fractions is 119.5%. A value different from 100% is a consequence of the interference among the amplitudes.

error is statistical, the second systematic and the third is due to the parametrization of the D0 → K0
S
π+π−decay

amplitude.
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Fig. 7. Contours at 39.3% (dark) and 86.5% (light) confidence level (corresponding to two-dimensional one- and two-standard

deviation regions), including statistical and systematic uncertainties, for the (x
(∗)
∓ , y

(∗)
∓ ) parameters for B− (thick and solid

lines) and B+ (thin and dotted lines) decays.

Fig. 8. Projections in the (a) rB − γ and (b) r∗B − γ planes of the five-dimensional one- (dark) and two- (light) standard
deviation regions.

6 Combined measurements of γ and

projections for the future

The Dalitz method has the best sensitivity to γ with the
current statistics, but it is still not possible to precisely de-
termine the value. Combining the results of several meth-
ods and different B± → D(∗)K(∗)± decay modes enlarges
the sensitivity to the angle γ. The measurement is domi-
nated by statistical error, but more data will improve the
precision. The projections for the measurement are highly
dependent on the value of rB , hence, it is difficult at this
point to make predictions for large statistics. However, it is
possible to make predictions by choosing a specific value
for rB. In Fig. 9 we show the projection for the Dalitz
method and for the combined measurement of the Dalitz
method, GLW and ADS, assuming rB = 0.1. In this sce-
nario, by combining different methods it will be possible
to measure the angle γ with 10◦ error with a 1 ab−1 data
sample, which is within the reach of the BABAR experi-
ment.
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