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The availability of parallel computation hardware and the advent of standardized programming interfaces has made a new class of

beam dynamics problems accessible to numerical simulations. We describe recent progress in code development for simulations of

coherent synchrotron radiation and the weak–strong and strong–strong beam–beam interaction. Parallelization schemes will be

discussed, and typical results will be presented.
Synchrotron Radiation: TraFiC4 The code TraFiC4 was developed to handle the first
Coherent Synchrotron Radiation (CSR) occurs when
short bunches travel along strongly bent trajectories,
leading to a tail-head interaction of the bunch with itself
due to retardation effects. Such configurations typically
occur in the bunch compression sections of Free Electron
Laser Facilities; its impact can be macroscopic, leading to
growth of the transverse projected or slice emittance, thus
degrading FEL performance, or microscopic, leading to
induced longitudinal short-wavelength density modula-
tions in the beam, which may get amplified by the
subsequent compression and transport mechanism.
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class of problems; it models the bunch by a collection of
spatially extended, non-compressible weighted macro-
particles. These particles are tracked through the magnetic
lattice in the laboratory frame of reference; CSR fields are
calculated from first principles by storing the history of
every macro-particle and using a retardation method on
these histories. The fields of all particles are calculated for
each particle applied at a single location for each time step,
using a split-operator approach. Obviously, this algorithm
is OðN2

particlesÞ; in practice, in all but the simplest setups,
parallelization is required to get manageable running times
for simulations.
Among other things, TraFiC4 has been used in the

design of bunch compression sections for the DESY
TESLA Test Facility [1], the LCLS [2], and for the
simulation of a dedicated CSR experiment at the CERN
CLIC Test Facility [3]. It has been benchmarked against
other codes, using different approaches and/or simplified
models for CSR.
Recent improvements of the code include a complete re-

write of the tracking part in Cþþ; extensive documenta-
tion and class structure documentation; a very flexible
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Fig. 1. Slice saturation powers for different bunch lengths.
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Fig. 2. Slice saturation length for different bunch lengths.
mechanism of creating bunch populations by means of
applying functional operators to pre-defined distributions
or distributions read from files; MPI ‘stub’ libraries to
allow for compilation and running of TraFiC4 on single
processor machines; more efficient storage of trajectory
histories; dynamic load-balancing; and a basic checkpoint/
restart mechanism.

Parallelization, so far, has been relying on a crude, but
effective mechanism: the nth of N nodes would run a
complete replica of a single-node TraFiC4 instance,
reading the same input file. It would, however, only
calculate the fields, due to all particles P, onto a subset
of particles Pn;P ¼

S
i Pi;Pi \ Pk ¼ fg. It would then

gather the fields onto PnPn from the other nodes in a
collective synchronization step, apply them to the trajec-
tories of P, and go to the next time step. This method,
however, required storing the history of all particles on
every node.

In our new approach, we only store the trajectories of
particles Pn on node n. For a given lab time t, it will
broadcast a field calculation request for their positions ~xiðtÞ

to the other nodes, gather calculation requests for fields
due to Pn from the other nodes, process the requests, and
then scatter its results and aggregate the other nodes’
results, thus obtaining the total field. Most of these
operations can be done asynchronously. This scheme
involves more administrative overhead, however, there is
no need to store any trajectories besides those of Pn. For
typical problem and cluster sizes, the required memory per
node could thus be reduced from 1GB to some tens of MB.

An application of the improved TraFiC4 code is a
parameter study for the bunch compression section of the
LCLS facility. In this study, more details of which can be
found in Ref. [4], we vary the compression ratio of the
bunch compressor to include bunch lengths well below the
design values, while using nominal LCLS parameters for
the other parameters. As the non-gaussian character of the
initial distribution and the non-linear part of the initial
energy distribution are of crucial importance, the new
bunch population capabilities of TraFiC4 were essential in
this study.

The resulting final macro-particle distribution of each
run was sorted into longitudinal bins; further post-
processing removed the correlated energy spread. The
resulting binned distributions are evaluated with respect to
FEL figures of merit (namely, saturation length and
saturation powers). The results show a gain in FEL
performance with decreasing bunch length; even at
9:6mm, the last bunch length investigated, we do not reach
a break-even point.

The study was run on 512 processors per run on the
NERSC facility. As the required longitudinal resolution
was very high due to the high compression ratio and low
natural energy spread, the number of macro-particles used
was 7000, the highest number of macro-particles used so
far in any TraFiC4 run. A synopsis of resulting FEL
figures of merit is shown in Figs. 1 and 2.
2. The weak–strong beam–beam effect: DUMBBB

The beam–beam interaction plays a crucial role in design
and operation of colliding storage rings. It will limit
luminosity, determine equilibrium emittance, and can
affect beam lifetimes due to diffusion processes. For lack
of an effective damping mechanism, the last item is
especially important for hadron machines such as the
Tevatron or the LHC. We can distinguish two realms of
the beam–beam effect: strong–strong and weak–strong. In
the former case, both beams’ transverse fields affect each
other significantly, while in the latter case the beams’
charges differ strongly, so one (‘strong’) beam can be
assumed to be unaffected by the other (‘weak’) beam. If the
equilibrium distribution of the strong beam (as determined
by the lattice and initial conditions) is known, the problem
reduces to a single-particle dynamics problem in the
presence of a highly non-linear force.
With current Tevatron operation parameters, there are

72 weak–strong beam–beam interactions affecting the
dynamics of the weak (anti-proton) beam. It can be
expected that the resulting, highly non-linear one-turn
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Tevatron at injection.
map affects beam lifetime due to incoherent resonances or
diffusion processes. To study these effects, we have
developed a Cþþ code DUMBBB for fast tracking of
single particles in the presence of weak–strong beam–beam
interactions (for both parasitic and design interactions, i.e.
off- or on-center). Being a single-particle code, paralleliza-
tion reduces to the task of running many instances of the
same code acting on different parts of a huge particle
ensemble; communications is only required for calculation
of collective quantities such as particle loss rates or
emittances.

The code models the beam–beam interactions as a
synchro-betatron mapping [5], the beam–beam kick itself is
calculated from the Bassetti–Erskine [6] formula, using the
Chiarella–Matta–Reichel approximation [7] for the evalua-
tion of the complex error function. In a hadron machine, it
is important to avoid all sources of numerical noise; the
Chiarella algorithm is implemented as a templated Cþþ
function with accuracy selectable at compile time. We find
a 10�6 relative accuracy sufficient for turn numbers in the
105 range.

The weak-beam part of the machine is modeled by a
concatenation of beam–beam elements, linear 6� 6 trans-
fer maps between non-linear elements (obtained by having
a Perl script run MAD8 on a optics description file), a
noise-inducing element to model emittance growth due to
scattering processes, and a energy-dependent tune advance
element to introduce total ring chromaticity.

The code allows for full coupling. All element transfer
functions are templated with respect to the type of phase-
space variables; in particular, they can operate on
differential-algebraic quantities. This allows for finding
exact solutions for the linear part of the one-turn map at
start-up and constructing invariant initial weak and strong
6� 6 distributions, matched to measured emittances.
Beam–beam elements have specialized functions depending
on whether or not the strong beam shows hourglass effect,
tilting, or position-depending tilting during an interaction.
Also, they are templatized with respect to the number of
slices used in the synchro-betatron mapping.

The aggregated lattice is repeatedly applied to real-value
phase-space vectors of the initial weak distribution, which
can be ‘‘de-cored’’ to remove particles from the core of the
distribution, which are not expected to contribute to
diffusive or resonant particle losses. Care must be taken
to keep this operation invariant with respect to the one-
turn map. The particles’ excursions in action-angle space
are recorded; once every few thousand turns, the Jx; Jy

space is swept and particles beyond a certain action
aperture are counted. This way, we obtain a plot of
particle loss vs. time for different assumptions about the
limiting aperture of the machine. We typically run 1010

particle turns. The resulting dependencies are fitted with
respect to t against expð�t=tÞ and expð�

ffiffiffiffiffiffiffi
t=t

p
Þ particle loss

behaviors, which are the limiting cases of solutions of the
diffusion equation with absorbing boundary conditions for
small and large-aperture boundaries. Due to the uncertain-
ties of the diffusion model, the real aperture, and the
simplifications in the model, the resulting lifetime should
not be viewed as an absolute prediction, but as a figure of
merit establishing signatures of the real lifetime of the
machine.
We have done a series of parameter studies for the

Tevatron at injection (150GeV, 72 parasitic crossings,
modeled as single-slice interactions). A typical result for
varying chromaticity is shown in Fig. 3. Other parameter
studies included sweeps of helix separations; weak-beam
emittances, strong-beam charges, and two different bunch
train schemes for 18 bunches on each of the bunch trains,
resulting in lifetime differences of factors of two depending
on deleting the odd- or even-numbered interactions; the
latter result was checked independently with resonance
strength studies.
To model non-linear effects due to the lattice, we have

implemented a method for high-speed evaluation of
multivariate polynomials. The method relies on the
recursive definition of Pn

n, a n-variate homogeneous
polynomial of degree n, as a direct sum Pn

n ¼ Pn
n�1 � Pn�1

n

and a recursive evaluation algorithm Pn
nðx1; . . . ;xnÞ ¼

x1P
n
n�1ðx1; . . . ;xnÞ þ Pn�1

n ðx2; . . . ;xnÞ. Using Cþþ’s tem-
plated data structure mechanisms for the definition of P

and inlining for the definition of the polynomial evalua-
tion, the method effectively generates explicit expressions
for Horner’s scheme for any order at compile time. The
method is easily generalized to inhomogeneous polyno-
mials. We observe floating point efficiencies of 40:85 on
Intel hardware and a speed gain of a factor of 4 as
compared to standard implementations; still, we would
need to gain another factor of 10 in speed to use 10th
order polynomial transfer maps between beam–beam
interactions.
3. The strong–strong beam–beam effect: NIMZOVICH

In the strong–strong realm, the colliding bunches
influence each other substantially. Little is known analy-
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tically about the resulting equilibrium distributions.
Numerical methods used to determine them have con-
verged on using PIC methods, modeling the collision
process as a series of synchro-betatron mappings of test
particles in the presence of two-dimensional field distribu-
tions (Ref. [8] and references therein). We have developed a
code using this principle adapted to high longitudinal
resolution, extreme aspect ratios, and the presence of
parasitic crossings resulting in multi-bunch effects.
3.1. Parallelization

NIMZOVICH uses parallelization according to the SPMD
(Single Program, Multiple Data) scheme. A cluster of
processors is divided in two sections, called Rings. Each
Ring is subdivided into several Bunches. Bunches within a
Ring are completely independent. Bunches in opposing
Rings are independent, except if they have a design or
parasitic interaction point in common, i.e., if one of their
two geometric interaction points falls into a section of the
ring (the Window) shared by both beams.

Each Bunch is divided longitudinally into several Slices.
For reasons of load balancing, the slicing scheme is chosen
in such a way as to have the same number of particles
within each slice, assuming an initial gaussian distribution
of given length. Slice borders are, however, not dynami-
cally adapted to changed longitudinal distributions.

Given enough available processors, each Slice’s portion
of particles can be further subdivided. Portions of a Bunch
with the same subdivision index in each slice are called a
Slab. They do not represent any geometric subdivision.

Each processor on each Ring runs through the following
sequence of steps for each Turn:
(1)
 For each Bunch in the sequence of opposing Bunches:
� For each Slice in the opposing Bunch:
� Deposit particles onto grid in the center of gravity
of my slice.
� Solve Poisson’s equation on that grid.
� Calculate electric field.
� Exchange electric field with opposing.
� Slice in opposing Bunch.
� Kick particles.
� Advance particles to the next Slice.

� Advance particles to next opposing Bunch.

(2)
 Advance particles according to one-turn map, possibly

redistributing longitudinally.
We assume that the bunch is longitudinally frozen
during interactions, so the slice-to-slice interactions are
independent and can be done in parallel. Also, bunches in
the same ring are independent, their mutual interaction can
be handled in parallel. Synchronization is automatic, i.e., a
Bunch will see the opposing Ring’s bunches in the right
order, as the slice-to-slice operation constitutes a barrier
synchronizing the two Rings.
When a Slice has passed the last opposing Slice of its last
opposing Bunch within a Window, it is transported back to
the design IP, and the one-turn map is applied to its
particles. After that, a particle may fall out of its current
Slice. All particles with changed Slice numbers are moved
to one out of a set of send queues, and an asynchronous
send operation to its new Slice initiated. The leftover
particles are deposited on the Grid. Then, the process
opens a receive queue for particles from backward Slices,
which might be moved onto this Slice by the action of the
one-turn map. The process does not have to wait for all
backward slices, as the synchrotron tune is usually small
and a particle is extremely unlikely to pass distances of the
order of a bunch length within a single turn. The actual
number of backward slices a process will wait is
dynamically adapted at run time; if the number of particles
received after a Slice’s first interaction with the next Bunch
crosses a threshold (of the order of a few particles), the
waiting period is increased.
A complication arises from the fact that the longitudinal

resolution required is very different for parasitic and design
interactions. Thus, a Bunch will have different slicing
schemes, with NSlabsNSlices constant, for different interac-
tion points. It is easy to see that communications due to re-
assignment of slices by a change of resolution can be kept
at its minimum by (1) letting the numbers of slices in
adjacent IPs be integer multiples (provided the bunch
length does not change between IPs) and (2) have formerly
neighboring slices end up in the same new slice for a
resolution decrease.

3.2. Field calculation

Point charges are deposited on a cartesian grid with
typical dimensions of Nx ¼ 64 . . . 512�Ny ¼ 64 . . . 512,
using a 9-site stencil. As the beam pipe is usually far away,
Poisson’s equation on the grid can be solved using free
boundary conditions. This is done by convolving with an
appropriately discretized and regularized version Ĝik of the
free Green’s function GðrÞ ¼ 1=4p log r2. The convolution
is done by multiplication in momentum space; the
transformation into momentum space is done by a two-
dimensional Fast Fourier Transformation using the FFTW
[9] package. Free boundary conditions are implemented by
using the Hockney trick [10] of padding the array with
zeroes to 2Nx � 2Ny.
The transformation is done by two sequences of one-

dimensional transformations with a matrix transposition in
between. In its parallel version, the transposition involves
an expensive all-to-all communication, which might cancel
the speed gains of parallelizing the transformation. In
NIMZOVICH, the user has the choice of how finely to
parallelize the solver. In our calculations, we find that the
time spent in the solver equals the kick-deposit time at
around 104 particles.
Note that this is not the optimal solution; the fact that

the array was zero-padded initially allows one to get rid of
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2Nx of 2Nx þ 2Ny FFT’s right away. 2Nx other transfor-
mations can be done out-of-place. Also, the parallel
transposition becomes simpler, as the padding space can
serve as a scratch space, so send and receive operations can
be done simultaneously and asynchronously, decreasing
latency. We have implemented this scheme for the special
case of symmetric G functions and observe a speed gain of
almost a factor of 2.

3.3. Slice-to-slice interaction and adaptive slices

The longitudinal domain decomposition makes use of
Hirata slicing [5]. For field calculation, we make use of a
convex interpolation method proposed by Ohmi [11] to
avoid field discontinuities close to slice boundaries (at the
cost of having to do two field calculations for each
timestop). We use the same scheme to calculate the
luminosity with high accuracy by sampling the opposing
bunch’s charge density with the macroparticles.

Using this scheme, each slice will execute grid operations
(sampling fields or depositing particles) on four different
temporal positions. In a beam with a pronounced
hourglass effect, the transverse dimensions of the beam
might vary substantially for these times. We adapt the
transverse extensions of the grids to the expected exten-
sions of the beam, calculated from the unperturbed Twiss
functions. This way, we achieve constant effective resolu-
tion across the interaction process and can use a lower-
resolution grid than codes with grids of constant absolute
resolution. For each slice, we have to pre-calculate two Ĝ

matrices for each opposing slice, as Ĝ does not follow a
simple scaling law under temporal displacement for bxaby.
We are currently testing a dynamic scheme in which the
grid sizes are adapted to the beam dimensions as measured
during the course of the simulation, which would relieve
the user of having to have an estimate of beam size
increase.

3.4. Results

We present a typical result, a single-bunch luminosity
simulation for Super-KEKB with parameters as given by
Ohmi et al. [8]. We observe good agreement with the results
in Ref. [8], obtained by other codes (Figs. 4 and 5).
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