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ABSTRACT
We examine the ability of a future X-ray observatory, with capabilities similar to those
planned for the Constellation-X mission, to constrain dark energy via measurements
of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a
sample of ∼ 500 hot (kT & 5keV), X-ray bright, dynamically relaxed clusters, to a
precision of ∼ 5 per cent, can be used to constrain dark energy with a Dark Energy
Task Force (DETF; Albrecht et al. 2006) figure of merit of 20 − 50. Such constraints
are comparable to those predicted by the DETF for other leading, planned ‘Stage
IV’ dark energy experiments. A future fgas experiment will be preceded by a large
X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts.
Short ‘snapshot’ observations with the new X-ray observatory should then be able to
identify a sample of ∼ 500 suitably relaxed systems. The redshift, temperature and
X-ray luminosity range of interest has already been partially probed by existing X-
ray cluster surveys which allow reasonable estimates of the fraction of clusters that
will be suitably relaxed for fgas work to be made; these surveys also show that X-
ray flux contamination from point sources is likely to be small for the majority of the
targets of interest. Our analysis uses a Markov Chain Monte Carlo method which fully
captures the relevant degeneracies between parameters and facilities the incorporation
of priors and systematic uncertainties in the analysis. We explore the effects of such
uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that
the fgas experiment offers a competitive and complementary approach to the best
other large, planned dark energy experiments. In particular, the fgas experiment will
provide tight constraints on the mean matter and dark energy densities, with a peak
sensitivity for dark energy work at redshifts midway between those of supernovae
and baryon acoustic oscillation/weak lensing/cluster number counts experiments. In
combination, these experiments should enable a precise measurement of the evolution
of dark energy.
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1 INTRODUCTION

In the early 1990s, measurements of the baryonic mass frac-
tion in X-ray luminous galaxy clusters provided compelling
evidence that we live in a low density Universe. Under the
assumption that large clusters provide approximately fair
samples of the matter content of the Universe, X-ray ob-
servations require that the mean matter density, Ωm, is sig-
nificantly less than the critical value, with a best-fit value
Ωm ∼ 0.2−0.3 (e.g. White & Frenk 1991; Fabian 1991; Briel
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et al. 1992; White et al. 1993; David et al. 1995; White &
Fabian 1995; Evrard 1997; Mohr et al. 1999; Ettori & Fabian
1999; Roussel et al. 2000; Grego et al. 2001; Allen et al.
2002, 2004, 2007; Ettori et al. 2003; Sanderson & Ponman
2003; Lin et al. 2003; LaRoque et al. 2006). When combined
with the expectation from inflation models, later confirmed
by Cosmic Microwave Background (CMB) studies (Bennett
et al. 2003; Spergel et al. 2003, and references therein), that
the Universe should be close to spatially flat, X-ray results
on the cluster baryon mass fraction quickly lead to the sug-
gestion that the mass-energy density of the Universe may
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be dominated by a cosmological constant (e.g. White et al.
1993).

The first direct evidence for late-time cosmic accelera-
tion, as would be produced by a sizeable cosmological con-
stant, was provided in the late 1990s by Riess et al. (1998)
and Perlmutter et al. (1999) based on measurements of
the light curves of type Ia supernovae (SNIa). Since then,
larger SNIa data sets (Knop et al. 2003; Riess et al. 2004;
Astier et al. 2005; Riess et al. 2007; Wood-Vasey et al.
2007; Davis et al. 2007) and an increasingly wide array of
other, complementary experiments, have confirmed and im-
proved upon this striking measurement. The combination
of CMB data from the Wilkinson Microwave Anisotropy
Probe (WMAP) (Spergel et al. 2003; Spergel et al. 2006)
with large scale structure (LSS) data from the Sloan Digital
Sky Survey (SDSS) (Eisenstein et al. 2005; Percival et al.
2007) and/or 2dF Galaxy Redshift Survey (2dFGRS) (Cole
et al. 2005) provides powerful evidence for dark energy. The
cross-correlation of CMB and LSS fluctuations reveals the
effects of dark energy on the Integrated Sachs-Wolfe effect
(Scranton et al. 2003; Fosalba et al. 2003; Rassat et al. 2007).
Measurements of the amplitude and evolution of matter fluc-
tuations using X-ray galaxy clusters (Reiprich & Böhringer
2002; Allen et al. 2003; Schuecker et al. 2003; Voevodkin &
Vikhlinin 2004; Mantz et al. 2007; Borgani et al. 2001; Henry
2004), optically-selected clusters (Gladders et al. 2007; Rozo
et al. 2007), Lyman-α forest data (Viel et al. 2004; Seljak
et al. 2005), and weak lensing (Van Waerbeke et al. 2005;
Jarvis et al. 2005; Hoekstra et al. 2006; Benjamin et al.
2007), also provide important, powerful confirmation of the
new, standard cosmological paradigm: a universe in which
the main mass and energy components are dark matter and
dark energy, and where dark energy drives the current ac-
celeration. The standard model for dark energy remains the
cosmological constant, which is mathematically equivalent
to vacuum energy. In principle, however, cosmic accelera-
tion could be driven by either dark energy or a modification
to the laws of gravity on cosmological scales (see Copeland
et al. 2006, for an extensive review).

Building on the early X-ray work, Allen et al. (2004);
Rapetti et al. (2005); Allen et al. (2007) showed that mea-
surements of the evolution of the X-ray gas mass fraction,
fgas, in the largest, dynamically relaxed galaxy clusters pro-
vides a further powerful, complementary approach for study-
ing dark energy. As with SNIa data, fgas(z) measurements
probe the redshift-distance relation: whereas the peak SNIa
luminosity varies as the square of the distance, fgas measure-
ments vary as distance, d1.5 (the distance dependance de-
rives from the way in which fgas values are determined from
the observed X-ray temperature and surface brightness data;
Allen et al. 2007). In combination with the tight constraint
on Ωm provided by the normalization of the fgas(z) curve,
under the assumption of fair matter samples, the fgas(z)
data contain sufficient information to break the degeneracy
between Ωm and the dark energy equation of state, w, in the
distance equations. The additional combination of fgas and
CMB data breaks other important degeneracies between pa-
rameters in cosmological analyses (Rapetti et al. 2005; Allen
et al. 2007).

Allen et al. (2007) show that the current constraints on
dark energy from the fgas experiment are of comparable pre-
cision to other leading techniques, and are robust under the

inclusion of conservative systematic allowances e.g. relaxing
the requirement for exact hydrostatic equilibrium and al-
lowing for moderate redshift evolution in the cluster baryon
fraction. These authors also show that intrinsic, systematic
scatter remains undetected in the current fgas data, despite
a weighted mean statistical scatter in the individual distance
measurements of only ∼ 5 per cent; in contrast, SNIa stud-
ies (Riess et al. 2007; Jha et al. 2007; Wood-Vasey et al.
2007) have established the presence of systematic scatter at
the ∼ 7 per cent in distance measurements from the best
current SNIa data.

The key to determining the nature of dark energy is to
obtain precise measurements of its evolution with redshift,
z, or scale factor, a = 1/(1+z). The Dark Energy Task Force
report (Albrecht et al. 2006, hereafter DETF) presented es-
timates of the constraints on dark energy parameters that
should be achievable with a number of future proposed or
planned dark energy experiments. In particular, the report
forecasted the ability of these experiments, in combination
with CMB data from the Planck satellite, to constrain a
dark energy model of the form w(a) = w0 + wa(1 − a), and
defined a figure of merit (hereafter FoM) to allow for easy
comparison of the constraints. In this paper, we use the same
dark energy parameterization and FoM to quantify the con-
straining power of future fgas experiments, to be carried out
with e.g. the Constellation-X or X-ray Evolving Universe
Spectroscopy (XEUS) missions, in combination with CMB
data. We show that the fgas experiment is likely to provide
comparable constraining power to the best other, contempo-
rary space and ground-based experiments described by the
DETF. When combined, future CMB, SNIa, baryon acous-
tic oscillation (BAO), weak lensing, cluster number count
and fgas experiments should provide precise, accurate con-
straints on w(z) and allow significant progress in under-
standing the origin of cosmic acceleration.

The structure of this paper is as follows: in Section 2
we define the dark energy model and the FoM. In Section 3
we describe the simulated fgas and CMB data sets. For the
fgas data, we assume instrument characteristics appropriate
for the baseline Constellation-X mission. The CMB data set
approximates that expected from two years of Planck data.
We also simulate a data set representative of that produced
by follow-up observations of the Sunyaev-Zel’dovich effect in
the clusters targeted for the fgas work. Section 4 describes
the Markov Chain Monte Carlo (MCMC) pipeline and de-
tails of the analysis method. Our main results are presented
in Section 5. Section 6 summarizes our conclusions.

2 THE DARK ENERGY MODEL AND FOM

We characterize the evolution of dark energy by its en-
ergy density in units of the critical density, Ωde, and its
equation of state, w. Following the DETF, we parameter-
ize the evolution of the dark energy equation of state as
w(a) = w0 + wa(1 − a) (Chevallier & Polarski 2001; Linder
2003) for which a cosmological constant has w(a) = −1. In
this model, the dimensionless Hubble parameter as a func-
tion of scale factor has the form

E(a) =
H(a)

H0
=

p

Ωma−3 + Ωdef(a) + Ωka−2 , (1)

where
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f(a) = a−3(1+w0+wa)e−3wa(1−a) . (2)

H0 is the present-day value of the Hubble parameter and Ωm

and Ωk are the mean matter density and curvature density
in units of the critical density, respectively.

Using this parameterization, the DETF define a FoM
that is used to compare the constraining power of different
dark energy experiments. Nominally, the FoM scales with
the inverse of the area enclosed by the 95 per cent confidence
contour in the w0 − wa plane. However, the DETF showed
that since there is little correlation in the wp−wa plane, the
area is also proportional to the product of the standard de-
viations σ(wp)×σ(wa), where wp = w(ap) is the pivot value
of w(a) i.e. the value of w(a) at which its uncertainty is min-
imized (Linder 2006). (Note that the standard error σ(wp)
approximately corresponds to the 68.3 per cent uncertainty
in w that would be obtained for a constant−w dark energy
model). This leads to the definition

FoM = [σ(wp) × σ(wa)]
−1. (3)

For the DETF Fisher matrix analysis, the 1σ confidence
region in the wp − wa plane forms an ellipse for which
the semi-axes are the standard deviations of wp and wa.
For the more detailed MCMC analysis used here, however,
we obtain slightly asymmetric probability distributions for
these parameters in some cases, although to either side
of the peak probability the distributions can be modelled
as approximately Gaussian. Therefore, in calculating the
FoM, we model the 1σ confidence contour in the wp − wa

plane with a geometrical shape formed by four quarters
of four different ellipses for which the semi-axes are the
standard deviations of the Gaussians to either side of the
peak, namely σup(wp), σdown(wp), σup(wa), and σdown(wa).
The area of such contour is equivalent to the area of an
ellipse with semi-axes σ̂(wp) = [σup(wp) + σdown(wp)]/2
and σ̂(wa) = [σup(wa) + σdown(wa)]/2. Thus, we calculate
our FoM 1 as the inverse of the product of the semi-axes
[σ̂(wp)×σ̂(wa)]

−1 which allows a direct comparison with the
results reported by the DETF.

3 SIMULATED X-RAY DATA

3.1 A strategy for future fgas work

We assume that a future fgas experiment will be carried
out by an X-ray observatory with capabilities comparable
to those of Constellation-X, as summarized in Table 1. The
major improvements of such a mission with respect to cur-
rent X-ray observatories are in collecting area, which is a
factor ∼ 100 larger than that provided by the Chandra X-
ray Observatory, and spectral resolution. 2 We assume that

1 To confirm the validity of our definition of the FoM we have ex-
plicitly measured the area contained by the filled contours in the
right panel of Figure 2. Dividing this area by both the geometric
factor π, which accounts for the conversion between the area of
an ellipse and its circumscript rectangle, and the factor 2.3, which
accounts for the change in the confidence levels from two to one
degrees of freedom, we successfully match the measured area to
the value obtained by the product σ̂(wp) × σ̂(wa).
2 For details on planned X-ray observato-
ries see http://constellation.gsfc.nasa.gov/ and
http://www.rssd.esa.int/index.php?project=XEUS.

Table 1. Baseline X-ray observatory characteristics.

Band pass 0.3-10 keV

Spectral resolution E/∆E ∼ 2400 (@6 keV)

Effective area 15, 000 cm2 (@1.25 keV)

PSF 6 15 arcsec (half power diameter)

Field of View > 5 × 5 arcmin2

the fgas experiment will be preceded by, and will build upon,
forthcoming X-ray and/or SZ cluster surveys3 that will scan
a significant fraction of the sky and find large number of hot,
X-ray luminous, high−z clusters. These surveys will provide
the initial target lists for the fgas experiment as well as al-
lowing an array of complementary cosmological tests based
on the power spectrum and mass function of galaxy clusters
(e.g. Albrecht et al. 2006).

From initial surveys of tens of thousands of clusters, the
∼ 3000 most X-ray luminous (or highest integrated SZ flux)
clusters will be identified. The new X-ray observatory will
then be used to take short snapshot exposures (∼ 1ks) of
these clusters, to identify the most apparently dynamically
relaxed systems that are most suitable for fgas work (Allen
et al. 2007). The selection of relaxed clusters is likely to be
based primarily on X-ray morphology, but will also utilize
the high spectral resolution capabilities to measure bulk gas
motions.4 The most relaxed clusters will be re-observed with
deeper exposures to measure the gas mass fraction to the
required level of precision.

Current studies of the Massive Cluster Survey (MACS)
(Ebeling et al. 2001, 2007) show that at redshifts z . 0.5
approximately 1/4 clusters are sufficiently relaxed for fgas

work (Allen et al. 2007). We (conservatively) calculate pre-
dicted cosmological constraints for two separate fgas data
sets, containing either ∼ 500 or 250 relaxed clusters. That
is, we assume that only approximately 1/6 or 1/12 of the
3000 hottest, most X-ray luminous clusters detected in a
future survey will be suitable for use in the fgas experiment.

For the 500−cluster sample, we assume an average ex-
posure time per cluster of ∼ 20ks. For the 250−cluster sam-
ple, the typical exposure is ∼ 40ks. In both cases, the to-
tal time required to complete the fgas observations will be
. 15Ms. For the assumed instrument characteristics, we ex-
pect statistical uncertainties in the fgas measurements re-
sulting from 20ks exposures of ∼ 5 per cent, which corre-
sponds to ∼ 3.3 per cent in distance. For typical exposures
of 40ks, we expect to measure fgas to ∼ 3.5 per cent or
distance to ∼ 2.3 per cent. In Section 5 we show that the
constraints on dark energy from both the 500 or 250-cluster

3 Forthcoming X-ray survey missions include
Spectrum-RG/eROSITA; see http://www.mpe-
garching.mpg.de/projects.html#erosita and http://www.mpe-
garching.mpg.de/erosita/MDD-6.pdf. Several large-area SZ
surveys are already underway, including the South Pole Tele-
scope (SPT) (e.g. Ruhl et al. 2004, see http://spt.uchicago.edu/),
and the Atacama Cosmology Telescope (ACT) (e.g. Sehgal et al.
2007, see http://wwwphy.princeton.edu/act/).
4 The snapshot observations will also be of great benefit for a
range of ancillary cluster science.
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sample are comparable. We adopt the 500−cluster sample
with 5 per cent fgas measurement uncertainties as our de-
fault data set.

3.2 The simulated fgas data set

3.2.1 The luminosity function of clusters

To simulate the fgas data set, we first need to predict the
redshift distribution of clusters. We assume an X-ray flux-
limited cluster survey similar to that expected to be pro-
duced by the Spectrum-RG/eROSITA mission, with a flux
limit of Flim = 3.3 × 10−14 erg cm−2 s−1 in the 0.1 − 2.4 keV
band and a uniform sky coverage of fsky ∼ 0.5. We calculate
the number of clusters expected to be observed Ni in each
redshift bin zi as (Mantz et al. 2007)

Ni(zi) =

Z zi

zi−1

dV

dz
dz

Z

∞

0

dn(M, z)

dM
Q dM , (4)

where

Q =

Z

∞

0

dL′

Z

∞

Llim(z)

dL P (L′|M) p(L|L′). (5)

Here, V is the comoving volume, n(M, z) is the number den-
sity of halos with a mass less than M at redshift z, L′ is the
intrinsic luminosity of a galaxy cluster associated with a
halo of mass M , and L is its detected luminosity. P (L′|M)
is the probability for a cluster of mass M to have an in-
trinsic luminosity L′; p(L|L′) is the probability for a cluster
with intrinsic luminosity L′ to be detected with luminosity
L; and Llim is the luminosity limit function. We calculate
the comoving volume element per redshift interval as (Hogg
1999)

dV

dz
= 4π fsky

c

H0

(1 + z)2 dA(z)2

E(z)
, (6)

where c is the speed of light, and dA the angular diameter
distance. Using N-body simulations, Jenkins et al. (2001)
obtained the following fitting formula for the mass function
of dark matter halos:

dn(M, z)

d lnσ−1
=

ρ̄

M
A exp

ˆ

−| ln σ−1 + B |ǫ
˜

, (7)

where ρ̄ is the mean comoving matter density of the Universe
and A, B and ǫ are fitted parameters. Here σ2(M, z) is the
variance of the linearly evolved density field, smoothed by
a spherical top-hat filter, W (k;M). In Fourier-space repre-
sentation,

σ2(M, z) =
b2(z)

2π2

Z

∞

0

k2P (k)W 2(k; M)dk, (8)

where k is the wave number, P (k) is the power spectrum
of the linear density field extrapolated to redshift zero and
b(z) is the growth factor of linear perturbations normalized
to be 1 when z = 0. We calculate the power spectrum using
the fitting formula obtained by Bond & Efstathiou (1984).
For halo finding algorithms tied to the mean mass density,
Jenkins et al. (2001) showed that the values of A, B and ǫ
are almost invariant under both a broad range of cosmolo-
gies and redshift. However, these authors also showed that
these parameters depend on the cluster finding algorithm.
Here, we use A = 0.316, B = 0.67, ǫ = 3.82 (Jenkins et al.
2001), which are appropriate for the spherical overdensity

algorithm SO(κ = 324) (Davis et al. 1985; Lacey & Cole
1994), where κ is the mean overdensity of the halo with
respect to the mean matter density of the Universe.

In equation (5) we have a log-normal probability distri-
bution

P (L′|M) =
e[log10 L′

−log10 L̂′(M)]2/2σ2

L′ ln(10)
√

2πσ
, (9)

where L̂′(M) is the best fit luminosity for a given mass M ,
and σ is its scatter, determined from the mass-luminosity
data set of Reiprich & Böhringer (2002) using the relation

log10

"

M E(z)

h−1
72 M⊙

#

= A+α log10

»

LX(0.1 − 2.4 keV)

1044h−2
72 erg s−1 E(z)

–

,(10)

for which α = 0.607 and A = log10

ˆ

M0/(h
−1
72 M⊙)

˜

= 14.72,
and σ = 0.22. In equation (5) we also have a Gaussian prob-
ability distribution

p(L|L′) =
e[L−L′]2/2σ2

l

√
2πσl

, (11)

with standard deviation σl = (σnph
/nph)L′. Here nph is the

number of photons detected from a cluster in the survey and
σnph

=
√

nph is the associated Poisson error. We assume,
nph ∼ 20 at the flux limit of the survey.

3.2.2 Temperature selection

In order to minimize systematic scatter in the fgas experi-
ment, Allen et al. (2007) restrict their analysis to dynami-
cally relaxed clusters with mean gas mass-weighted temper-
atures measured within r2500,

5 kT2500 > 5 keV. We impose
the same temperature cut in this analysis, calculating the lu-
minosity limit Li that corresponds to this temperature limit
from the relation

log10

»

LX(0.1 − 2.4 keV)

1044h−2
72 erg s−1 E(z)

–

= A + B log10

„

kTe

keV

«

, (12)

where Te is the emission weighted X-ray temperature,
which we assume scales with the mass-weighted tempera-
ture within r2500 as kTe ∼ kT2500/η,6 with η ∼ 1.1 − 1.2.
Fitting the above relation (12) to the X-ray luminosity and
temperature data of Reiprich & Böhringer (2002), we obtain
A = −1.14 and B = 2.50.7

The limiting luminosity in equation (5) is then

Llim(z) = min[Li, 4πFlimdL(z)2] , (13)

with the appropriate K−correction applied in calculating
the Flim values.
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Figure 1. The redshift distribution (solid curve) of clusters above
the Spectrum-RG/eROSITA X-ray flux limit with mass-weighted
temperatures kT2500 > 5keV. A sky coverage of ∼ 50 per cent
is assumed. This redshift distribution has been used to generate
the mock fgas data set. Assuming that ∼ 1/6 of such clusters will
be sufficiently relaxed for fgas work, we obtain a final sample of
∼ 500 clusters. For comparison purposes, we also show (dashed
curve) the redshift distribution for the case of a fixed luminosity
limit LX(0.1 − 2.4 keV) > 4.5 × 1044h−2

70 erg s−1 (no temperature
cut) which gives a similar total number of clusters. The latter
distribution has more high−z clusters.

3.2.3 The redshift distribution of fgas clusters

Table 2 summarizes the parameters describing our fiducial
cosmology. For this cosmology, we have calculated the red-
shift distribution of galaxy clusters over the range 0 < z < 2.
Our fiducial cosmology approximately matches that used by
the DETF, but includes updated values for ns and τ to
better match the WMAP three-year results (Spergel et al.
2006). We also adopt a lower value for σ8 = 0.8, consistent
with both the WMAP three-year results and the results of
Mantz et al. (2007) from measurements of the X-ray lumi-
nosity function of galaxy clusters within z < 0.7.

Figure 1 shows the redshift distribution (solid line) for
clusters detected above the Spectrum-RG/eROSITA X-ray
flux limit with mass-weighted temperatures kT2500 > 5keV
(emission weighted temperatures kTe > 4.35 keV). A sky
coverage, fsky ∼ 0.5 is assumed. Approximately 3000 clus-
ters meet these criteria. Assuming that ∼ 1/6 of these clus-
ters will also meet the relaxation criteria based on X-ray
morphology (Allen et al. 2007; Million et al. 2007), a sample

5 r2500 is the radius within which the mean density is 2500 times
the critical density of the Universe at the redshift of the cluster.
6 Result based on MACS clusters spanning the redshift range
0.3 < z < 0.7 (A. Mantz, private communication).
7 We exclude objects from the Reiprich & Böhringer (2002) sam-
ple for which the temperature was estimated from the luminosity-
temperature relation of Markevitch (1998) rather than directly
measured. This leaves 88 data points in total.

of ∼ 500 hot, X-ray luminous, dynamically relaxed clusters
can be defined.

For comparison purposes, Figure 1 also shows (dashed
curve) the redshift distribution for the case of a luminosity
limit of Li > 4.5× 1044h−2

70 erg s−1 in the 0.1− 2.4 keV band
(dashed line; no temperature cut is imposed). The effect of
the X-ray flux limit on the distribution is evident towards
the highest redshifts (z ∼ 1.8) in this case.

It is clear from that figure that the temperature and lu-
minosity cuts lead to different redshift distributions. In the
case of the temperature cut (solid line), the redshift distri-
bution peaks around z ∼ 0.5 and relatively few clusters are
found at z > 1.5. For the case of the luminosity cut (dashed
line), the distribution peaks around z ∼ 0.7, and has many
more clusters at z > 1. It is important to note, however,
that a redshift distribution weighted towards higher red-
shifts does not necessarily imply tighter constraints on dark
energy. For the DETF FoM criterion, constraints around
the pivot redshift are important; for the fgas experiment
zp ∼ 0.25 (see Figure 5).

We generate mock fgas measurements for 500 clusters
with the redshift distribution appropriate for the case of the
temperature cut [solid curve, Figure 1; in accordance with
the selection criteria used for current fgas work (Allen et al.
2007)]. For each cluster, we assign a statistical error in the
fgas measurements of ∼ 5 per cent. We have also generated
a set of mock measurements for the case of 250 clusters
observed with fgas measurements accurate to 3.5 per cent.
This latter data set is used to study the impact on the dark
energy constraints in the case that the fraction of suitably
relaxed clusters is less than 1/6 at high redshifts.

We stress that the predicted redshift distribution, which
peaks around z ∼ 0.5 in the case of the temperature cut,
has already been probed, at least partially, over the lumi-
nosity and temperature range of interest, by the MACS sur-
vey (Ebeling et al. 2001); MACS covers the redshift range
0.3 < z < 0.7 to a flux limit of Flim = 10−12 erg cm−2 s−1 in
the 0.1− 2.4 keV band. For MACS, approximately 1/4 clus-
ters are found to be sufficiently relaxed for fgas work (Allen
et al. 2007). Therefore, our assumption that ∼ 1/6 clus-
ters detected in a future X-ray survey and meeting the X-
ray flux and temperature criteria will be suitably relaxed,
appears reasonable. Moreover, as discussed in Section 5.1,
for the case of the 250-cluster sample (i.e. assuming that
only ∼ 1/12 clusters are relaxed) and using a similar total
observing time to obtain individual fgas measurements to
∼ 3.5 per cent accuracy, we obtain very similar dark energy
constraints.

A final important point regards contaminating point
sources: for MACS clusters, the fraction of the measured
0.1 − 2.4 keV X-ray flux arising from contaminating point
sources is small, typically of order a per cent (Mantz et al.
2007; this is also the case for the hottest, kTe & 5keV, re-
laxed clusters at lower redshifts.) Therefore, we do not ex-
pect our target clusters, which have comparable X-ray tem-
peratures and luminosities, to be severely affected by con-
taminating point sources, especially at z . 1. This alleviates
the instrumental requirements on the point spread function;
an instrument with capabilities similar to the baseline char-
acteristics listed in Table 1 should be capable of making
significant strides in dark energy work.
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Table 2. Parameter values of our fiducial cosmology, which is a
flat ΛCDM cosmology.

w0 = −1 Ωm = 0.27 H0 = 72 km s−1 Mpc−1

wa = 0 Ωb = 0.046 ns = 0.95

Ωde = 0.73 σ8 = 0.8 As = 2.3 × 10−9

Ωk = 0 b = 0.82 τ = 0.09

3.3 Follow-up SZ observations

The thermal SZ effect is a difference in the CMB spec-
trum caused by Compton scattering of CMB photons by
hot electrons in the intracluster medium. The SZ flux mea-
sured at radio or sub-mm wavelengths can be expressed in
terms of the Compton y−parameter. For a given cosmol-
ogy, the y−parameter can also be predicted from the same
X-ray data used to determine the fgas measurements, be-
ing proportional to the integral along the line-of-sight of the
product of electron density and temperature,

R

neTedl.
We have examined the additional cosmological con-

straining power that can be achieved with follow-up
radio/sub-mm SZ observations of our sample of 500 clus-
ters, assuming direct SZ flux measurements accurate to 2
or 5 per cent (a level of accuracy that should be straight-
forward for SZ detector technology available at the time
of the experiment; see Muchovej et al. 2007, and refer-
ences therein). The statistical uncertainties in the predicted
Compton y−parameters will be comparable to those asso-
ciated with the fgas measurements: ∼ 5 per cent for the
500-cluster sample. We generate our predicted y−parameter
data set for the redshift distribution shown in Fig. 1 (solid
curve).

3.4 Mock CMB data sets

We have used the CAMB code (Lewis et al. 2000)8 to gen-
erate auto and cross temperature and polarization angular
power spectra, CTT

l , CTE
l and CEE

l , for the fiducial, flat
ΛCDM cosmology described in Table 2. We follow Lewis
(2005) and Lewis et al. (2006) and assume that the tem-
perature, T , and polarization E−fields are Gaussian and
isotropic. We also assume that the polarization B−field is
negligible.

Having CTT
l , CTE

l and CEE
l , we add a simple, isotropic

noise power spectrum (Cooray et al. 2000; Lewis 2005; Lewis
et al. 2006)

Nl(ν
′, ν) = Nl(ν) δν′,ν eb(ν)2l(l+1)/8 ln 2, (14)

where Nl(ν) = [b(ν)σ(ν)]2, b(ν) =
√

8 ln 2σ(ν) is the beam
full width at half maximum (FWHM) measured in radians,
and σ(ν) = (∆T/T )2 is the root mean square noise per
beam-sized pixel. Assuming uncorrelated noise in the E and
T fields, the covariance over realizations is (Lewis et al. 2006)

Cl =

„

CTT
l + NTT

l CTE
l

CTE
l CEE

l + NEE
l

«

. (15)

8 http://camb.info/

For the channel ν = 143 GHz , NTT
l (ν) = NEE

l (ν)/4 =
2 × 10−4 µ K2 and b(ν) = 7.1 arcmin (Lewis et al. 2006).
These values correspond to σ(ν)TT = 6.97 µ K and σ(ν)EE =
9.68 µ K, which is roughly the sensitivity expected for
Planck

9 after ∼ 2 years (14 months) of a full sky survey
(Planck 2006).

We consider two different scenarios relating to fore-
ground CMB polarization contamination. Firstly, we exam-
ine the idealized case where such contamination can be ne-
glected (Bond et al. 2004; Lewis 2005; Lewis et al. 2006;
Planck 2006). Secondly, we consider a more conservative sce-
nario where ∼ 20 per cent of the sky is irretrievably contam-
inated by Galactic emission, leaving ∼ 80 per cent that can
be modelled as approximately foreground-free. For the sec-
ond scenario, Tegmark et al. (2000) forecast that Planck

will be able to determine the optical depth to reionization to
a precision of σ(τ ) ∼ 0.01, as compared to σ(τ ) ∼ 0.005 for
the idealized, foreground-free case (Bond et al. 2004; Lewis
et al. 2006; Planck 2006). To account for the effects of po-
larization contamination, the DETF discarded polarization
information for multipoles l < 30 and imposed a prior on
τ to obtain σ(τ ) = 0.01. For our analysis in the case of
polarization contamination, we also artificially weaken the
constraints on τ to a precision of σ(τ ) ∼ 0.01 by enlarging
by an order of magnitude the noise at low multipoles l < 30
in the polarization data.

For both scenarios, we use only the data from mul-
tipoles 2 6 l 6 2000. For simplicity, we adopt the zero-
contamination scenario as our default CMB data set.

4 DATA ANALYSIS METHOD

4.1 Markov Chain Monte Carlo (MCMC) code

Given the dark energy model described in Section 2 and the
simulated fgas and CMB data sets described in Section 3,
we use the Metropolis Markov Chain Monte Carlo (MCMC)
algorithm implemented in the cosmomc

10 (Lewis & Bridle
2002) package to examine posterior parameter distributions.
We use a modified version of the camb (Lewis et al. 2000)
code to calculate CMB power spectra; this accounts for the
effects of dark energy perturbations for evolving dark energy
equations of state (Rapetti et al. 2005) (see Section 4.5 for
details). Our modified version of the cosmomc code also
incorporates the fgas analysis method described by Allen
et al. (2007) (see also Rapetti et al. 2005, 2007).

Our choice to forecast parameter constraints using a full
MCMC analysis has some advantages over the more widely
used Fisher matrix formalism (see discussions in Perotto
et al. 2006; Lewis et al. 2006). Firstly, the shape of the mean
log likelihood [see equation (22)] (Lewis et al. 2006) in the
MCMC analysis encapsulates all of the relevant degeneracies
between parameters, which is crucial for non-Gaussian dis-
tributions. Secondly, the fact that our forecasts are made us-
ing the same cosmomc analysis code used to analyze current
data (Allen et al. 2007) ensures consistency between present
and future constraints. Finally, the MCMC method allows

9 http://www.rssd.esa.int/index.php?project=Planck
10 http://cosmologist.info/cosmomc/
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us to easily and efficiently introduce priors and allowances
and thereby study the effects of systematic uncertainties.

4.2 X-ray gas mass fraction analysis

4.2.1 The fgas method

The X-ray gas mass fraction, fgas, is defined as the ratio of
the X-ray emitting gas mass to the total mass of a clus-
ter. This quantity can be determined from the observed
X-ray surface brightness and the deprojected, spectrally-
determined gas temperature profile, under the assumptions
of spherical symmetry and hydrostatic equilibrium. To en-
sure that these assumptions are as accurate as possible, it
is essential to limit the fgas analysis to the hottest, most
X-ray luminous, dynamically relaxed clusters available [Sec-
tion 3.1; for a detailed discussion of the method and current
measurements see Allen et al. (2007) and references therein.]

In order to study dark energy, Allen et al. (2007) use
fgas measurements for a sample of 42 hot (kT2500 > 5keV),
X-ray luminous, dynamically relaxed clusters. The fgas mea-
surements are made at an angle θΛCDM

2500 for each cluster,
corresponding to r2500 for a reference flat ΛCDM cosmology
(with Ωm = 0.3 and H0 = 70 kms−1 Mpc−1). The fgas mea-
surements in the reference cosmology fΛCDM

gas are related to
the true values f true

gas as

fΛCDM
gas (z; θΛCDM

2500 ) = f true
gas (z; θΛCDM

2500 )

„

dΛCDM
A

dtrue
A

«3/2

. (16)

Current hydrodynamical simulations (Eke et al. 1998; Nagai
et al. 2007; Crain et al. 2007) suggest that f true

gas is likely to
be approximately constant in redshift. Thus (Allen et al.
2007),

f true
gas (z; θtrue

2500) =

„

Ωb

Ωm

« „

b0

1 + s0

«

, (17)

where s0 = 0.16h0.5
70 (Lin & Mohr 2004) is the observed

ratio of the mass in stars (both in galaxies and intracluster
light) to the X-ray emitting gas mass, and b0 = 0.82 (Eke
et al. 1998) is the depletion factor for the baryon fraction in
clusters with respect to the cosmic mean value.

As discussed by Allen et al. (2007), an angular cor-
rection factor is also required to account for the fact that
f true
gas (z; θtrue

2500) is not exactly equal to f true
gas (z; θΛCDM

2500 ). Ob-
servations of large, relaxed clusters show that for the ra-
dial range of interest, 0.7 < r/r2500 < 1.2, the fgas(r) pro-
files can be fit by a shallow power-law model with slope
η = 0.214 ± 0.022.11 . Thus, we have

f true
gas (z; θΛCDM

2500 ) = f true
gas (z; θtrue

2500)

„

θΛCDM
2500

θtrue
2500

«η

, (18)

where θ2500 = r2500/dA, and

„

θΛCDM
2500

θtrue
2500

«η

=

„

[H(z) dA(z)]true

[H(z) dA(z)]ΛCDM

«η

. (19)

11 Note that even using two very different reference cosmologies
such as SCDM (Ωm = 1, H0 = 50 km s−1 Mpc−1) and ΛCDM
(Ωm = 0.3, H0 = 70 km s−1 Mpc−1), Allen et al. (2007) obtained
similar values for η around r2500.

This correction factor is small and can be neglected for
most analyses of current data, although its inclusion leads
to slightly tighter constraints on dark energy (Allen et al.
2007). However, for future experiments of the precision be-
ing considered here, the inclusion of the angular correction
term becomes important.

4.2.2 Allowances for systematic uncertainties

Following Allen et al. (2007), we modify equation (17) to
account for systematic uncertainties in the fgas analysis:

f true
gas (z; θtrue

2500) = γ K

„

Ωb

Ωm

« „

b(z)

1 + s(z)

«

. (20)

Here γ allows for departures from the assumption of hy-
drostatic equilibrium, due to non-thermal pressure sup-
port; K is a normalization uncertainty relating to instru-
mental calibration and certain modelling issues; b(z) =
b0(1 + αbz + βbz2) accounts for uncertainties in the cluster
depletion factor, both in the normalization, b0, and possi-
ble linear, αb, and quadratic, βb, evolution with redshift;
s(z) = s0(1 + αsz + βsz

2) accounts for uncertainties in the
stellar mass fraction.12

Using hydrodynamic N-body simulations Nagai et al.
(2007) show that for large, relaxed clusters, non-thermal
pressure support is unlikely to exceed 8 per cent. Further-
more if, as suggested by some current X-ray data (Fabian
et al. 2003, 2005; Reynolds et al. 2005), the gas viscosity
is higher than included in current simulations, then non-
thermal pressure support could be even lower. Based on
these findings, we adopt by default a uniform prior such
that non-thermal pressure support lies in the range 0 − 8
per cent (although a more pessimistic range of 0 − 16 per
cent is also considered). Since the use of asymmetric prior
would bias the analysis, levering Ωm above the fiducial value,
we employ an equivalent, rescaled symmetric prior such that
1 − (a/2) < γ < 1 + (a/2), where a = |1 − 1.08|/1.04.

The depletion parameter, b0, reflects the thermody-
namic history of the X-ray emitting cluster gas. Using adi-
abatic simulations of hot, massive clusters of comparable
size to the real clusters to be used in the fgas experiment,
Eke et al. (1998) (see also Allen et al. 2004; Nagai et al.
2007; Crain et al. 2007) obtained b0 = 0.82 ± 0.03 at the
radius of the measurements r2500 (∼ 0.25rvir) and found no
evidence for redshift evolution: αb = 0.00 ± 0.03 for mea-
surements made at r ∼ 0.5rvir, spanning the redshift range
0 < z < 1. As discussed by Allen et al. (2007), however,
systematic uncertainties are associated with current predic-
tions for b(z), due to limitations in the accuracy for the
physical approximations employed in the simulations. Esti-
mating the residual uncertainties in the prediction of b(z)
that will be appropriate at the time of a future fgas data set
(∼ 2015−2020) is difficult. We have chosen to use a range of
values that extend from optimistic to pessimistic scenarios
(see Table 3).

Current optical and near infrared data for low-to-
intermediate redshift clusters give s0 = 0.16h−0.5

70 (Fukugita

12 Working with current data, Allen et al. (2007) use only the
linear order of the redshift expansions for their systematic al-
lowances i.e. αb and αs.
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Table 3. Systematic allowances incorporated in the fgas and XSZ experiments.

Cluster Parameter Allowance (optimistic/standard/pessimistic) Type

fgas EXPERIMENT

Calibration/Modelling K 1.0 ± 0.02/ ± 0.05/ ± 0.10 Gaussian
Non-thermal pressure γ 0.96 < γ < 1.04/0.92 < γ < 1.08 uniform
Gas depletion: norm. b0 0.82 × (1 ± 0.02/ ± 0.05/ ± 0.10) uniform

Gas depletion: evol. (linear) αb ±0.02/ ± 0.05/ ± 0.10 uniform
Gas depletion: evol. (quadratic) βb ±0.02/ ± 0.05/ ± 0.10 uniform

Stellar mass: norm. s0 0.16 × (1 ± 0.02/ ± 0.05/ ± 0.10) Gaussian
Stellar mass: evol. (linear) αs ±0.02/ ± 0.05/ ± 0.10 uniform

Stellar mass: evol. (quadratic) βs ±0.02/ ± 0.05/ ± 0.10 uniform

XSZ EXPERIMENT

Calibration/Modelling k0 1.0 ± 0.02/ ± 0.05 Gaussian
evolution (linear) αk ±0.02/ ± 0.05/ ± 0.10 uniform

et al. 1998; Lin & Mohr 2004). Although, at present, the
constraints on s(z) for clusters at z & 0.5 are sparse, we
expect the form of s(z) to be relatively well understood by
the time of the fgas experiment.

In order to keep the interpretation of our results simple,
we present results for three sets of systematic allowances:
for the parameters, K, b0, αb, βb, s0, αs, βs, we employ al-
lowances of either ±2 per cent (optimistic), ±5 per cent
(standard), or ±10 per cent (pessimistic). In all cases, we
employ uniform priors with the exception of K and s0, for
which Gaussian priors are more appropriate and therefore
used. As noted above, a uniform allowance of ±4 per cent on
γ, is included by default, although the effects of doubling the
uncertainty in this parameter are also examined. We stress
that whether γ = 1 precisely, or αb, αs etc are precisely zero,
is not of primary importance to a future analysis: if known,
the exact values can be incorporated into the default model.
It is the uncertainties in the values that affect the accuracy
and precision of the dark energy constraints.

4.3 Analysis of the SZ data: the XSZ experiment

For the true, underlying cosmology, the measurement of
the Compton y−parameter from both the X-ray and SZ
data should match (e.g. Molnar et al. 2002; Schmidt et al.
2004; Bonamente et al. 2006). For a given cosmology the y-
parameter predicted by X-ray data depends on the angular
diameter distance to the cluster d0.5

A , whereas the observed
SZ flux at radio or sub-mm wavelengths is independent of
the cosmology assumed. Combining the y−parameter re-
sults, we can measure the distances to the clusters as a func-
tion of redshift and, therefore, constrain dark energy.

yΛCDM = ySZobs k(z)

„

dΛCDM
A

dtrue
A

«1/2

. (21)

Here yΛCDM is the X-ray measurement of the y-parameter
for the reference cosmology and ySZobs is the radio/sub-

mm observation.13 Following a similar approach to that
adopted with the fgas data, we incorporate systematic al-
lowances into equation (21): k(z) = k0(1 + αkz) accounts
for the combined systematic uncertainties in the X-ray and
SZ data y−parameter measurements due to calibration, ge-
ometric effects, gas clumping, etc., and their evolution. We
employ Gaussian priors on k0 of size 2 (optimistic) or 5
(standard/pessimistic) per cent and uniform priors on αk of
size 2 (optimistic), 5 (standard) or 10 (pessimistic) per cent.

We note that the best clusters to observe for the XSZ
experiment are the same systems used for the fgas experi-
ment: the largest, most dynamically relaxed clusters. These
are the clusters for which the SZ signals are strongest and
for which systematic uncertainties associated with geometry
and thermodynamic structure are minimized. Note also that
no additional X-ray observations are required to carry out
the XSZ experiment, once the fgas data are in hand.

4.4 Incorporating the CMB data

In addition to the dark energy model parameters and the
fgas parameters discussed in Section 4.2, we vary the follow-
ing eight CMB-related parameters in the MCMC analysis:
the mean physical baryon density Ωbh2, the mean physical
cold dark matter density Ωdmh2, the (approximate) ratio of
the sound horizon at last scattering to the angular diam-
eter distance θs (Kosowsky et al. 2002), the optical depth
to reionization τ (assumed to occur in a sharp transition),
the mean curvature density of the Universe Ωk, the scalar
adiabatic spectral index ns, and the scalar adiabatic am-
plitude As at k = 0.05 Mpc−1. We employ a uniform prior
on ln(As). The combination of θs and ln(As) as parameters,
rather than H0 and As, leads to a more Gaussian probability
density distribution which, in turn, aids sampling (Kosowsky
et al. 2002; Lewis et al. 2006).

The degeneracies between dark energy model param-
eters and Ωk are of particular importance in the analysis

13 The limitations of existing SZ data have to date restricted the
XSZ experiment to measurements of the Hubble constant (e.g.
Bonamente et al. 2006, and references therein).
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Figure 2. (Left panel) The 95 per cent confidence contours in the w0 − wa for the default dark energy model using the optimistic (2
per cent; blue, solid contour), standard (5 per cent; dashed contour) and pessimistic (10 per cent; dotted contour) allowances. (Right
panel) The 68 per cent confidence contours in the wa − wp plane for the default dark energy model using the optimistic (2 per cent;
purple, solid contour), standard (5 per cent; dashed contour) and pessimistic (10 per cent; dotted contour) allowances. The marginalized
1σ confidence intervals on wa and wp are used to calculate the FoM. The figure confirms that wa and wp are not strongly correlated, as
assumed in the definition of the FoM (Section 2).

(Rapetti et al. 2005; Clarkson et al. 2007).14 For their fore-
casts, the DETF include Planck priors in their Fisher ma-
trix analysis, approximating the role of future CMB con-
straints as well as the degeneracies between the dark energy
parameters and Ωk. Here, we account fully for the degenera-
cies between parameters, and the complementarity of the
data sets.

Given the vector, ǫ of CMB-related parameters, we sam-
ple the exponential of the following mean logarithmic likeli-
hood (Lewis 2005; Lewis et al. 2006)

< ln P (ǫ|ǫ0) >= −1

2
[Tr(Cl(ǫ0)Cl(ǫ)

−1) + ln |Cl(ǫ)|] , (22)

where ǫ0 is the vector formed by the corresponding fidu-
cial values of Table 2. Note that where the posterior is non-
Gaussian, the marginalized constraints on individual param-
eters need not peak exactly at the fiducial values, although
for all cases considered here the differences are very small.

4.5 Dark energy clustering

For a dark energy model with a constant equation of state,
w, Weller & Lewis (2003) and Bean & Dore (2004) showed
that dark energy clustering can have a non-negligible im-
pact on the constraints, driven primarily by the effect of

14 Allen et al. (2004, 2007) and Rapetti et al. (2005) showed
that the combination of fgas plus CMB data allows one to drop
both the assumption of flatness and the priors on Ωbh2 and h that
would otherwise be required for the fgas analysis. The fgas+CMB
data combination also alleviates other important parameter de-
generacies e.g. between Ωbh2, ns and τ .

such perturbations on the Integrated Sachs-Wolfe (ISW) ef-
fect. Spergel et al. (2006) showed that accounting for dark
energy clustering has a large effect on current dark en-
ergy constraints derived from CMB data alone. Since, for
constant−w models, combining the CMB data with e.g.
distance measurements from type Ia supernovae or X-ray
galaxy clusters leads to tight constraints on w and a re-
sult consistent with a cosmological constant (w = −1, for
which no dark energy clustering occurs), the importance of
accounting for dark energy perturbations is reduced (Weller
& Lewis 2003; Rapetti et al. 2005; Spergel et al. 2006). How-
ever, when one considers more general models in which w
evolves, Rapetti et al. (2005) showed that even with the best
current data combinations, accounting for the effects of dark
energy perturbations is important: the constraints on w(a)
increase by a factor of ∼ 2 with respect to the case where
dark energy clustering is (wrongly) ignored.

For our analysis, we assume that dark energy is an im-
perfect fluid where dissipative processes generate entropy
perturbations. As suggested by quintessence scenarios, we
assume a constant, general (non-adiabatic) sound speed
ĉ2
s = 1 in the comoving frame of the fluid (denoted by the

circumflexˆ). This is the only frame for which the general
sound speed is gauge invariant (Bean & Dore 2004). Follow-
ing Weller & Lewis (2003) and Bean & Dore (2004), Rapetti
et al. (2005) extended the dark energy perturbation equa-
tions to account for an evolving dark energy equation of
state, w(a). As in Rapetti et al. (2005) we calculate the
density, δ, and velocity, v, perturbation equations (Ma &
Bertschinger 1995) in the synchronous gauge

δ̇ = −3H(ĉ2
s − w)δ̂ − (1 + w)(kv + 3Ȧ) + E(ẇ) (23)
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Table 4. The 1σ uncertainties on the dark energy parameters and FoM. Systematic allowances of 2 per cent (optimistic), 5 per cent
(standard) or 10 per cent (pessimistic) have been used. Results are presented for the default model and for six other cases, described in
the text.

Run Dark energy parameters FoM ∆FoM/FoM
Allowances Model σ̂(w0) σ̂(Ωde) σ̂(wp) σ̂(wa) [σ̂(wp) × σ̂(wa)]−1 (percentage)

2% Default 0.100 0.009 0.044 0.43 52.4 –

2% DE clustering 0.109 0.009 0.044 0.48 46.8 -10.7%

2% CMB conservative 0.108 0.009 0.045 0.49 44.6 -14.8%

2% Quadratic 0.116 0.009 0.047 0.50 43.3 -17.4%

2% 250-sample 0.110 0.009 0.047 0.47 45.5 -13.1%

2% Double γ 0.103 0.012 0.049 0.45 44.6 -14.9%

2% Adding XSZ 0.097 0.009 0.043 0.43 54.6 +4.2%

5% Default 0.108 0.015 0.052 0.51 37.4 –

5% DE clustering 0.119 0.015 0.051 0.59 33.4 -10.7%

5% CMB conservative 0.115 0.016 0.053 0.58 32.6 -12.8%

5% Quadratic 0.126 0.014 0.069 0.51 28.7 -23.3%

5% 250-sample 0.119 0.016 0.057 0.55 31.6 -15.4%

5% Double γ 0.108 0.017 0.054 0.51 36.5 -2.3%

5% Adding XSZ 0.102 0.014 0.050 0.49 41.2 +10.2%

10% Default 0.110 0.023 0.058 0.53 32.6 –

10% DE clustering 0.132 0.022 0.054 0.66 27.9 -14.4%

10% CMB conservative 0.118 0.026 0.063 0.60 26.6 -18.4%

10% Quadratic 0.141 0.023 0.102 0.55 17.9 -45.1%

10% 250-sample 0.119 0.024 0.062 0.56 29.0 -11.3%

10% Double γ 0.110 0.024 0.059 0.53 31.8 -2.5%

10% Adding XSZ 0.106 0.020 0.055 0.52 34.8 +6.5%

v̇ = −H(1 − 3ĉ2
s )v +

kĉ2
s δ

1 + w
, (24)

where both derivatives, denoted by dots, and the Hubble pa-
rameter, H, are with respect to conformal time. A = δa/a
is the metric perturbation and δ̂ is the density perturba-
tion in the comoving frame of the dark energy fluid. The
density perturbation, δ̂, can be recast into the CDM co-
moving frame density and velocity perturbations, δ and
v, using the relation given by Kodama & Sasaki (1984),
δ̂ = δ+3H(1+w)v/k. Using this relation in equation (23), we
recover the perturbation equations of Weller & Lewis (2003);
Bean & Dore (2004) except that here w depends on the scale
factor a and introduces a new source term, E(ẇ) = 3Hẇv/k,
in the density perturbation equation. Note that this term de-
pends on the derivative of the equation of state, ẇ. Equation
(24) does not have a new term.

As discussed by Vikman (2005); Caldwell & Doran
(2005) a single classical scalar field cannot evolve from a
quintessence-like, w > −1, to phantom-like, w < −1, be-
havior. However, Onemli & Woodard (2002, 2004) proposed
a single scalar field model where a super-accelerated phase
(w < −1) of the cosmic expansion can be achieved via quan-

tum effects. Later, Kahya & Onemli (2006) showed that this
model is stable. Alternatively, Feng et al. (2005); Guo et al.
(2005); Hu (2005); Zhao et al. (2005) suggested the so-called
quintom model: in this model, the effective equation of state
of two combined scalar fields, one with w > −1 and the other
with w < −1, can cross the cosmological-constant bound-
ary, w = −1, as it evolves in time. Other models that allow
w(a) to cross this boundary have also been proposed. How-
ever, for practical purposes, using an effective, evolving dark
energy equation of state produces a well-known divergence
in equation (24) when w(a) = −1. This divergence can be
avoided (Huey 2004; Caldwell & Doran 2005) by imposing
δ̇ = 0 and v̇ = 0 within the logarithmic singularity region,
w = −1 + |ǫ|, where ǫ is infinitesimally small. Inaccuracies
in this approximation have a negligible impact on the re-
sulting CMB power spectra (Rapetti et al. 2005; Xia et al.
2006, 2007).

In what follows, we present results for cases where dark
energy clustering is either accounted for or ignored in the
CMB analysis (Section 5.3). Dark energy clustering does
not have a significant impact on the fgas analysis.
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Figure 3. Posterior probability distributions for wa for the cases
described in Table 4: default scenario (black, solid line), with
dark energy clustering (blue, long dashed line), conservative CMB
data (red, dotted line), including quadratic evolution allowances
(green, long dashed line), using the 250-cluster sample with 3.5
per cent measurement errors (magenta, dot-dashed line), doubling
the systematic allowance on γ (yellow, long-short dashed) and
adding the XSZ experiment (cyan, long dot-dashed line). The
(optimistic) 2 per cent systematic allowances are used in every
case.

5 RESULTS

As described in Section 2, to enable a direct comparison with
the predicted dark energy constraints for other planned ex-
periments, we parameterize our results in terms of the DETF
FoM. We present results for a fiducial fgas+CMB data set,
incorporating the statistical uncertainties and allowances de-
scribed above, but with zero scatter about the fiducial curve.
The absence of scatter ensures that the peaks of the poste-
rior probability distributions occur at the expected values.
The use of a zero-scatter realization does not affect the FoM.
We have explicitly confirmed this by comparing the FoM for
the fiducial realization to a series of simulations in which
scatter about the fiducial curve, at the appropriate level for
the statistical measurement errors, was included.

5.1 Constraints on the FoM

In the first case, we determine constraints for a ‘default’
analysis: this involves fgas data for 500 clusters measured
to 5 per cent accuracy and CMB data with negligible fore-
ground contamination. We ignore the effects of dark energy
clustering (as do the DETF) and allow linear evolution in
b(z) and s(z). No follow-up SZ data are included.

The constraints from the default analysis are shown in
Figures 2, 4, and 5. The left panel of Figure 2 shows the well-
known degeneracy between w0 and wa. The right panel of
that figure shows the constraints in the wa −wp plane. The
results from the MCMC analysis confirm that wp and wa

are approximately uncorrelated, which facilitates the simple

calculation of the FoM=[σ̂(wp) × σ̂(wa)]
−1 a described in

Section 2.
Table 4 summarizes the results on w0, wa, wp, Ωde and

the FoM for the default analysis and 2, 5 or 10 per cent sys-
tematic allowances. Also included in the table are results for
five further slightly modified, interesting scenarios: for the
case where we include dark energy clustering (Section 4.5);
for the case where we use the more conservative CMB data
set (Section 3.4); for the case where we allow quadratic red-
shift evolution in the gas depletion factor, βb, and the stellar
fraction, βs (Section 4.2.2); for the case we use the 250-
cluster fgas data set with 3.5 per cent measurement errors;
for the case where we double the systematic allowance on
γ; and for the case where we include extra information from
the XSZ experiment (Section 4.3). For each of these scenar-
ios, we list results for 2 per cent (optimistic), 5 per cent
(standard) and 10 per cent (pessimistic) allowances.

Interestingly, we see that constraints on dark energy are
similar for most cases of interest (this is also shown graphi-
cally in Figure 3). With the optimistic, 2 per cent systematic
allowances, a FOM in the range 43− 55 is obtained. For the
standard, 5 per cent systematic tolerances, the FOM lies
in the range 29 − 41. Even with the pessimistic 10 per cent
systematic allowances, we obtain a FoM in the range 18−35.

The final column of Table 4 summarizes the percentage
differences in the FoM with respect to the default model for
each case of interest. We see that the greatest impact on
the FoM occurs by allowing quadratic evolution in the sys-
tematic allowances; in this case we observe a ∼ 20 per cent
reduction in the FoM with respect to the default model for
the optimistic and standard allowances, and ∼ 45 per cent
for the pessimistic, 10 per cent allowances. Using the stan-
dard, 5 per cent allowances, we see that accounting for dark
energy clustering has only a small effect (∼ 10 per cent); the
inclusion of the XSZ data only leads to a modest improve-
ment in the FoM (∼ 10 per cent). Doubling the uncertainty
on γ does not have a major effect on the results.

5.2 Comparison with DETF results

Comparing our results on the FoM with those reported by
the DETF (page 77 of the DETF report; Albrecht et al.
2006), we find that the fgas experiment 15 has similar dark
energy constraining power to other leading, future (DETF
stage IV) ground or space-based experiments.

Figure 4 shows the 95 per cent confidence constraints
in the Ωde − wp plane for the default model and optimistic
(2 per cent), standard (5 per cent) and pessimistic (10 per
cent) allowances. The size of this confidence region is propor-
tional to the FoM. The DETF (Albrecht et al. 2006) present
similar figures, with the same axis scaling, for the other, fu-
ture dark energy experiments. The comparable constraining
power and complementary nature of the fgas and other ex-
periments can (at least in part) be seen by comparing these
figures. In particular, the power of the fgas(+Planck) exper-
iment in constraining Ωde is clearly evident.

15 The fgas experiment described here would fall under the cat-
egory of stage IV experiments, as defined by the DETF.
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Figure 4. The 95 per cent confidence contours in the Ωde − wp

plane for the default dark energy model and optimistic (2 per
cent; blue, solid contour), standard (5 per cent; dashed contour)
and pessimistic (10 per cent; dotted contour) allowances. The axes
are scaled to cover the same region as the figures presented by the
DETF.

5.3 The evolution of dark energy

Figure 5 shows the evolution of the dark energy equation
of state as a function of scale factor, w(a). The pivot scale
factor, ap, is the scale factor at which we obtain the tight-
est constraint on w [that measurement being σ(wp)]. As
shown in Figure 5, for the fgas experiment we measure a
pivot scale factor of ap ∼ 0.8, which corresponds to a pivot
redshift zp ∼ 0.25. Interestingly, these values lie between
the pivot scale factors/redshifts reported by the DETF for
SNIa experiments (ap ∼ 0.93/zp ∼ 0.075) and galaxy clus-
ter number counts, weak lensing and BAO experiments
(ap ∼ 0.65/zp ∼ 0.54). Pinning down the evolution of w
over a wide redshift range will be a crucial for unraveling
the nature of dark energy. Our results argue that a combi-
nation of fgas, CMB, BAO, SNIa, weak lensing and galaxy
cluster number count experiments is likely to prove powerful
in this regard.

5.4 The CMB data and early dark energy

The acoustic scale at last scattering, la, is tightly constrained
by CMB data (Page et al. 2003) and is highly sensitive to the
amount of dark energy at recombination. la changes drasti-
cally if the early dark energy density exceeds the matter
plus radiation density (Wright 2007). CMB constraints on
la provide a strong constraint on dark energy parameters
at early times (Doran & Lilley 2002), defining a well-known
boundary in the w0−wa plane (Rapetti et al. 2005; Upadhye
et al. 2005; Wright 2007).16 At late times, for our experi-

16 The presence of the boundary in the w0 − wa plane (Rapetti
et al. 2005; Upadhye et al. 2005; Wright 2007) make it important

Figure 5. The 1σ confidence constraints on the evolution of the
dark energy equation of state as a function of scale factor w(a).
Results are shown for the default model (Table 1) using the opti-
mistic (2 per cent; shaded, purple region), standard (5 per cent;
dashed line) and pessimistic (10 per cent; dotted line) systematic
allowances. The tightest constraints on w(a) occur at the pivot
scale factor, ap ∼ 0.8 (zp ∼ 0.25).

ment, dark energy is constrained primarily by the fgas data,
with a small contribution from the Integrated Sachs-Wolfe
(ISW) effect in the CMB.

A simple exercise provides further insight into how the
CMB data help in constraining dark energy. For this, we
re-examine the constraints in the w0 − wa plane obtained
from the fgas+CMB data; the 68 and 95 per cent confi-
dence contours for the default model with 5 per cent al-
lowances are shown (dashed curves) in Figure 6. The com-
bination of fgas+CMB data provides tight constraints on
Ωbh2, Ωdmh2 and la (driven primarily by the CMB data),
and on h (driven by the combination of both data sets). Us-
ing these constraints as priors, we examine the constraints
in the w0−wa plane that can be obtained from the fgas data
alone: the results are shown as the red, solid curves in Fig-
ure 6. We see that the priors encompass some of the CMB
constraining power, in particular in defining the character-
istic upper boundary in the w0 − wa plane. However, they
do not contain the full information on e.g. the covariance
of Ωbh2, Ωdmh2 and h (Rapetti et al. 2005; Wright 2007)
which is also important in constraining dark energy at later
times.

We note that the prior on la provides a tight constraint
on the curvature. The blue dotted curves in Figure 6 show
the constraints obtained from the fgas data alone, using only
the priors on Ωbh2 and h and assuming flatness.

to consider, as is the case here, simulations that account fully
for measurement uncertainties but which do not scatter about
the fiducial curve. Otherwise, scatter towards the CMB bound-
ary would increase the FoM and scatter away would decrease it,
complicating the interpretation of results.
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Figure 6. The 68 and 95 per cent confidence contours in the w0−

wa plane determined from the fgas+CMB data (black, dashed
contours) using the default dark energy model and 5 per cent
systematic allowances. The solid red lines show the constraints
obtained from the fgas data alone, using priors on Ωbh2, Ωdmh2,
la and h, as described in the text (Section 5.4). The blue, dotted
lines show the constraints from the fgas alone using priors on
Ωbh2 and h and assuming flatness. The figure shows how the
CMB data contribute in constraining dark energy, especially at
early times.

5.5 The importance of the XSZ experiment

The XSZ technique provides a complementary and indepen-
dent experiment to measure dark energy. Although the in-
clusion of constraints from the XSZ experiment leads to only
modest formal improvements in the FoM with respect to
the results for the fgas+CMB data (Table 4; as can be ex-
pected given the relatively weak dependence on dark energy
in equation 21), it is important to note that the XSZ ex-
periment relies on different assumptions and has different
systematic uncertainties. In particular, the XSZ experiment
is independent of assumptions regarding hydrostatic equi-
librium, the depletion factor, and the stellar mass fraction.
Thus, the combination of data from the fgas and XSZ tech-
niques can help to ensure robustness in the results. In prin-
ciple, the inclusion of XSZ data can also allow some of the
priors in the fgas experiment to be relaxed.

6 CONCLUSIONS

We have examined the ability of a future X-ray observatory,
with capabilities similar to those planned for Constellation-
X, to constrain dark energy via the fgas experiment. We find
that fgas measurements for a sample of 500 hot (kT2500 &

5keV), X-ray bright, dynamically relaxed clusters, with a
precision of ∼ 5 per cent, can be used to constrain dark
energy with a FoM of 20−50. These constraints are compa-
rable to those predicted by the DETF (Albrecht et al. 2006)

for other leading, planned (DETF Stage IV) dark energy
experiments.

As discussed in the text, a future fgas experiment will
need to be preceded by a large X-ray or SZ cluster survey
that will find hot, X-ray luminous clusters out to high red-
shifts. A survey such as that planned with the Spectrum-
RG/eROSITA mission should find several thousand such
clusters. Short ‘snapshot’ follow-up observations of the clus-
ters with a new, large X-ray observatory should be able to
identify a sample of ∼ 500 suitable systems for fgas work.
Attaining a precision of ∼ 5 per cent with individual fgas

measurements should be straightforward for an observatory
with characteristics similar to Constellation-X, requiring ex-
posure times of ∼ 20ks. We note that the population of
galaxy clusters in the redshift, temperature and X-ray lu-
minosity range of interest has already been partially probed
by the MACS survey (Ebeling et al. 2001); Chandra obser-
vations of MACS clusters are used extensively in current
fgas studies (Allen et al. 2004; LaRoque et al. 2006; Allen
et al. 2007). The low-level of X-ray flux contamination from
point sources observed in MACS clusters also alleviates the
requirements on the instrumental PSF for dark energy work
via the fgas method.

In determining the predicted dark energy constraints,
we have employed the same MCMC method used to analyze
current data. The MCMC method encapsulates all of the
relevant degeneracies between parameters and allows one
to easily and efficiently incorporate priors and allowances
in the analysis. We have included an array of such system-
atic allowances, with tolerances ranging from optimistic to
pessimistic. Our technique differs from the DETF (Albrecht
et al. 2006), who use a simpler Fisher matrix approach in
the prediction of dark energy constraints. Despite these dif-
ferences, we have endeavored to make our calculations of the
FoM (Section 2) as comparable as possible.

Benchmarking our results against those of the DETF for
other, future ‘Stage IV’ dark energy experiments i.e. large,
long-term missions, we find that the fgas experiment should
provide a comparable FoM to future ground-based SNIa
(FoM=8 − 22), space-based SNIa (FoM=19 − 27), ground-
based BAO (FoM=5−55), space-based BAO (FoM=20−42)
and space-based cluster counting (FoM=6−39) experiments.
Formally, the predicted FoM for the fgas experiment is com-
parable to ‘pessimistic’ scenarios for weak lensing experi-
ments discussed by Albrecht et al. (2006), although the value
falls short of the most optimistic DETF weak lensing pre-
dictions. The tight constraints on Ωm and Ωde for the fgas

experiment will be of importance when used in combina-
tion with other techniques. Interestingly, the ‘pivot point’
for the fgas experiment lies between those of the SNIa and
BAO/weak lensing/cluster number count experiments, of-
fering excellent redshift coverage in attempts to pin down
the evolution of dark energy.

We conclude that the fgas experiment offers a powerful
approach for dark energy work, which should be competitive
with and complementary to the best other planned dark
energy experiments.
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