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Adiabatic rotation, quantum search, and preparation of superposition states

M. Stewart Siu*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA

We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum
states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic
evolution. In ways that complement recent results, we show how to efficiently prepare three types of states:
Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state
used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum
search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamil-
tonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time.
Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.

I. INTRODUCTION

The presence of superpositions of classical states lies at
the heart of many nonclassical behaviors of quantum sys-
tems. It is therefore not surprising that uniform superposition
states serve as powerful resources for quantum information
processing. The main result in this paper is that there is a
conceptually simple way of preparing a class of linear super-
positions by adiabatically rotating a driving Hamiltonian.
Seen another way, it is also a method for finding the ground
states of certain Hamiltonians. While the applications we dis-
cuss are all related to quantum computing, the idea is rel-
evant to preparation of quantum states in general.

Adiabatic evolution studied in quantum computing often
takes the form of a linear interpolation H�s�= �1−s�Hinitial

+sHfinal whether it is for problem solving �1,2� or state
preparation �3–5�. In this paper we consider a different para-
digm that is inspired by observations in �6� and follows a
“rotation” instead. A time-dependent similarity transform on
the entire Hamiltonian, as pointed out in �6�, often requires
highly nonlocal interactions and thus seems to have few ap-
plications. One may however adopt a different perspective
and consider this time-dependent transformation as a driving
term in the presence of a well-gapped and time-independent
Hamiltonian. What we will show in Sec. II is that some of
the desirable properties associated with the similarity trans-
form remains in this more general setting.

In Sec. III we outline how to use this idea to prepare
states with interesting physical properties. The first example
is the ground states of Kitaev’s toric code �7�, which have
been of much interest because of their natural fault tolerance
as memory and exhibition of topological order �8�. In �3� it is
shown that a ground state of the toric code Hamiltonian can
be prepared adiabatically through a linear interpolation in
time O�� n� where n is the number of sites. Both this method
and the original preparation-by-measurement method �9� are
optimal since they saturate the Lieb-Robinson bound �10�,
which places a theoretical limit on the efficiency of any
preparation method for topologically ordered states. How-

ever it requires duality mapping to an Ising model, which
means the same result cannot be easily reproduced for a dif-
ferent system with topological order. We will show, without
requiring extra types of interactions, that there is an elemen-
tary, circuitlike adiabatic evolution path that also prepares
the toric code state optimally. The same idea would not only
be applicable to other topologically ordered states, but also,
for instance the cluster state �13� used in measurement-based
computing. Recently it was shown in �4� that the a state
similar to the cluster state in computation power can be pre-
pared efficiently via adiabatic linear interpolation. Our
method shows how the cluster state itself can be prepared
adiabatically and efficiently.

In Sec. IV, we move on to a more complicated example.
In �6� it is noted that the adiabatic linear interpolation corre-
sponding to a quantum circuit used by �5� can be thought of
as a special case in a larger family of paths. It may still
appear, however, that fairly elaborate gap analysis �5,11�
would be required to check the efficiency of any path that
generates the history state. This turns out to be not the case.
We will describe two paths that generate the history state
efficiently, and apart from being amenable to gap analysis,
one only requires time-dependent interactions on a few qu-
bits.

In Sec. V, we turn our attention to problem solving. Adia-
batic quantum computing was originally proposed not for
state preparation but to solve optimization �especially NP-
complete� problems. While there is still controversy on the
value of this approach, it is well-known that the closely re-
lated adiabatic quantum search method �2� yields an optimal
result, in the sense that it is as efficient as Grover’s algo-
rithm. Here we present an adiabatic rotation version of quan-
tum search. Like the linear interpolation version, it is also
optimal. The difference is that in our case, the spectral gap
between the ground state and the first excited state is strictly
nondecreasing, and this feature can be extended to other op-
timization problems. Clearly this would make it easier for us
to determine whether a given problem can be solved effi-
ciently. Our approach, however, has an additional difficulty
compared to linear interpolation. While exact examples of
linear interpolation algorithms often assume nonlocal inter-
actions �as �2� does�, one can almost always formulate a
linear interpolation algorithm with local interactions. The
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situation is different with adiabatic rotation, because it re-
quires separation of the initial state from the computational
states. We will conclude with a brief discussion of what this
means and some suggestions for future direction.

II. THE BASIC FORMULATION

In the simplest case, our Hamiltonian consists of a time-
independent piece and a driving term under time-dependent
similarity transform,

H��� = H0 + Um���hmU���m
† , �1�

where � is a time-dependent rotation parameter and H0 is a
Hamiltonian with two degenerate ground states of zero en-
ergy. Suppose one ground state is ��a�=�i=1

n ai ��i� and an-
other is ��b�= ��m� where 	��1�¯ ��n� , ��m�
 spans the effec-
tive Hilbert space of interest. The �-dependent term acts on a
two-dimensional space spanned by 	��m� , �� j�
 for some 1
� j�n. That is, we define hm=K ��m���m� for some positive
constant K and U���is a rotation in 	��m� , �� j�
,

Um��� = eiJ� = � cos � sin �

− sin � cos �
 ,

UmhmUm
† = K� cos2 � − sin � cos �

− sin � cos � sin2 �
 . �2�

Here J denotes the generator of rotation. One can check that

�0� =
1

�1 + aj
2 tan2 �

�aj tan ���m� + �
i=1

n

ai��i� , �3�

is a ground state of H��� with zero energy for any �. We will
consider � between 0 and �

2 .
In adiabatic evolution, the transition rate from a ground

state �0� to an excited state �k� is well known to be bounded
by ��k � dH

dt �0� / �Ek−E0�2�2 �12�. To keep this quantity constant
as we vary �, we write dH

dt = dH
d�

d�
dt and it follows that we need

d�

dt
�

�Ek��� − E0����2

��k�
dH

d�
�0�� . �4�

Our model offers at least two advantages if we wish to adia-
batically manipulate a state of the form �3�.

Claim 1. Let gk���= �Ek���−E0����. For 0���
�
2 , gk����

�0.
Proof. If �k���� is an eigenstate of H��� with energy Ek���,

by first-order perturbation theory,

dEk���
d�

� �k����
dH���

d�
�k���� ,

where
dH���

d� can be explicitly evaluated as

dH���
d�

= eiJ��iJ,H�e−iJ� = �− 2 cos � sin � sin2 � − cos2 �

sin2 � − cos2 � 2 cos � sin �
 .

�5�

One readily checks that for 0���
�
2 the expectation value

of this operator vanishes if and only if the ��m� and �� j�
components of the state satisfies the tan � ratio. If an eigen-
state of H��� satisfies this, it would have to be the ground
state which stays at zero. This means the gap only shifts in
one direction. �

Claim 2. ��k � dH
d� �0� � �O��gk����.

Proof. The idea of the proof is that dH
d� �0� couples to a

state with high energy, and this limits its coupling into low-
lying states during the evolution. Using �5�, we obtain

dH

d�
�0� =

aj

�cos2 � + aj
2 sin2 �

�p�,

�p� � sin ��� j� − cos ���m� .

The energy of an excited state is gk���= ��p �k�2K+ �k �H0 �k�,
from which we see that ��p �k � ��gk��� /K. �

The first fact enables us to estimate efficiency by looking
only at the end points. The second allows a higher speed for
d� /dt when the gap is small. A more detailed estimate yields

��k�
dH

d�
�0��2

� A��1 + r2�cmk
2 g1 − g1 + gk���� ,

A �
aj

2

K�cos2 � + aj
2 sin2 ��

,

r �
�
i=1

n

ai���i�0�

���m�0�
, cmk � ���m�k� , �6�

where g1 is the first excited state energy of H0. We see that
the quantities A and cmk can further suppress the transition
rate as they may contain factors inversely proportional to the
size of the system.

To see why this is useful, consider the case ai=
1
�n

for i
=1, . . . ,n and � running from 0 to �

4 adiabatically. It is clear
that we can turn the state 1

�n
���1�+ ¯ + ��n�� to 1

�n+1
���1�

+ ¯ + ��n�+ ��m��, thus adding an element to the uniform su-
perposition. Reverse the process and we will delete the ele-
ment from the superposition. Clearly, repeated applications
of such processes with different driving terms allow us to
prepare a large class of states. Generally speaking, if we wish
to create a particular superposition of certain basis states, we
can look at the Hamiltonian interactions we have control
over that act either diagonally or off-diagonally on the basis.
This set of interactions can then be thought of as a generating
set for group elements that we want to eventually appear in
the superposition. In the next section we will consider some
examples to illustrate this idea.



III. THE TORIC CODE AND THE CLUSTER STATE

The ground state of the toric code Hamiltonian �7� can be
generated efficiently by adiabatic linear interpolation �3�.
The minimal gap in the evolution is estimated to be of order
O�n−1/2�. Here we show a different path where the gap re-
mains constant but the evolution time is also O��n�, thus also
saturating the Lieb-Robinson bound �10�. Following the ba-
sis choice of �3�, the Hamiltonian is

H = − �
star

Z � Z � Z � Z − �
plaquette

X � X � X � X , �7�

where X and Z are Pauli matrices and the spin lattice is as
shown in Fig. 1�a�. The spins live on the links �as this is a Z2
lattice gauge theory�; a “plaquette” refers to the four spins
around a square while a “star” means the four spins around a
vertex. We will work within the ground states of the star
terms so we can effectively ignore them. Consider the spins
	1,2 ,3 ,4
 in Fig. 1�a� and a �-dependent Hamiltonian

Hp��� = 1 + �sin2 � − cos2 ���Z1 + Z2 + Z3 + Z4�/4

− 2 sin � cos �X1X2X3X4. �8�

We can check that within the subspace of �0000� and �1111�
this has exactly the form of the driving term in �2� and that it
takes �0000� to 1

�2
��0000�+ �1111�� as � goes from 0 to �

4 .
Other states in the Hilbert space, regardless of energy, do not
affect the result because they are decoupled from the sub-
space, so the effective gap is 2 throughout the process. Since
the ground state of the Hamiltonian �7� is known to be the
superposition of all “closed strings” �plaquette excitations�,
the goal is to do the same operation of rotating the Z opera-
tors into XXXX for every plaquette. Consider next the
plaquette 	4,5 ,6 ,7
 after we have evolved 	1,2 ,3 ,4
. The
Hamiltonian we use would have to be a little different since
“4” is already entangled,

Hp���� = 1 + �sin2 � − cos2 ���Z5 + Z6 + Z7�/3

− 2 sin � cos �X4X5X6X7. �9�

It is easy to verify that this Hamiltonian takes 1
�2

��0000�
+ �1111�� �000� to 1

2 ��0000000�+ �0001111�+ �1111000�
+ �1110111�� as � goes from 0 to �

4 . Generally, we can add a
plaquette excitation to the superposition if at least one out of
the four spins is unentangled. Bearing this in mind, we can

perform these adiabatic rotations on plaquettes in parallel
�coefficients in the Hamiltonian can be also adjusted to give
a more translationally symmetrical appearance�. For ex-
ample, on a square lattice, we can operate on alternate rows
of plaquettes in parallel. Dividing each row into odd and
even plaquettes, this can be accomplished in two time steps.
Then we operate on the remaining rows sequentially—to
make sure we have an unentangled spin for every
operation—which takes L steps if the lattice has n=L�L
spins. The genus of the surface does not really affect this
algorithm, except we must notice that because the same loop
can be viewed from two sides in a torus, there will be some
plaquette operators that do not lead to new states in the su-
perposition. As for other topologically inequivalent ground
states, they can be generated in this manner by reversing the
Z operators around an incontractible loop at the beginning.
Compared to the linear interpolation, our evolution path is
certainly more complicated. But it provides an interesting
perspective, as it does not rely on duality mapping to an
Ising model. In principle the technique we use can be gener-
alized to prepare any string-net condensed state �8� because
they are uniform superpositions of group elements generated
by local string nets.

The same trick also works for the cluster state �13�.
The cluster state used in measurement-based quantum com-
puting, if set on a square lattice, is the superposition
1
2n �zi=	0,1
�−1�r �z1¯zn� where r is the number of adjacent

“1” ’s in the configuration 	z1¯ .zn
. It is stabilized by the
operators �sXs�� s�Zs�� where s� denotes sites adjacent to site
s and the tensor product is over all four adjacent sites. Since
each term takes half the states in the superposition to the
other half, they play a role similar to the plaquette operators
in the toric code. We can set the Hamiltonian for the sites
	1,2 ,3 ,5 ,6
 in Fig. 1�b� to be something similar to �8�,

Hc��� = 1 + �sin2 � − cos2 ��Z3 − 2 sin � cos �X3Z1Z2Z5Z6

�10�

and take � from 0 to �
4 . The same operation can be repeated

on sites 	3,4 ,6 ,7 ,8
, for instance. But since we always have
an unentangled spin every time we turn on a stabilizer term,
unlike the toric code case there is no need to operate sequen-
tially. Therefore we can operate on all the odd sites in the
first time step and all the even site in the second time step,
completing the algorithm in O�1� time.

Note that nothing prevents us from applying perturbation
gadgets �14� on the stabilizers and turning our Hamiltonian
into a nearest-neighbor one. Thus this is comparable with the
linear interpolation result of �4�, with the difference that we
are preparing the cluster state rather than a state that can be
used as one.

IV. THE HISTORY STATE

In all our examples so far the effective energy gap re-
mains constant, so essentially we are implementing quantum
circuits in the sense of �6�. Now let us consider an example
where the gap shrinks as the system grows. In �5�, it is shown
that the history of a quantum circuit—a uniform superposi-

FIG. 1. �a� Interactions that appear in the toric code Hamil-
tonian. �b� Interactions in the cluster state Hamiltonian, following
the same notation.



tion of intermediate states, appropriately made orthogonal—
can be generated via an adiabatic linear interpolation. Up to
small corrections unimportant for our purpose, the initial and
final Hamiltonians are

Hi = �
t=1

L

��t���t� ,

Hf =
1

2 �
t=0

L−1

��t���t� + ��t+1���t+1� − ��t���t+1� − ��t+1���t� ,

�11�

where ��t�’s represent the orthogonal intermediate states at
time steps labeled by t. This adiabatic evolution takes the
starting state ��0� to the history state 1

�L+1
�t=0

L ��t�. An obvi-
ous alternative to linear interpolation from Hi to Hf would be
to apply adiabatic rotation step by step and rotate each term
in Hi to a corresponding term in Hf,

Ht��t� = sin2 �t��t���t� + cos2 �t��t+1���t+1�

− sin �t cos �t���t���t+1� + ��t+1���t�� , �12�

where as usual, �t goes from 0 to �
4 at each time step. Figure

2 shows the energy gap as a function of time for L=6 and
compares this stepwise method to the linear interpolation.
We can see that the minimal gap occurs at the very end. In
�5� sophisticated techniques were used to estimate the scal-
ing of the minimal gap as a function of L. It is much easier in
our case, even compared to the simpler analysis of �11�. Ob-
serve that the final Hamiltonian is the discrete version of a
kinetic energy term for a free particle in a box of size L. For
large L, its spectrum simply consists of standing waves with
energy proportional to the square of momentum, which goes
as the inverse of wavelength. Thus we immediately conclude

that the gap is O�L−2�. Now consider the speed of evolution
as measured by d� /dt for fixed error rate. Naively, it would
scale as the square of the gap, i.e., O�L−4�. But we can use
the bound in Eq. �6� to get a better result. At the minimal
gap, g1�O�L−2� and A�O�L−1�. Since the excited states are
standing waves, it is easy to see that cmk

2 �O�L−1�. Alto-
gether, we obtain d� /dt�O�L−2�.

Actually there is a more elegant way of using adiabatic
rotation in this example. So far we have been taking � from
0 to �

4 . If we instead consider � evolving from �
2 to �

4 , we
would take a single basis state to a uniform superposition.
This suggests that we try

H��� = cos2 ���0���0� + sin2 ���1���1� − sin � cos ����0���1�

+ ��1���0�� +
1

2 �
t=1

L−1

��t���t� + ��t+1���t+1�

− ��t���t+1� − ��t+1���t� . �13�

Here ��0� plays the role of ��m� in Eq. �3�; by rotating � from
�
2 to �

4 , we achieve the desired evolution, remarkably, leaving
most terms constant. The only thing we need to check is the
energy gap at the beginning, where the Hamiltonian is a
kinetic energy term plus a delta function potential of two
energy units at one end. This is still easy to analyze com-
pared to the linear interpolation. For sufficiently large L, the
constant potential just amounts to a zero boundary condition
for the low-lying wave functions. The lowest energy state in
the “box” is a standing wave with wavelength 4L, so the gap
is also O�L−2�. If we wish to implement the mirror evolution
described in �6� to get from the history state to ��L�, a similar
rotation can be used on the other end of the “box.”

V. QUANTUM SEARCH AND OPTIMIZATION

The preparation method above generates the ground state
of a Hamiltonian; as such it is suggestive of a problem-
solving algorithm. Indeed, let us consider an example that
can be analyzed exactly. In �2� an adiabatic search algorithm
was presented using linear interpolation to an oraclelike
problem Hamiltonian. It turns out that one can formulate an
alternative version using adiabatic rotation. The only extra
resource we need is a noncomputational state that the prob-
lem Hamiltonian annihilates �we may, for instance, add a
noncomputational state to each qubit to form a qutrit�. Call
this state �i� and our setup is the following:

H��� = �I − �m��m�� + sin2 ���0���0� + cos2 ��i��i�

− sin � cos ����0��i� + �i���0�� , �14�

where we have followed the notations of �2�: �m� is an un-
known solution state we want to obtain and ��0� is a known
state that has nonzero overlap with �m�. The identity operator
“I” only acts on the computational space and is zero on �i�.
Denote the overlap by a0���0 �m �i.e., a0= 1

�N
in �2��. Adia-

batically changing � from �
2 to 0 evolves the state �i� to �m�.

The energy gap g1���=1−sin ��1−a0
2,which at �= �

2 is
O�a0

2��O�N−1� if a0= 1
�N

. This appears different from the
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FIG. 2. �Color online� Comparison of energy gap between step-
wise adiabatic rotation to linear interpolation in the generation of
the history state with L=6. For the stepwise adiabatic rotation, the
gap never crosses the line corresponding to the final gap.



case in �2� where the minimal gap is O�N−1/2�. We must
however take into account ��k � dH

d� �0��. The first excited
state is proportional to a0 �m�+ �sin ��1−a0

2−1� ��0�
−cos ��1−a0

2 � i�; explicit calculation yields

��1�
dH

d�
�0�� � a0

�sin � − �1 − a0
2�

1 − sin ��1 − a0
2

� O�a0� . �15�

Now use Eq. �4� to set the rotation speed, d���g1
2 /a0�dt.

Integrating this from �= �
2 to �=0 and setting a0= 1

�N
, we

obtain the total evolution time T���N−�N−1�−1�O��N�
for large N. Quadratic speedup is achieved as promised.

In principle we may replace I− �m��m� in Eq. �14� by other
problem Hamiltonians to find other ground states. This
would work as long as the gap at �

2 is sufficiently large. But
if we want to solve NP-complete problems as in �1�, notice
that ��0���0� is generally nonlocal and does not respect the
bit structure �15�. Suppose we set �i�= �222¯ � by using
qutrits with an extra state �2� and assume �m�= �000¯ � with-
out loss of generality, it can be proved that no local Hamil-
tonian can have a unique ground state of the form

1
�1 + a0

2 tan2 �
��000 ¯ � + a0 tan ��222 ¯ ��

by arguments in �6�. Since locality is important to any real-
istic algorithm, we need a local version of adiabatic rotation
different from �1�–�3�. For example, if ��0�= �n � + � where n
is the number of qubits and �+ �= 1

�2
��0�+ �1��, we may want

to replace the driving term by �nU � + ��+�U† where U rotates
between �+ � and �2�. We may then expect the ground state to
contain a piece proportional to �n��+ �+tan � �2��. The ap-
pearance of an extra �3n−2n� states, however, can signifi-

cantly change the spectrum. More work would be required to
find a feasible local model.

VI. DISCUSSION

The issue of locality arises in the preceding section be-
cause our rotation method requires the initial state to be
separated from the computational states. The same require-
ment applies to the history state preparation in Sec. IV, but
there locality was preserved by use of clock qubits �which
ensures the orthgonality of the ��t�’—we refer the readers to
�5� for details�. This suggests that clever use of ancilla would
be important to the design of a local adiabatic rotation algo-
rithm. We should note that the form of the driving term �2� is
largely chosen for simplicity and can be generalized. The
underlying idea is that when we have an efficient way of
adiabatically evolving from state A to state B, we may com-
bine it with a time-independent “diffusion” Hamiltonian H0
to attain a more complicated state B�—a state that overlaps B
but we otherwise may not know how to get to. Such a per-
spective can be useful for algorithm design.

Results in this paper also raise another issue. In almost all
our examples, adiabatic rotations turn out to have the same
efficiency as the linear interpolations—not only up to the
same complexity class, but down to the order of polynomial.
One might wonder if there is some deep connection between
different adiabatic paths under the same set of Hamiltonian
interactions. If such connection exists, might it be possible to
prove the efficiency of a linear interpolation path by proving
the efficiency of a long-winded path that is easier to analyze?
At this point this is an entirely open question.
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