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Abstract: In recent work, we derived the long distance confining dynamics of certain QCD-

like gauge theories formulated on small S1 × R
3 based on symmetries, an index theorem

and abelian duality. Here, we give the microscopic derivation. The solution reveals a new

mechanism of confinement in QCD(adj) in the regime where we have control over both per-

turbative and nonperturbative aspects. In particular, consider SU(2) QCD(adj) theory with

1 ≤ nf ≤ 4 Majorana fermions, a theory which undergoes gauge symmetry breaking at small

S1. If the magnetic charge of the BPS monopole is normalized to unity, we show that con-

finement occurs due to condensation of objects with magnetic charge 2, not 1. Due to index

theorems, we know that such an object cannot be a two identical monopole configuration. Its

net topological charge must vanish, and hence it must be topologically indistinguishable from

the perturbative vacuum. We construct such objects, the magnetically charged, topologically

null molecules of a BPS monopole and KK antimonopole, which we refer as magnetic bions.

An immediate puzzle with this proposal is the apparent Coulomb repulsion between BPS-KK

pair. An attraction which overcomes the Coulomb repulsion between the two is induced by

2nf -fermion exchange. Bion condensation is also the mechanism of confinement in N = 1

SYM on the same four-manifold. The SU(N) generalization hints a possible hidden inte-

grability behind nonsupersymmetric QCD of affine Toda type, and allows us to analytically

compute the string tensions and thicknesses. We currently do not know the extension to R
4.
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1. Introduction

Probably, the most robust and important experimental and phenomenological observation

about SU(3) QCD is confinement, i.e., the absence of the free colored particles in isolation.

Numerical lattice simulations unambiguously establish confinement in pure Yang-Mills theory

and QCD. However, to date the analytical success had been limited. For reviews, see [1–3]

The QCD of Nature belongs to a subclass of asymptotically free and confining vector-

like(QCD-like) gauge theories with no elementary scalars. This is a sufficiently good reason

to warrant the study of the dynamics of such four dimensional QCD-like theories. In the last

two decades, most theoretical efforts is concentrated into the dynamics of supersymmetric

theories. It would be fair to say that despite many remarkable results obtained in such

theories, its benefit to the QCD-like theories is still in its infancy. There is a very good

reason for this. On R
4, there only exist one QCD-like supersymmetric theory, the pure

N = 1 SYM. All other supersymmetric theories have scalars, and hence non QCD-like by

definition. In regimes where such theories are solved or understood quantitatively, such as

mass deformation of N = 2 SYM down to N = 1 [4], the scalars never decouples from the

dynamics. If they are forced to decouple by tuning certain parameters, one usually looses the

theoretical control over the theory [5].

Our goal in this paper is more direct and motivated by the following question:
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Are there any asymptotically free and confining QCD-like theory in d = 4 dimen-

sions (with no special properties such as supersymmetry) which we can understand

its nonperturbative aspects exactly, and can derive the long distance (confining)

dynamics starting with microscopic theory? 1

On R
4, the answer seems to be out of reach currently. However, on locally four dimen-

sional settings, such as spatial S1 × R
3, the answer is yes. In particular, QCD with multiple

adjoint representation fermions on small S1×R
3, (S1×R

2,1 in Minkowski setting) [8] becomes

analytically tractable. Here, it is important that S1 is not a thermal circle. It is a spatial

circle along which fermions are endowed with periodic spin connection, and the resulting

QCD-like theory is a zero temperature field theory on a space with one compact dimension.

The benefits of considering this setup are, i) weak coupling, ii) unbroken (spatial) center

symmetry. The latter is a consequence of the absence of thermal fluctuations and the fact

that the quantum fluctuations favors the center symmetric vacuum.

In the small S1 (weak coupling) limit of SU(2) QCD(adj), the spatial Wilson line along

the S1 direction may be regarded as a compact adjoint Higgs field, and acquires a nontrivial

(center symmetry respecting) vacuum expectation value, U = Diag(eiπ/2, e−iπ/2), due to

radiatively induced Coleman-Weinberg potential. The photons and neutral fermions (Aµ, λ
I)

parallel to U remains massless to all orders in perturbation theory, and all the other modes

acquire masses and hence decouple from the infrared dynamics.

Nonperturbatively, there are topologically stable monopole configurations which are a

consequence of gauge symmetry breaking. Since the adjoint Higgs field is compact, other

than the BPS monopole, there is also a KK monopole. The magnetic and topological charges(∫
F,

∫
FF̃

)
of these monopoles are normalized as

BPS :(+1,+1
2 ), BPS : (−1,−1

2 ) KK :(−1,+1
2 ), KK : (+1,−1

2 ) (1.1)

where bar denotes antimonopoles.

In [8], we constructed the d = 3 dimensional long distance theory for QCD(adj) formu-

lated on R
3 × S1 by employing three tools: abelian duality, symmetries, and index theorem.

The unique lagrangian to order e−2S0 dictated by these considerations is

LdQCD =
1

2
(∂σ)2 − b e−2S0 cos 2σ + iψ̄Iγµ∂µψI + c e−S0 cos σ(det

I,J
ψIψJ + c.c.) (1.2)

where σ and ψI are (dimensionless) dual photon, fermion, and dimensionless coordinates

(measured in units of compactification circumference L) are used . The mass gap for gauge

bosons is manifest in this lagrangian. The inverse of the mass gap is the characteristic

size of the chromoelectric flux tube, hence confinement is also manifest. (See [8] for other

observables.)

1Two archetypes of non QCD-like theory in which the long distance theory can be derived starting with

the microscopic theory are Polyakov’s treatment [6] of Georgi-Glashow model on R
3 (a theory which confines),

and Nekrasov’s derivation [7] of the N = 2 Seiberg-Witten prepotential (a theory which does not confine).

Our goal is to find such quantitatively tractable examples among QCD-like theories.
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In this work, we will derive this lagrangian by summing over all non-perturbative effects.

Before doing so, note a simple but important feature of 1.2. It is clear that fermionic in-

teraction terms arises due to the monopole effects. Any monopole carries a net topological

charge. If massless fermions are present in the underlying theory, due to the index theorem,

a monopole vertex must be associated with 2nf fermion zero modes of one chirality and an

antimonopole leads to 2nf zero modes of the opposite chirality. Consequently, the terms

involving fermion zero mode insertions is the sum of the vertices:

BPS : eiσ det
I,J

ψIψJ , KK : e−iσ det
I,J

ψIψJ ,

BPS : e−iσ det
I,J

ψ̄I ψ̄J , KK : eiσ det
I,J

ψ̄I ψ̄J , (1.3)

where eiqmσ is the monopole vertex operator and qm = ±1 are magnetic charges of the

corresponding (anti)monopole, and detI,J ψ
IψJ are compulsory zero modes attached to it.

Now, let us inspect the bosonic potential. It is

V (σ) ∼ cos 2σ ∼ ei2σ + e−2iσ (1.4)

Due to the index theorem, a bosonic potential cannot arise due to objects which carry a

nonvanishing topological charge. Such objects, by construction, must have fermion zero mode

insertions, and can not appear in the bosonic potential. It is easy to check that the functional

integral Z =
∫
Dσ e−

R
d3x [ 1

2
(∂σ)2−b e−2S0 cos 2σ] is equivalent to a plasma of magnetically

charged particles with long range Coulomb interaction,

V (r) =
2(±2)

4πr
(1.5)

where charges are twice the one of the monopoles. In other words, the Debye phenomena

(which renders the dual photon massive) is induced not due to excitations with magnetic

and topological charge (±1,±1
2 ), but rather with charges (±2, 0). Clearly, these are not

elementary monopoles. The first question we want to answer is, what are these objects?

A fuller discussion of all pairs and their roles will be given in section 2.2. For now, let

us observe that only a bound state of BPS monopole, and KK antimonopole, BPSKK , and

its antiparticle can induce the bosonic potential. Such an object has the correct quantum

numbers (1, 1
2) + (1,−1

2 ) = (2, 0) and is the prime candidate for the magnetically charged

object which leads to confinement in QCD(adj) in the LΛ ≪ 1 regime.

There is an immediate puzzle with this proposal. The BPS and KK monopoles interact

via Coulomb repulsion, hence in order to have a bound state, there must exist an attraction

which may overcome the Coulomb repulsion.2 In the QCD(adj) vacuum, a pairing mechanism

arguably as strange as the BCS theory [9] takes place . An attraction which overwhelms the

Coulomb repulsion between BPS and KK is generated via (even number of) fermion exchange.

2This situation is analogous to the BCS theory of superconductivity. There must exist a net attraction

between electron pairs which overcomes the shielded, yet repulsive Coulomb potential. Such an attractive force

is provided through the exchange of phonons of the crystal lattice. A novel pairing mechanism is at work in

QCD(adj) formulated on small S1 × R
3.
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In nf = 1 QCD(adj) (i.e., SYM), this is a fermion pair exchange. In nf > 1 QCD(adj), it is

the exchange of 2nf fermions. The attractive potential is a logarithmical one

Veff(r) = 4nf log r +
1

4πr
, r ≫ 1 (1.6)

and it easily overcomes the repulsive Coulomb interaction. This forces the BPS and KK

monopoles to form a charged bound state. We refer to this molecule as a magnetic bion,

and to the BPS-KK molecule as anti-bion. The important point that is worth repeating is

that the net topological charge of the BPS-KK pair is identically zero:
∫

R3×S1 FF̃ = 0 even

though for individual (isolated) BPS, it is
∫

R3×S1 FF̃ = 1
2 and for KK, it is

∫
R3×S1 FF̃ = −1

2 .

Consequently, bions do not have fermions zero modes attached to them, and they are the

leading contribution to the effective bosonic potential for the dual photon.3

Considerations along these line also provides dynamical explanations for the absence of

confinement in Yang-Mills noncompact Higgs system with adjoint fermions formulated on R
3.

Affleck, Harvey and Witten in Ref. [11] showed that such systems do not confine despite the

presence of magnetic monopoles. Their argument is based on symmetries and index theorems.

Without much recourse to the microscopic theory, they showed that the photon arises as a

Goldstone boson of spontaneously broken fermion number symmetry, hence remains massless

nonperturbatively. Here, we give microscopic derivation of this beautiful symmetry argument

based on the dynamics of monopoles (and bions). In one sentence, the absence of magnetically

charged, but topologically null configurations (which may be the only source of a mass term

for dual photon in the presence of fermions) implies the absence of confinement in the SU(2)

application. We also provide dynamical explanation for the absence of confinement in the

N = 2 SYM theory on R
3 based on similar rationale 4.

The discussion of nonsupersymmetric QCD(adj) can also be applied to N = 1 SYM

on R
3 × S1 with only cosmetic changes. All one needs to be careful about is the extra

massless scalar, and keep it in the effective theory. In fact, the long distance effective theory

for SYM (which is a supersymmetric affine Toda theory) was derived far before our work

on the subject [12–15]. 5 In spite of that, the fact that confinement was induced not due

to monopole condensation, but rather via magnetic bion condensation was not appreciated

before. Remarkably, the mechanism of confinement for N = 1 SYM and nonsupersymmetric

QCD(adj) is one and the same in the small S1 regime.

The second part of the paper discusses the SU(N) generalization of the nonsupersym-

metric QCD(adj), and derive the long distance Lagrangian. The biggest surprise is that the

3In literature, the name BIon where BI stands for Born-Infeld is used previously [10]. We use bi- as two or

having two. We hope that the two will not be confused. We did not use di-on due to its phonetic similitude

to dyon.

4These theories (formulated on R
3) are as important as QCD(adj) on R

3×S1. They exhibit that if massless

fermions are present, having monopoles is not sufficient to have confinement.

5Our derivation of the bosonic potentials in SYM differs from earlier work, which was based on using

supersymmetry as a completion device to obtain superpotential (hence bosonic potential) from the monopole

induced fermionic terms. We instead chose to delineate on the microscopic origin of the bosonic potential, and

obtained it directly without any recourse to supersymmetry. The final result is same with earlier work [12–15].

The real payoff of our approach is in its applicability to nonsupersymmetric theories.
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bosonic sector of QCD(adj) maps into an integrable system, intimately related to possible

integrable generalization of the affine Toda theories. We identify magnetic bions as bound

states of magnetic monopoles with charge αj and antimonopoles with charge −αj+1. The

total net effects of bions can be encoded into a prepotential, out of which we may derive the

potential. Interestingly enough, the relation between the prepotential and potential is same

as the relation between the superpotential and potential in N = 1 SYM, modulo the absence

of Higgs scalar in the former (where it is massive). We give the analytic derivations of the

string tensions Tk, and characteristic sizes of chromoelectric flux tubes m−1
k , k = 1, . . . , N−1

in QCD(adj) in the small S1 regime.

Let us complete the introduction by saying that closer and deeper inspection of non-

supersymmetric QCD-like theories may also be used to build the relation between the inner

goings-on of the supersymmetric and nonsupersymmetric gauge the theories. Suffice it to

say that, the integrable systems which emerges in the QCD(adj) are variants of the affine

Toda systems [16–18], which also appeared in the discussions of N = 1, 2 SYM, and elliptic

curves [19]. This direction will not be explored in this paper, but is potentially interesting. 6

2. Dynamics of SU(2) QCD(adj) on small S1 × R
3

2.1 Perturbation theory

First, we wish to give the microscopic derivation of the dual theory 1.2. The action of SU(N)

QCD(adj) defined on R
3 × S1 is

S =

∫

R3×S1

1

g2
tr

[
1

4
F 2
MN + iλ̄I σ̄MDMλI

]
(2.1)

where λI = λI,ata, a = 1, . . . , N2 − 1 is Weyl fermion in adjoint representation, FMN is the

nonabelian gauge field strength, and I is the flavor index, and the generators are normalized

as tr tatb = δab. The classical theory possess a U(nf ) flavor symmetry whose U(1)A part is

anomalous. The symmetry of the quantum theory is

(SU(nf ) × Z2Nnf
)/Znf

(2.2)

The quantum theory has the dynamical strong scale Λ, which arises via dimensional trans-

mutation, and is given by Λb0 = µb0e−8π2/g2(µ)N where µ is the renormalization group scale

and b0 = (11 − 2nf )/3. We consider small nf so that asymptotic freedom is preserved. The

nf = 1 case (SYM) will be discussed separately. We first discuss N = 2 QCD(adj), and

N ≥ 3 will be discussed in section 3.

At small S1 (LΛ ≪ 1), due to asymptotic freedom, the gauge coupling is small and

a perturbative Coleman-Weinberg analysis is reliable [27]. Let U(x) = Pei
R
dx4A4(x,x4) be

the path ordered holonomy of the spatial Wilson line wrapping the S1, and sitting at the

6There are also recent, interesting works on the dynamics of four dimensional gauge theories, in particular

for pure Yang-Mills, see [20–22], and for lattice works, see [1, 23] and references therein. Also, good reviews

covering different aspects of monopoles and instantons can be found in [24–26].
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1

Λ µ1/L

g2 (µ)

G
H

Figure 1: Summary of perturbative analysis: Solid line indicates the running of the gauge coupling
in QCD(adj) compactified on a circle S1 with circumference L, and dashed line is the usual running

on R
4. In the regime 1/L ≫ Λ perturbative Coleman-Weinberg analysis is reliable, and leads to a

radiatively induced gauge symmetry breaking G → H where G = SU(2) and H = U(1). Since the
heavy W bosons and their fermionic partners which are charged under H decouple from the long

distance theory, the coupling constant of the IR theory does not flow. The reader familiar with the

N = 2 SYM theory on R
4 will realize certain similarities. Unlike pure N = 2 SYM, QCD(adj) confines.

point x ∈ R
3. Integrating out the heavy KK-modes along the S1 circle, |ωn| ≥ ω1 where

ωn = 2π
L n, n ∈ Z, induce a nontrivial effective potential for U(x) [28]. The action for the

classical zero modes reduce to

S =

∫

R3

L

g2
tr

[
1
4F

2
µν + 1

2 (DµΦ)2 + g2V (|Φ|) + iλ̄I(σ̄µDµ + σ̄4[Φ, ])λI

]
(2.3)

The minimum of the potential Veff is located at |Φ| ≡ φ = π
2 , hence U = Diag(eiπ/2, e−iπ/2).

Since trU = 0, the Z2 center symmetry is preserved. By the Higgs mechanism, the gauge

symmetry is broken down as

SU(2) → U(1) (2.4)

Due to the gauge symmetry breaking via an ‘adjoint Higgs field’, the neutral fields aligned

with U along the Cartan subalgebra (A3,µ, λ
I
3) remain massless, and off-diagonal components

acquire mass, given by the separation between the eigenvalues of the Wilson line

mW± = mλI,± = π/L (2.5)

where ± refers to the charges under unbroken U(1). Therefore, in perturbation theory, the

low energy theory is a d = 3 dimensional abelian U(1) gauge theory with nf massless fermions

with a free action

S =

∫

R3

L

g2

[
1

4
F 2

3,µν + iλ̄I3σ̄
µ∂µλ3,I

]
(2.6)

At distances shorter than L, the coupling constant flows according to the four dimensional

renormalization group. Since the heavy W±, λI,± which are charged under U(1) decouple
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from the long distance physics at scale L and above, the coupling constant ceases to run at

1/L ≫ Λ much before the strong coupling sets in, see fig.2.1. In perturbation theory, this is

the whole story.

2.2 Nonperturbative effects and abelian duality

Nonperturbatively, the perturbatively free infrared fixed point is unstable. This follows from

the existence of monopoles, at the cores of which the U(1) symmetry of the free theory

enhances to the the whole SU(2). 7

Due to gauge symmetry breaking via a compact adjoint Higgs field, there are two types

of monopoles, BPS and KK, as well as their antimonopoles BPS, KK [30, 31] 8 These four

types of monopoles are distinguished by their quantized magnetic and topological charges( ∫
F,

∫
FF̃

)
normalized as

BPS : (+1, 1
2), BPS : (−1,−1

2 ),

KK : (−1, 1
2), KK : (+1,−1

2 ). (2.7)

Due to the chiral anomaly relation [32],

∂µJ
µ5 =

g2(2Nnf )

32π2
trFµν F̃

µν (2.8)

each object with a vanishing topological charge is associated with a certain number of

fermionic zero modes. Integrating both sides over the space, we find

∆Q5 = nλ − nλ̄ = 4nf

∫
g2

32π2
trFµν F̃

µν =

{
4nf (

1
2 ) = 2nf for BPS or KK

4nf (−
1
2) = −2nf for BPS or KK

(2.9)

where the term inside the parenthesis is the topological charge. As it should be clear, 4nf
is the number of fermionic zero modes associated with a four dimensional instanton, whose

topological charge is +1. Since the topological charges of monopoles are a fraction of the one

of the instanton, they are sometimes referred as fractional instantons. Clearly, a BPS-KK

pair has the correct quantum numbers to be the constituents of the instanton [30,31].

By abelian duality [6, 29], we know that the functional integral in a gauge theory in

the presence of a single monopole with charge ±1 located at the position x is equivalent to

the insertion of an operator e±iσ(x) in the path integral of the dual theory. However, the

index version of the chiral anomaly relations 2.9 tells us that a monopole acts as it contains

a source for every fermion flavor, and an antimonopole acts as if it contains a sink for all

7There is a semantic problem here which I could not avoid. The objects that I refer as monopoles are

essentially instantons from the d = 3 dimensional point of view (See for example, pages 1232- 1240 of ref. [29]).

However, the theory I am working with is locally four dimensional, and there are in fact four dimensional

instantons as well. Hence, I will stick with the four dimensional language. Technically however, the quantum

numbers are unambiguous. I thank Misha Shifman and David Tong for their explanations on this matter.

8Were the gauge symmetry broken by a noncompact Higgs field, the KK monopole would not be there. As

we will discuss, this is the case in the extension of the Polyakov model in the presence of adjoint fermions, a

theory which does not confine.
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fermion flavors. Adapting a combination of techniques developed by ’t Hooft [33] and by

Polyakov [6] to our problem, we can sum up all the monopole effects. The functional integral

(with a source) in the presence of a monopole
∫
DAµDψ

IDψ̄Ie−Sone mon.(A,ψ,ψ̄)+J detψIψJ+J̄ det ψ̄I ψ̄J

(2.10)

is same as having

e−S0

∫
DσDψIDψ̄Ie−Sd,0(σ,ψ,ψ̄)+J detψIψJ+J̄ det ψ̄I ψ̄J

eiσ(x) det
I,J

ψIψJ (2.11)

where Sd,0(σ, ψ, ψ̄) =
∫

R3

[
1
2(∂σ)2 + iψ̄Iγµ∂µψI

]
is the free kinetic term. Hence, a functional

integral in the presence of a monopole can be translated into having a monopole vertex eiσ(x)

with accompanying fermionic zero modes. We can insert the monopole at any x ∈ R
3, and we

can consider an arbitrary number of them. The sum over all possible monopole configurations

is
∞∑

nBPS=0

∞∑

nBPS=0

∞∑

nKK=0

∞∑

nKK=0

e−(nBPS+nBPS+nKK+nKK)S0

nBPS! nBPS! nKK! nKK!

[∫
d3xeiσ(x) det

I,J
ψIψJ

]nBPS

[∫
d3xe−iσ(x) det

I,J
ψ̄I ψ̄J

]nBPS
[∫

d3xe−iσ(x) det
I,J

ψIψJ
]nKK

[∫
d3xeiσ(x) det

I,J
ψ̄I ψ̄J

]nKK

(2.12)

Performing the summation yields monopole induced terms of order e−S0 in our effective

lagrangian

exp
[ ∫

d3x e−S0(eiσ + e−iσ)(det
I,J

ψIψJ + det
I,J

ψ̄I ψ̄J)
]

(2.13)

Therefore, the combined effect of BPS and KK monopoles is cosσ detψIψJ . This vertex is

manifestly invariant under continuous SU(nf ) flavor symmetry, acting as ψ → Uψ where

U ∈ SU(nf ). The microscopic theory also possesses a Z4nf
discrete chiral symmetry. 9 The

effective theory, in order to respect the Z4nf
discrete chiral symmetry, intertwines it with a

discrete shift symmetry of the dual photon:

ψI → ei2π/(4nf )ψI , σ → σ + π (2.14)

both of which acts as negation on the determinantal fermion vertex and cosine combinations

det
I,J

ψIψJ → − det
I,J

ψIψJ , cos σ → − cosσ (2.15)

respectively, so that the effective theory respects the real symmetries of the underlying theory.

9More generally, consider SU(N) QCD(adj) with nf flavors. The chiral symmetry is [SU(nf )×Z2Nnf
]/Znf

,

where the common Znf
is factored out to prevent double counting. The Z2 subgroup of the Z2N is (−1)F

fermion number modulo 2, which cannot be spontaneously broken so long as Lorentz symmetry is unbroken.

Thus, the only genuine discrete chiral symmetry of SU(N) QCD(adj) which may potentially be broken is the

remaining ZN , irrespective of the number of flavors. In small S1, we explicitly demonstrate the existence of N

vacua, and spontaneous breaking of chiral ZN symmetry (which is intertwined with the discrete shift symmetry

of photon). This ZN symmetry should not be confused with the spatial center symmetry, Gs = ZN which is

unbroken in spatial compactification of QCD(adj).
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BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

Figure 2: (Left)Magnetically and topologically charged monopoles carries compulsory fermion zero

modes. Consequently, they can not induce a bosonic potential for dual photon. (Right) Topologically
null, magnetically charged bions has no external fermionic legs. Hence, they induce the leading

bosonic potential, which implies mass for the dual photon and confinement. The figure is for SU(2)
with nf = 2. The combination of the BPSKK monopoles (which is not depicted) is an instanton (or

caloron). It is present in confined phase, but is not the source of the dual photon mass term.

In the effective Lagrangian, this is the set of all nonperturbative effects at order e−S0 in

the e−S0 expansion. However, the discrete Z2 shift symmetry σ → σ+π, unlike a continuous

shift symmetry, cannot prohibit a mass term for the scalar σ. Clearly, a term e−S0 cos σ is

forbidden by Z2. But its square is an allowed operator. If fermions were not present,

e−S0 cos σ ∼ e−S0(eiσ + e−iσ) (2.16)

would be an allowed term as in the Polyakov’s discussion of the Georgi-Glashow model, and

would induce a mass term of order e−S0/2 for dual photon. However, because of the index

theorem 2.9, a monopole must come with fermion zero modes, and a term such as eiσ can not

appear on its own, but must appear in combination eiσ detI,J ψ
IψJ .

Symmetry principles also tells us that, at the e−2S0 order, we can write

[e−S0 cos σ]2 ∼ e−2S0(1 + 1 + e2iσ + e−2iσ) (2.17)

and this would generate a mass term for the dual photon, hence leading to confinement. We

wish to understand the dynamical origin of this potential.

Let us first forget about the issues about fermion zero modes, and decide on the basis

of quantum numbers, which objects may contribute to the nonperturbative potential. Since

we know that, due to index theorem, such an object can not be a monopole, let us enlist

all possible pairs of monopoles, the magnetic and topological charges of constituents and

pairs, and the types of the long range Coulomb interactions, repulsive or attractive. In

nonsupersymmetric QCD(adj) with 2 ≤ nf ≤ 4, the list of all Coulomb interaction channels
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for monopoles is given by

Type Type σ−int.
(∫

F,
∫
FF̃

)

BPS − e+iσ BPS − e+iσ rep. (+1,+1
2) + (+1,+1

2 ) = (2, 1)

BPS BPS − e−iσ att. (+1,+1
2) + (−1,−1

2 ) = (0, 0)

BPS KK − e−iσ att. (+1,+1
2) + (−1,+1

2 ) = (0, 1)

BPS KK − e+iσ rep. (+1,+1
2) + (+1,−1

2 ) = (2, 0)

BPS BPS rep. (−1,−1
2) + (−1,−1

2 ) = (−2,−1)

BPS KK rep. (−1,−1
2) + (−1,+1

2 ) = (−2, 0)

BPS KK att. (−1,−1
2) + (+1,−1

2 ) = (0,−1)

KK KK rep. (−1,+1
2) + (−1,+1

2 ) = (−2, 1)

KK KK att. (−1,+1
2) + (+1,−1

2 ) = (0, 0)

KK KK rep. (+1,−1
2) + (+1,−1

2 ) = (2,−1)

(2.18)

In the presence of the fermion zero modes, the (bosonic) potential must arise due to the

sector of the theory with zero topological charge so that there will not be any fermion zero

mode insertions in it. In other words, the objects which may contribute to the potential must

be topologically indistinguishable from the perturbative vacuum.

This immediately rules out the four possible monopoles, and six of the ten pairs in

our list from contributing to the bosonic potential. In particular, the two identical monopole

configurations such as BPSBPS with (1, 1
2 )+(1, 1

2 ) = (2, 1), have the correct magnetic charge,

but its topological charge does not permit it to contribute to the bosonic potential. Another

interesting combination which does not lead to the confining potential is a BPSKK pair. The

BPSKK pair in fact constitute an instanton (sometimes called a caloron, [30,31] ) with charge

(1, 1
2) + (−1, 1

2) = (0, 1) and does not induce mass term for the dual photon.

The monopole and antimonopole pairs such as BPS-BPS are topologically null, but also

magnetically neutral. Their contribution to the effective potential can only be an uninter-

esting constant. There remains a single option. A bound state of BPS monopole, and KK

antimonopole, BPS-KK, and its conjugate. Such an object has the correct quantum numbers

(±1, 1
2) + (±1,−1

2 ) = (±2, 0). We referred to this object as a magnetic bion. Consequently,

the bion is the prime candidate which may lead to confinement in QCD(adj) in the LΛ ≪ 1

regime.

However, there is an immediate puzzle with this proposal. There is a long range Coulomb

repulsion between BPS-KK constituents of the bion. If we wish to have a bound state, there

must exist an attractive interaction which overcomes the repulsive Coulomb force. Indeed,

there is!

2.3 Pairings and attractive multi-fermion exchanges

The presence of fermion zero modes changes things drastically. We will demonstrate that for

the pairs with net topological charge zero, there exists an attractive Veff ∼ log r interaction

between the constituents due to fermion pair exchanges. For the pairs with a nonvanishing

topological charge, the constituents do not interact at all due to chirality at leading order.
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Let us first show the first assertion: Consider a BPS and KK monopoles located at

x, y ∈ R
3, where |x − y| ≫ 1. (x, y are dimensionless coordinates in units of L.) We can

extract their interactions from the connected correlator of the BPS vertex VBPS(x), and KK

vertex VKK(y) in the free dual theory with action Sd,0(σ, ψ, ψ̄)

〈VBPS(x)VKK(y)〉0 = 〈eiσ(x) det
IJ
ψIψJ(x)e+iσ(y) det

I′J ′
ψ̄I

′

ψ̄J
′

(y)〉0

= 〈eiσ(x)eiσ(y)〉0 〈det
IJ
ψIψJ(x) det

I′J ′
ψ̄I

′

ψ̄J
′

(y)〉0

∼ e−G(x−y)[SF (x− y)]2nf (2.19)

where G(x − y) = 1
4π|x−y| is the Coulomb potential, which is the position space propagator

of the σ field, G(x) =
∫ d3p

(2π)3
eipx 1

p2
and S(x) = σµxµ

4π|x|3 is the d = 3 dimensional free fermion

propagator S(x) = σµ ∂
∂xµ

G(x). The static interaction potential between the BPS and KK

pair is

Veff(x− y) = − log〈VBPS(x)VKK(y)〉0 =
1

4π|x− y|
+ 4nf log |x− y| (2.20)

Asymptotically, 4nf log |x − y| is the dominant attractive interaction term, and it easily

overcomes the Coulomb repulsion. Therefore, there exist a stable bion bound state with the

total magnetic and topological charge (+2, 0), and antibion with charge (−2, 0).

Analogously, the net interaction between a BPS-BPS pair is attractive in both interaction

channels, either Coulomb, or fermion exchange interactions. The long distance attraction has

the form − log〈VBPS(x)VBPS(y)〉0 = − 1
4π|x−y| + 4nf log |x− y|.

Due to chirality of the underlying theory, the interaction between pairs with the same

topological charge vanishes identically: 〈VBPS(x)VBPS(y)〉0 = 〈VBPS(x)VKK(y)〉0 = 0.

Since the topological charge of the magnetic bion is zero, it does not have any fermion

zero mode attached to it. Since magnetic bions and antibions has ±2 magnetic charges, they

will lead to Debye phenomena. The appropriate effective potential induced by bions is indeed

what we wrote based on symmetry arguments:

V (σ) = [e−S0 cos σ]2 ∼ e−2S0(1 + 1 + e2iσ + e−2iσ) (2.21)

The terms in the potential has an interpretation as the contribution of respectively BPSBPS+

KKKK + BPSKK + KKBPS.

More precisely, the interaction terms in the lagrangian are due to monopole and bion con-

tributions. The monopole contributions necessarily involve the fermion interactions. Schemat-

ically, the nonperturbatively induced interaction terms will always be

Lint =
∑

bions

Vbion

︸ ︷︷ ︸
R
F eF=0

+
∑

monopoles

Vmonopole

︸ ︷︷ ︸
R
F eF=±1

2

(2.22)

Therefore, the dual QCD lagrangian for SU(2) QCD(adj) on small S1 × R
3 is given by

LdQCD =
1

2
(∂σ)2 − b e−2S0 cos 2σ + iψ̄Iγµ∂µψI + c e−S0 cos σ(det

I,J
ψIψJ + c.c.) (2.23)
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up to higher order (insignificant) terms in e−S0 .

The potential term for the dual photon, when expanded around one of its two minima

(located at 0 and π), provides a mass term for the dual photon. In Euclidean viewpoint,

the photon mass is the inverse Debye screening length in the plasma of magnetic bions. On

a fixed time slice of a timelike Wilson loop, the inverse photon mass is the thickness of the

chromoelectric flux tube formed between two external electric test charges. Just like Polyakov

model [6] on R
3, the QCD(adj) on small S1 × R

3 exhibits linear confinement,

Vlinear(R) ∼ e−S0R (2.24)

the potential energy of a pair of the electric source separated by a distance R grows linearly

with separation.

Remark: The results and approach of this work should not be confused with ’t Hooft’s

abelian projection scheme [34], which only leaves an U(1)N−1 gauge symmetry. Hence,

monopoles in that case are gauge artifacts, which is fine in the prescribed gauge. In our

case, the gauge symmetry breaking SU(N) → U(1)N−1 is dynamical, and is a well-controlled

effect due to radiatively induced Coleman-Weinberg potential. The QCD(adj) in LΛ ≪ 1

regime tells us that, in the presence of fermions, the idea of monopole condensation no longer

holds due to fermion zero modes. Despite this fact, the qualitative and beautiful idea of dual

superconductivity of ’t Hooft and Mandelstam [34,35] is still realized at a quantitative level,

albeit via condensation of the pairs with combined magnetic and topological charges (±2, 0).

As emphasized, the presence of monopoles is not sufficient to induce confinement, or

monopole condensation. Better appreciation of the above picture can come with the study of

a Yang-Mills Higgs system with adjoint fermions on R
3, a system with monopoles and yet,

no confinement.

2.4 Noncompact Higgs with adjoint fermions on R
3, and the lack of confinement

Affleck, Harvey and Witten studied extensions of the Polyakov’s model in the presence of an

adjoint Dirac fermion on R
3 [11]. The generalization of their argument to multiple flavors

is obvious. They analyzed (among other things) a Yang-Mills Higgs system with possess

the same action as Eq.2.3, except the fact that the compact adjoint Higgs field in Eq.2.3 is

substituted by a non-compact one.

V compact
eff (|Φ|) → V noncompact

eff (|Φ|) (2.25)

Since the chiral anomaly is absent in odd dimensions, the noncompact model has a genuine

U(nf ) symmetry whose U(1) part is fermion number. Ref. [11] showed quite explicitly that

such a model does not confine. Photons remain infinite range nonperturbatively, and it is

indeed the Goldstone boson of the spontaneously broken U(1) fermion number symmetry.

Their arguments is essentially based on symmetries, and index theorems by Callias [36], and

explicit zero mode construction by Rebbi and Jackiw [37]. Here, we wish to provide a simple

dynamical explanation for this phenomena.

Since gauge symmetry breaking occurs via a noncompact adjoint Higgs field, there is no

longer a KK monopole. Thus, in order to obtain the long distance effective action from our
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discussion in previous section, we must delete all KK monopole related terms from our effective

action. Hence, the interaction lagrangian is Lint ∼ VBPS + VBPS + VBPSBPS. Consequently,

Lnoncompact
eff =

1

2
(∂σ)2 + iψ̄Iγµ∂µψI + ae−S0(eiσ detψIψJ + c.c.) (2.26)

where we ignored a trivial cosmological constant which may be induced by BPSBPS pair.

This is indeed the generalization of the Ref. [11] to multiflavor (nf > 1). The effective action

is respectful to all the symmetries of the underlying theory, in particular SU(nf ) × U(1)

symmetry, where the former is manifest. The U(1) fermion number symmetry acts as

ψI → eiαψI , ψ̄I → e−iαψ̄I , σ → σ − 2nfα . (2.27)

and prohibits any kind of mass term (or potential) for the dual photon. This is the symmetry

which breaks down spontaneously, and dual photon is the Goldstone boson.

Clearly, the only topologically neutral object (which may contribute to the bosonic po-

tential) is BPSBPS pair. But such an object has vanishing magnetic charge. Since there are

no topologically null, but magnetically charged carriers in the vacuum of the model studied

in [11], the Debye mechanism is not possible. Hence, the photon remains infinite range non-

perturbatively. The inability to form magnetically charged bions is the dynamical reason for

the absence of confinement in the extension of Polyakov’s model in the presence of adjoint

fermions.

This discussion also shows that the presence of monopoles in the Yang-Mills Higgs systems

with adjoint fermions is a necessary, but not a sufficient condition to have confinement. In

particular, it also exhibits that, in such systems, condensations of objects with non-vanishing

topological charge (monopole condensation) does not occur.

2.5 Magnetic bions in N = 1 SYM on small S1 × R
3

The generalization of the discussion in section 2.3 to SU(2) N = 1 supersymmetric gauge the-

ory is easy, yet important. All one needs to take care is an extra massless scalar which remains

massless in perturbation theory. Hence it should be incorporated into long distance physics.

With the inclusion of the scalar, the number of Coulomb interaction channels increases and

we obtain

Type Type σ−int φ−int. combined
(∫

F,
∫
FF̃

)

BPS − e−φ+iσ BPS − e−φ+iσ rep. att. 0 (1, 1
2) + (+1,+1

2) = (2, 1)

BPS BPS − e−φ−iσ att. att. 2(att.) (1, 1
2) + (−1,−1

2) = (0, 0)

BPS KK − e+φ−iσ att. rep. 0 (1, 1
2) + (−1,+1

2) = (0, 1)

BPS KK − e+φ+iσ rep. rep. 2(rep.) (1, 1
2) + (+1,−1

2) = (2, 0)

. . . . . . . . . . . . . . . . . .

(2.28)

The change in monopole vertices are

BPS : e−φ+iσψψ, KK : e+φ−iσψψ,
BPS : e−φ−iσψ̄ψ̄, KK : e+φ+iσψ̄ψ̄, (2.29)

– 13 –



The bosonic potential is due to the sector of the theory with net zero topological charge, so

that there will not be any fermion zero mode insertion in it. Thus

BPSBPS + KKKK + BPSKK + KKBPS = e−2S0(e−2φ + e+2φ − ei2σ − e−2iσ)

= e−2S0 |ez − e−z|2 (2.30)

where we defined z = −φ+ iσ. This result is nice because the bions already know that there

is an underlying superpotential, given by 10

W(z) = e−S0(ez + e−z) (2.31)

The long distance effective action for SYM on small S1 × R
3 is

LSYM
eff = 1

2(∂σ)2 + 1
2(∂φ)2 − c2e−2S0(cos 2σ − cosh 2φ)

+iψ̄γµ∂µψ + c e−S0

[
(e−φ+iσ + e+φ−iσ)ψψ + (e−φ−iσ + e+φ+iσ)ψ̄ψ̄

]
(2.32)

The Z2N = Z4 discrete chiral symmetry of the original theory is also manifest in the effective

theory

ψI → ei2π/4ψI , σ → σ + π (2.33)

This symmetry breaks down spontaneously to Z2 = (−1)F where F is fermion number leading

the the appearance of two isolated vacua.

The dynamics of the N = 1 SYM on R
3 ×S1 is previously analyzed by imbedding it into

F theory in Ref. [12], and by using the elliptic curves of N = 2 SYM combined with the mass

deformation in [13]. The works of Davies et.al [14,15] provided a clear field theory exposition

of the nonperturbatively induced effects in such theories. The general strategy of these papers

had been to calculate monopole vertex first, then use supersymmetry as a completion device to

find the bosonic potential and superpotential. For fermionic terms, our strategy is the same as

in these earlier works. For the bosonic potential, our strategy is different. Rather then using

supersymmetry as a completion tool, we preferred to delineate on its microscopic (physical)

origin. Essentially, we identified topologically null configurations which are topologically

indistinguishable from the perturbative vacuum, and hence can contribute to the potential.

Summing up their contributions gives us the bosonic potential, which can nicely be derived

from the superpotential.

These two approaches in the case of N = 1 SYM are identical. The latter approach

has a higher value in our opinion due to the fact that it does not make any reference to

supersymmetry, and we applied it first to nonsupersymmetric theories. Our analysis makes

it manifest that the mechanism of confinement in N = 1 SYM is not monopole condensation,

i.e., condensation of excitations with topological charge ±1
2 , rather of objects with topological

charge 0. This physical fact was not appreciated before. We conclude this section by pointing

that the mechanism of the confinement in supersymmetric N = 1 SYM is same as the one

in nonsupersymmetric QCD(adj) theories in the LΛ ≪ 1 regime, both of which is magnetic

bion condensation.

10Strictly speaking, this superpotential is the form acquired after the superHiggs mechanism.
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In the dimensional reduction of N = 1 SYM down to R
3, confinement does not occur

as shown in [11]. The distinctions are so important that it is worthwhile rederiving their

results following the consideration of this paper, and explain the absence of confinement on

dynamical grounds.

2.6 The N = 2 SYM on R
3 and lack of confinement, again

Delete all terms in the effective action 2.32 which is related to KK monopole. (This is the

same statement as φ field becomes noncompact on R
3 limit.) This leaves us with BPS and

BPS induced vertex in fermionic terms and BPSBPS induced term in the bosonic potential

in the lagrangian 2.32:

Ln.c.
eff = 1

2(∂σ)2 + 1
2(∂φ)2 − c2e−2S0e−2φ + iψ̄γµ∂µψ + c e−S0

[
e−φ+iσψψ + e−φ−iσψ̄ψ̄

]
(2.34)

which is the same as the lagrangian in [11]. The Z2N discrete chiral symmetry of SYM

on locally four dimensional settings elevates to the full U(1) fermion number on R
3 due to

absence of chiral anomaly in odd dimensions. The continuous U(1) symmetry acts as

ψI → eiαψI , ψ̄I → e−iαψ̄I , σ → σ − 2α . (2.35)

and prohibits any kind of mass term (or potential) for the dual photon. This is the symmetry

which breaks down spontaneously, and dual photon is the Goldstone boson. The runaway

potential e−2φ does not have a vacuum at finite φ.

On dynamical grounds, the absence of confinement is due to the inability to form long

range magnetic bions in SYM vacuum on R
3. The BPSBPS pairs are neutral, and photon

remains infinite range in a medium of neutral molecules. In other words, it remains massless

nonperturbatively as demanded from a Goldstone particle, and this implies the absence of

confinement.

3. SU(N) QCD(adj), bions, and secret integrability?

The SU(N) QCD(adj) theory undergoes gauge symmetry breaking on sufficiently small spa-

tial S1 due to a perturbative Coleman-Weinberg potential. The gauge symmetry breaking is

SU(N) → U(1)N−1. For simplicity, we will add a decoupled ”center of mass” degree of free-

dom to the original theory and consider gauge symmetry breaking of the form U(N) → U(1)N .

This is a technical trick, and in the spontaneously broken gauge theory, the center of mass

mode decouples from the dynamics. Hence, our goal is to determine the dynamics of the

N − 1 modes U(1)N

U(1)c.m.

The monopoles may be described by their magnetic charges, topological charge and their

action. The magnetic charges of the N types of (BPS and KK) monopoles under unbroken

gauge symmetry U(1)N is proportional to the simple roots and affine root of the Lie algebra,

respectively. The simple roots are given by

α1 = (1,−1, 0, . . . , 0) = e1 − e2
α2 = (0, 1,−1, , . . . , 0) = e2 − e3
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αi = (0, . . . , 1,−1, . . . 0) = ei − ei+1

. . .

αN−1 = (0, . . . , , 0, 1,−1) = eN−1 − eN (3.1)

and the affine root is

αN ≡ −
N−1∑

j=1

αj = (−1, 0, 0, . . . , 1) = eN − e1 (3.2)

It is convenient to define the simple ∆0 and affine (extended) ∆0
aff root systems of the the

associated Lie algebra:

∆0 ≡ {α1, α2, . . . , αN−1}, ∆0
aff ≡ {α1, α2, . . . , αN−1, αN}, (3.3)

The latter is the one relevant for QCD(adj) on R
3 × S1. More generally, in the Yang-Mills

Higgs systems with adjoint fermions, if the Higgs field is noncompact, the monopole and

antimonopole charges are valued in ∆0 and, −∆0, respectively. If the Higgs field is compact,

then there is an extra monopole, and the charges take values in ±∆0
aff .

The topological charges
∫
FF̃ is correlated with the sign of the two sets ±∆0

aff . Thus,

the quantized magnetic and topological charges are

∫

S2

F i = ±
2π

g
αi,

∫
FF̃ ≡

g2

32π2

∫
trFµν F̃

µν = ±
1

N
, (3.4)

The action of a monopole with charge αi and topological charge
∫
FF̃ = ± 1

N is given by

S0,i = 8π2

g2

∫
FF̃ = 8π2

g2N
. Due to the presence of the effective potential for the Wilson line, the

monopoles of QCD(adj) theory (except for nf = 1 which is supersymmetric) do not saturate

the BPS bound. But the correction are perturbative in g2 and we will neglect them.

The long range Coulomb interaction of monopoles (in the absence of fermions) is given

by 11

V (αi,±αj, r) =
αi.(±αj)

4πr
= ±

2δij − δi,j+1 − δi,j−1

4πr
, i, j = 1, . . . N (3.5)

which translate to self and nearest neighbor interaction between monopoles in the Dynkin

space. The inner product of the roots of the associated Lie algebra is a basis independent

statement, though the above choice of the basis 3.1 is due its visual simplicity.

We are now ready to generalize the derivation of effective potential for SU(2) QCD(adj)

to SU(N) with 1 < nf ≤ 4. Our discussion will be brief.

Were the adjoint fermions absent, a monopole with charge αj would be associated with

vertex eiαjσ. Due to index theorem 2.9, any object with nonvanishing topological charge

(1/N) must have ∆Q5 = 2nf fermions attached to it. As discussed in footnote 9, the

underlying QCD(adj) theory has an [SU(nf ) × Z2Nnf
]/Znf

continuous and discrete chiral

symmetries. The manifestly SU(nf ) invariant fermion vertex with 2nf fermion insertion is

11We set 2π
g

to unity as in our discussion of SU(2) to lessen the clutter in expressions. All physical quantities

are measured in units of L, which is also set to unity. We will restore both quantities if necessary.
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given by detIJ αiψ
Iαiψ

J where the determinant is over the flavor index. Here, we use a vector

notation

σ = (σ1, . . . , σN ), ψI = (ψI1 , . . . , ψ
I
N ), αiσ = σi − σi+1 (3.6)

As stated earlier, the center of mass mode is extraneous and decouples from the dynamics

completely. Hence, the appropriate monopole and antimonopole vertices are

Vαi
= eiαiσ det

IJ
αiψ

Iαiψ
J , V−αi

= e−iαiσ det
IJ
αiψ̄

Iαiψ̄
J (3.7)

This means, the interaction Lagrangian at O(e−S0) is given by

e−S0
∑

αi∈∆0
aff

(
eiαiσ det

IJ
αiψ

Iαiψ
J + e−iαiσ det

IJ
αiψ̄

Iαiψ̄
J

)
(3.8)

This vertex is invariant under (SU(nf )×Z2Nnf
)/Znf

as desired. The discrete chiral symmetry

acts as

ψI → ei2π/(2Nnf )ψI , ψ̄I → e−i2π/(2Nnf )ψ̄I , σ → σ −
2π

N

N−1∑

j=1

µk (3.9)

where µk are the N − 1 fundamental weights (not the weight of fundamental representation)

of the associated Lie algebra. They are defined by the reciprocity relation,

2αiµj
α2
i

= αiµj = δij (3.10)

The shift in the photon field is called the Weyl vector, and we will often abbreviate it as

ρ ≡
N−1∑

j=1

µk, such that ei
2π
N
ραi = ei

2π
N , i = 1, . . . , N (3.11)

The action of the discrete chiral symmetry on SU(nf ) singlets is a ZN symmetry transfor-

mation,

det
I,J

αiψ
Iαiψ

J → ei2π/N det
I,J

αiψ
Iαiψ

J , eiαiσ → e−i2π/Neiαiσ . (3.12)

Consequently, the monopole induced interaction terms (which are of order e−S0) are respectful

the discrete (and continuous) symmetries of the underlying theory.

Exactly as in the SU(2) discussion, this is the net effect of the topologically nontrivial

sector of the theory which saturates the lagrangian at order e−S0 . In particular, a would be

(confining) potential term for σ field

e−S0
∑

αi∈∆0
aff

(
eiαiσ + e−iαiσ

)
(3.13)

is forbidden by the ZN shift symmetry σ − 2π
N

∑N−1
j=1 µk of the dual photon. This is a con-

sequence of having adjoint fermions in the system. In the absence of fermions, such as pure

Yang-Mills compact Higgs system, this is the leading term which renders all the photons

massive, with masses of order e−S0/2. We will see that in QCD(adj), the masses of photons

are of order e−S0 , and there is a ZN shift symmetry respecting potential at order e−2S0 .
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3.1 Attractive channels, bions, and a prepotential

We must examine the combinations of the monopole antimonopole pairs with magnetic

charges from the two sets ∆0
aff and −∆0

aff with respective topological charges 1
N and − 1

N .

Due to the presence of many pairs one can construct, this may a priori seem like a mess.

However, the theory does something truly remarkable. At order e−2S0 , it only pairs the

monopoles with charge αj with their nearest neighbor antimonopoles, with charges −αj±1 in

the Dynkin space. These combinations are the bion states. (There are also neutral monopoles

and antimonopole pairing of same kind, but the charge of such an object is zero and not so

interesting in nonsupersymmetric QCD(adj). It has an effect in SYM.)

Let us first find the attractive channels. We can extract the interaction of a monopole

with charge αi and antimonopole with charge −αj by inspecting its connected correlator in

the functional integral of the free theory with the action Sd,0(σ, ψ, ψ̄).

〈Vαi
(x)V−αj

(y)〉0 = 〈eiαiσ(x) det
IJ

αiψ
Iαiψ

J (x)e−iαjσ(y) det
I′J ′

αjψ̄
I′αjψ̄

J ′

(y)〉0

= 〈eiαiσ(x)e−iαjσ(y)〉0 〈det
IJ

αiψ
Iαiψ

J (x) det
I′J ′

αjψ̄
I′αjψ̄

J ′

(y)〉0

∼ e+αi.αjG(x−y)(αiαj)
2nf [SF (x− y)]2nf (3.14)

The connected correlator is only nonzero if αiαj is nonzero, and induces a logarithmic binding

potential of the form

Veff(x− y) =





+ 1
4π|x−y| + 4nf log |x− y| for i = j ± 1

− 2
4π|x−y| + 4nf log |x− y| for i = j

0 otherwise .

(3.15)

If i = j, then both Coulomb and fermion exchange forces are attractive. If i = j ± 1, then

Coulomb interaction is repulsive, but the attractive fermion exchange term easily dominates.

Now, we are ready to define the magnetic bions in the spontaneously broken SU(N)

gauge theory. A bion is a bound state of the monopole associated with magnetic charge αi
and anti-monopole associated with charge −αi+1 with null topological charge:

Qi = αi − αi−1 = 2ei − ei+1 − ei−1,

∫
FF̃ = 0 i = 1, . . . N (3.16)

Restoring the prefactors and writing more explicitly, the magnetic bion (antibion) charges

are given under the U(1)N gauge group as

Qi = ±
2π

g

(
0, . . . , −1︸︷︷︸

i−1

, 2︸︷︷︸
i

, −1︸︷︷︸
i+1

, . . . , 0
)

(3.17)

This means, bions interact via a next-to-nearest neighbor interaction in the Dynkin space:

For high rank gauge groups (N ≥ 5),

QiQj = 6δij − 4δi,j+1 − 4δi,j−1 + δi,j+2 + δi,j−2, N ≥ 5 (3.18)
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In order to find the bion-bion interactions in low rank gauge groups N ≤ 4, we need to

identify nodes j ≡ j +N in the (affine) Dynkin diagram, since there are less that five nodes.

Consequently,

QiQj = 6δij − 4δi,j+1 − 4δi,j−1 + 2δi,j+2, N = 4

QiQj = 6δij − 3δi,j+1 − 3δi,j−1, N = 3

QiQj = 8δij − 8δi,j+1, N = 2 (3.19)

The long range interactions of magnetic bions are given by Coulomb’s potential and is equal

to

V (Qi,±Qj , r) =
Qi.(±Qj)

4πr
= ±

6δij − 4δi,j+1 − 4δi,j−1 + δi,j+2 + δi,j−2

4πr
(3.20)

The meaning of this formula is clear. Bion pairs with the charges (Qi, Qi) repel, (Qi, Qi±1)

attract, (Qi, Qi±2) repel, and no interactions for pairs (Qi, Qi+k) with k > 2. The overall sign

of the interactions is reversed for the bion-antibion pairs.

Now, we can convert the Coulomb gas of magnetic bions into a field theory following

Polyakov’s treatment [6]. We only quote the result, since the manipulations are standard.

The vertex appropriate for a bion molecule located at x ∈ R
3 is

eiQiσ(x) = eiαiσ(x)e−iαi−1σ(x) (3.21)

Clearly, this is manifestly invariant under the ZN shift symmetry of the photon which acts as

eiαiσ(x) → e−i2π/Neiαiσ(x). The bosonic effective potential is a sum over all bion and antibion

contributions given by

V (σ) = −e−2S0

N∑

i=1

(
eiQiσ + e−iQiσ

)
= −2e−2S0

N∑

i=1

cosQiσ (3.22)

There is something remarkable about this potential, in fact surprising. It can be derived from

a prepotential, just like a bosonic potential in the supersymmetric system may be derived

from a superpotential. In order to see this, rewrite the potential V (σ) as

V (σ) = −e−2S0

N∑

i=1

(
eiαiσe−iαi−1σ + e−iαiσeiαi−1σ

)

= e−2S0

N∑

i=1

|eiαiσ − eiαi−1σ|2 + constant (3.23)

where constant is unimportant. Define the prepotential as

W(σ) = e−S0
∑

αi∈∆0
aff

eiαiσ . (3.24)

Hence, the potential may be written as

V (σ) =
N∑

i=1

∣∣∣
∂W

∂σi

∣∣∣
2

= e−2S0

N∑

i=1

|eiαiσ − eiαi−1σ|2, QCD(adj) nf > 1 (3.25)
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The reader familiar with the supersymmetric affine Toda theories will recognize the form

of our (nonsupersymmetric) prepotential as the superpotential. In order to describe the

infrared of N = 1 SYM on small S1, one must incorporate the extra massless scalars into the

potential: All one needs to do is a holomorphic completion of our formula. Not surprisingly,

V (z, z̄) =

N∑

i=1

∣∣∣
∂W

∂zi

∣∣∣
2

=

N∑

i=1

|eiαiz − eiαi−1z|2 , SYM (3.26)

The fact that the potential can be derived from a prepotential as above implies that the

classical equations of motions for the σ field can be reduced to a first order one. Anticipating

ourselves a little bit, it also implies that the area law coefficients for large Wilson loops are

analytically calculable. The k-string tensions and thicknesses are calculable. This is not less

than magical, because underlying theory is not supersymmetric (except, of course nf = 1

QCD(adj), which is N = 1 SYM.)

Let us finalize this section by writing the final form of the dual of the QCD(adj) lagrangian

on small S1 × R
3 with 1 < nf ≤ 4 flavors:

LdQCD = 1
2(∂σ)2 − b e−2S0

∑

αi∈∆0
aff

|eiαiσ − e+iαi−1σ|2

+iψ̄Iγµ∂µψI + c e−S0
∑

αi∈∆0
aff

(
eiαiσ det

IJ
αiψ

Iαiψ
J + e−iαiσ det

IJ
αiψ̄

Iαiψ̄
J

)
(3.27)

The dualQCD lagrangian and the physics it encapsulates, which will be discussed next, is the

essential result of this paper.

3.2 The vacuum structure of QCD(adj)

The bosonic potential of nonsupersymmetric QCD(adj) has N gauge inequivalent isolated

vacua, aligned along the Weyl vector ρ

σ = {0,
2π

N
,
4π

N
, . . . ,

(N − 1)2π

N
}ρ (3.28)

in the field space. This is same as N = 1 SYM studied in [15]. Since each component of σ

is a periodic variable with periodicity 2π, there exist a physical congruence between σ and σ′

which are separated by an element of the root lattice Λr.

σ ≡ σ + 2πα for some α ∈ Λr (3.29)

Since the sum of all fundamental weights is a root, ρ =
∑N−1

j=1 µj ∈ Λr, this implies there

only exist N gauge inequivalent vacua when the (global) gauge symmetry redundancies are

removed. Let us the abbreviate and label the vacuum states in Hilbert space as

|Ω 2πk
N
ρ+Λr

〉 ≡ |Ωk〉 ≡ |Ωk+N〉, k = 0, . . . N − 1

Ground states =
{
|Ω0〉, |Ω1〉, . . . , |ΩN−1〉

}
(3.30)
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which forms a one dimensional representation of ZN shift symmetry, (which is intertwined

with ZN discrete chiral symmetry, see footnote 9.) This means, the (large) physical Hilbert

space spits into N superselection sectors, each of which may be build upon the associated

vacuum. The choice of the vacuum breaks the ZN discrete chiral symmetry (which is same

as ZN shift symmetry of the dual photon) spontaneously. Note that QCD(adj) also possess

a Gs = ZN spatial center symmetry which does not break regardless of the size of the S1.

3.2.1 Mass gap in the gauge sector

The small fluctuations around one of the N minima of the − cosQiσ potential shows that the

N − 1 dual photon acquires masses proportional to e−S0 . In order to see this, let us expand

the nonperturbative bion induced potential to quadratic order in dual photon σ

V (σi) = −e−2S0

N∑

i=1

cosQiσ = −e−2S0

N∑

i=1

cos(2σi − σi+1 − σi−1)

= 1
2e

−2S0
∑

i

(
6σ2

i − 4σiσi+1 − 4σiσi−1 + σiσi+2 + σiσi−2

)
bion induced (3.31)

If the fermions were absent, and the gauge symmetry was still broken by a compact adjoint

Higgs field, the quadratic fluctuations would be described by the nearest neighbor coupled

harmonic oscillator

V (σi) = 1
2e

−S0
∑

i

(
2σ2

i − σiσi+1 − σiσi−1

)
monopole induced (3.32)

which is not the case in QCD(adj). The bion induced ‘hopping’ terms are next to nearest

neighbor and of order e−2S0 as opposed to the monopole induced hopping terms which is

just nearest neighbor, and of order e−S0 . This interesting structure also has a remarkable

consequence for the calculability of the string tensions in the former, due to the fact that it

arises from a prepotential. Unfortunately, this is not the case in the latter, the monopole

case. (Except for SU(2) of course, in which case both reduce to Sine-Gordon model).

The quadratic fluctuations can be diagonalized by using the discrete Fourier transform

σp = 1√
N

∑N−1
j=0 ωjpσj in Dynkin space:

V (σp) = 1
2e

−2S0
∑

p

(6 − 4ω−p − 4ωp + ω−2p + ω2p) σpσ−p

= 1
2e

−2S0
∑

p

(ωp/2 − ω−p/2)4 σpσ−p = 1
2e

−2S0
∑

p

(2 sin
pπ

N
)4 σpσ−p (3.33)

Restoring the dimensions, we obtain the mass spectrum of the N − 1 dual photons as

mp ∼
(
Λ(ΛL)b0−1 = Λ(ΛL)(8−2nf )/3

)
× (2 sin

pπ

N
)2, p = 1, . . . , N − 1 (3.34)

The nonperturbative spectrum 3.34 is a remarkable result. It exhibits that the gauge

sector of the QCD(adj) theory is quantum mechanically gapped due to non-perturbative

effects, and permanently confines external electric charges at small S1 × R
3 limit.
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The masses are graded according to the ZN center group of SU(N) in one to one cor-

respondence with the representations Rp of SU(N) under the center group. There are two

equivalent physical interpretation for the mass gap: one as the inverse Debye screening length

in a magnetic conductor (in a Euclidean setting), and the other is the inverse thickness of

the chromoelectric flux tubes in a magnetic superconductor (at a fixed time in a Minkowski

setting). (See [38] for a parallel discussion in the context of the Polyakov model.)

Imagine a large, planar Wilson loop in a representation with charge p under the center ZN ,

In the small S1 regime (where gauge symmetry is broken to the abelian subgroup), we may

regard the Wilson loop as carrying an electric current along the contour of the loop. Hence,

by Maxwell’s equation, the current generates a magnetic field along the axis perpendicular to

the plane of the loop, within the boundary C of the loop surface Σ. The external magnetic

field can not penetrate into the magnetic conductor above a penetration depth, due to Debye

screening. The mobile magnetic charge carriers (bions) form a dipole layer in the vicinity

of the surface Σ to prevent the penetration of the external magnetic field into the magnetic

conductor, which is the vacuum of QCD(adj) from Euclidean viewpoint. The thickness of the

dipole layer for the Wilson loop with ZN charge p is the inverse of the photon mass m−1
p .

We may visualize a Wilson loop at a fixed time slice. This is a system with ±p ZN

chromoelectric sources located at two boundaries of the fixed time slice of Wilson loop. There

exist a stable chromoelectric flux tube in between the two. Since the dual superconductor

expels the electric field, and the electric flux lines are trapped within tubes with quantized

electric flux. The N − 1 classes of the photon masses are indeed the inverse characteristic

sizes of the N − 1 types of the chromoelectric flux tubes, both of which is a class function of

the ZN center group. In weakly coupled regime, making L larger reduces the thicknesses of

the stable flux tubes

lp ∼ Λ−1(ΛL)−(8−2nf )/3 × (2 sin
pπ

N
)−2, p = 1, . . . , N − 1 (3.35)

We expect it to saturate to an L independent value above the scale of gauge symmetry

restoration. Also, intermediate N -ality tubes seems to be much more slimmer than the small

and large N -ality ones.

Due to compactification, in the weakly coupled regime, the characteristic size of the flux

tubes and their tensions are no longer parametrically related. In the next section, we explicitly

calculate the string tensions.

3.2.2 Area law of confinement and monodromy

We wish to exhibit the area law of confinement for all but adjoint representations Rp of the

SU(N) gauge group. The representations of the Wilson loops under the center group ZN are

in one to one correspondence with the monodromies,
∫
C dσ in the dual theory [29]. Both forms

a representation of ZN . This is also the quantized electric flux of external charges sourcing

the associated Wilson loop. More precisely, the exponent of the flux passing through some

surface surrounding the color electric source is essentially ei
2π
N
k for source with charge k.

The evaluation of a Wilson loop in a representation with charge k under the ZN cen-

ter group in the original theory translates into finding the field configurations for the dual
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scalar theory with monodromies equal to 2πk
N ρ. Thus, we need to find the action of the the

soliton configurations which connects vacua separated by k units. Due to the the existence

of prepotential, the lower bound of the action in each topological sector can be calculated

analytically.

The expectation values of the Wilson loop falls into N categories. Let H denote the

Hamiltonian of the dual theory: The Hilbert space interpretation of Polyakov’s result is

lim
A(Σ)→∞

〈WRk
(C)〉|C=∂Σ = 〈Ωk|e

−zH |Ω0〉 ≡

∫ σ(z=+∞)=
2πk
N
ρ

σ(z=−∞)=0
Dσ e−S(σ) (3.36)

where z is Euclidean time, and interpolates between [−∞,∞]. The expectation value of

arbitrarily large Wilson loops (where Σ is R
2 filling) are equal to tunneling amplitudes in

the dual theory, where we used a functional integral representation. Formally, the tunneling

amplitude on R
2 × R is e−Area(R2)S∗

k where S∗
k is the least action associated with x, y ∈ R

2

independent soliton (kink) solution with topological charge k.

t =

∫ ∞

−∞
dz
dσ

dz
=

2πk

N
ρ (3.37)

The kink with topological charge k is localized within the m−1
k proximity of the surface Σ.

As stated earlier, the fact that the potential may be derived form a prepotential leads

to the reduction of the equations of motions of the solitons to the first order, and allows us

to find the global minimum of the action in each topologically distinct sector of the effective

theory. We have

〈Ωk|e
−zH |Ω0〉 ≡

∫ σ(z=+∞)=
2πk
N
ρ

σ(z=−∞)=0
Dσ e−S(σ) = e−Area(Σ)S∗

k , Σ ∼ R
2 (3.38)

Thus, the k-string tension is equal to the global minimum of the action (divided by area of

the surface Σ), i.e., , Tk ≡ S∗
k,, given by

Tk = |W(σ(∞)) −W(σ(−∞))| = |W(
2πk

N
ρ) −W(0)| (3.39)

in terms of prepotential. Hence,

Tk ∼ e−S0N |ei
2πk
N − 1| = e−S02N sin

πk

N
k = 1, . . . N − 1 . (3.40)

Restoring the dimensions and using the one loop renormalization group result for the strong

scale, we obtain

Tk ∼
(
Λ2(ΛL)b0−2 = Λ2(ΛL)(5−2nf )/3

)
× 2N sin

πk

N
. (3.41)

This exhibits the area law of permanent confinement in QCD(adj) in the LΛ ≪ 1 regime, and

the existence of the linearly confining potential between two external electric sources with

charges ±k ∈ ZN

Vk(R) = TkR, linear confinement (3.42)
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We expect the tension to saturate to a size independent value, a c-number times Λ2 for

LΛ > 1.

On the other hand, 0 ≡ 2πρ monodromy can be induced by no-soliton, and even soliton

sector of the dual theory. Hence, 〈Wadj(C)〉 = 1 + O(e−NTArea(Σ)), and no area law as

expected. In the strongly coupled regime, this must become perimeter law.

To summarize, in QCD(adj), both the string tensions and thicknesses of flux tubes (which

is the inverse masses of the dual photons) are class functions of the center group ZN . The class

functions depend on the N -ality of the source, but are blind to the particular representative

of a class. Also, exchanging (color) source and sink is just the mirror image, and tells us that

class functions must obey Xk = XN−k, where X is any class function. Interesting physical

quantities (which are all measurable in lattice) are the ratios of the string tensions, (inverse)

string thicknesses and their energy densities given by

Tp
T1

=
sin pπ

N

sin π
N

,
mp

m1
=

(sin pπ
N

sin π
N

)2
,

Ep
E1

=
(sin pπ

N

sin π
N

)5
. (3.43)

These observable obey

Xp ≡ XN+p, Xp = XN−p, p = 1, . . . N − 1 (3.44)

Therefore, there are
[
N
2

]
types of flux tubes, where bracket labels the integer part of the N/2.

The ratio of the string tensions yields the “sine-law” for the tensions.

In the nf = 1 case, the sine law for tension has previously been derived by Douglas

and Shenker [5] on R
4 by deforming the N = 2 theory by a perturbative mass term for the

chiral multiplet, and by Hanany et. al. [39] by realizing the same deformation in M-theory

fivebrane version, referred as mQCD. 12 Both [5, 39] achieves a weakly coupled N = 1 SYM

theory on R
4 by adding extra matter into the theory. 13 In our derivation, no extra matter

is needed. But in order to achieve a weakly coupled formulation, we compactify the theory

on R
3 ×S1 and benefit from asymptotic freedom. In both cases, the physics is rather similar,

it is spontaneously broken U(1)N−1 gauge theory, and abelian duality in d = 3 and d = 4

plays a fundamental role. The formula receives O(e−S0) corrections, which is insignificant in

the regime we derived it, but will be essential in the large radius regime. Consequently, our

result does not imply that the tension will obey a sine law in large S1 or in R
4, even in the

nf = 1 case which is N = 1 pure SYM.

Remark on other QCD-like theories: Either the mass gap in the gauge sector or

the area law for large Wilson loops are equally valid indicators of confinement for theories in

12Our result for nonsupersymmetric theories is new, and directly testable on the lattice in the appropriate

regime. Our derivation for the SYM is also different from earlier work [5,39] and does not make any reference

to supersymmetry, or the underlying theory being realizable in string theory. Due to the generality of our

approach, it is applicable to nonsupersymmetric QCD-like theories which are more interesting.

13An important issue here is to realize that this theory is not pure N = 1 SYM in R
4. As the authors of [5]

discusses, this mechanism holds so long as m/Λ ≪ 1, a perturbation. In order to obtain pure N = 1 SYM

in the IR, we must take m ≫ Λ, which is not a perturbation, and calculational control of the softly broken

N = 2 do get lost. Currently, there is no analytical derivation of mass gap or confinement in pure N = 1 SYM

on R
4.
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which the only dynamical degrees of freedom are adjoint fermions. For theories such as QCD

with two adjoint and one fundamental fermions (which also breaks its gauge symmetry at

small S1), the mass gap should still emerge, but area law must become a perimeter law. The

theory should still be confining, but the ability to form stable flux tubes must be lost due

to the fact that charged fermions can be pair created out of the vacuum, and break the flux

tube to reduce its energy. If we can construct the dual of such QCD-like theories, they must

have unique vacuum (unlike QCD(adj) with has multiple vacua), and a manifest mass gap

for photon. This should be so, because the tunneling interpretation of the Polyakov’s result

tells us that if dual theory has multiple vacua, the area law will naturally follow. A through

discussion of such theories is left for upcoming work.

3.2.3 Chiral symmetry realizations

The choice of the vacuum state |Ωk〉 spontaneously breaks the ZN shift symmetry, which

is intertwined with the ZN discrete discrete chiral symmetry. The chiral order parameter

which is a singlet under continuous flavor symmetry, and which only probes the discrete

chiral symmetry is the determinantal condensate det tr λIλJ in the original theory. In the

infrared of the theory on small S1, the off-diagonal modes of the λI are heavy due to gauge

symmetry breaking and can not contribute to the determinantal chiral condensate. We may

decompose λI = λI,ata into massless components along the Cartan subalgebra and heavy off

diagonal modes, trλIλJ ∼ L−3
∑

j(αjψ
J)(αjψ

J) + heavy, where L−3 is due to dimensional

reasons. The vacuum expectation value of the flavor singlet chiral condensate in SU(N)

QCD(adj) with 1 ≤ nf ≤ 4 flavor can be found by integrating over the zero mode wave

functions (which are essentially proportional to monopole profiles) in the background of a

monopole in the small S1 regime, where the gauge symmetry is broken. On large S1, we do

not know a reliable analytical technique in the 1 < nf ≤ 4 case to evaluate the condensate.

However, we expect the modulus of the chiral condensate to saturate to a c-number times

Λ3nf . Consequently,

〈Ωk|det tr λIλJ |Ωk〉 ∼

{
Λ3nf (ΛL)

11
3

(1−nf )e
i2πk

N L≪ Lc

Λ3nf e
i2πk

N , L > Lc
(3.45)

where the phase is ZN valued. In the nf = 1 case, this produces the correct L independence

of chiral condensate (which is due to supersymmetry) [15], and N isolated vacua. We believe

that the scale at which the determinantal condensate becomes L independent is the scale of

the gauge symmetry restoration.

In the far infrared of the QCD(adj), since σ is massive, the long distance theory further

reduce to a purely fermionic theory, which schematically looks like an NJL-type Lagrangian:

LNJL =
N∑

j=1

[
iψ̄Ij γµ∂µψ

I
j + ce−S0(det

I,J
αjψ

Iαjψ
J + c.c.)

]
(3.46)

The Lagrangian is invariant under SU(nf )×Z2nf
chiral symmetry. The Z2nf

is the unbroken

subgroup of the Z2Nnf
discrete symmetry. We wish to know whether the continuous chiral

symmetry is broken spontaneously.
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QCD(adj)
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Figure 3: The cartoon of the behavior of the center, discrete and continuous chiral symmetry real-

ization in QCD(adj), for SU(N) where N = few, nf = 2 and nf = 1 (N = 1 SYM). The spatial center

symmetry is unbroken at any L in both cases 〈trU〉 = 0. In nf = 2, the continuous chiral symmetry
is unbroken at small S1 and broken at large S1, and discrete chiral symmetry is always broken. The

red (dotted) line is the chiral condensate in N = 1 SYM, and the discrete chiral symmetry is always
broken. In the small S1 regime, the string tensions and thicknesses (the inverse mass gap in gauge

sector) are calculable, and nf = 2 theory exhibits confinement without continuous chiral symmetry

breaking. The lines slightly on top of the horizontal axis are all zero and are spit to guide the eye.

At small S1, we believe the continuous chiral symmetry is unbroken, based on studies on

related d = 3 dimensional NJL type models. Such models has generically a weakly coupled

chirally symmetric phase and a chirally asymmetric strong coupling phase. (See, the review

Ref. [40]). Our dimensionless coupling constant is g ∼ e−S0 , is far too small to induce a

chiral transition. Hence, the chiral symmetry must be unbroken, and there must be massless

fermions (protected by chiral symmetry) in the spectrum within the region of validity of our

long distance effective theory, (LΛ ≪ 1). We believe the naive extrapolation of the NJL

Lagrangian Eq.3.46 will exhibit the continuous chiral transition in an expected regime of

the underlying QCD theory. (See fig.3.2.3.) However, this will happen outside the region of

validity of our effective theory. Consequently, this does not tell us that monopole induced

vertex is the dynamical origin of continuous chiral symmetry breaking, even though it is the

origin of the discrete chiral symmetry breaking in the small S1 regime.

The absence of the continuous chiral symmetry breaking in weak coupling regime can

also be seen by an independent argument. In the small S1 regime where theory is weakly

coupled, we have control over all nonperturbative objects. A BPS or KK monopole, which

may in principle contribute to the condensate, has a minimum of 2nf fermionic zero modes.

However, our order parameter tr λIλJ can only soak up two zero modes. This implies it

cannot acquire a non-trivial vacuum expectation value. The minimal operator which may

acquire a condensate must have 2nf fermion insertion, and this is indeed the determinantal

condensate 〈det tr λIλJ〉. The correctness of this argument relies to weak coupling, and an

analogous argument cannot be carried to strong coupling.

At large S1 (and R
4), the common lore is that the chiral symmetry is spontaneously
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broken down to SO(nf ) × Z2 by the formation of the chiral condensate

〈Ωk|tr λ
IλJ |Ωk〉 ∼

{
0 L < Lc

Λ3e
i2πκ
Nnf , L > Lc

(3.47)

Consequently, there must exist N isolated coset spaces each of which is SU(nf )/SO(nf ).

In this expression, κ ranges in [0, Nnf ). Denote κ = κ = ιN + k where k = 0, . . . N − 1

and ι = 0, . . . nf − 1. For a given k, there are nf many ι for which the determinant of the

condensate is invariant. Thus, they reside in the same coset space, and there are consequently

N isolated coset spaces.

The continous chiral transition in QCD(adj) is very different from its thermal counter-

parts. In particular, it occurs in the absence of any change in its spatial center symmetry

realization. This is a quantum phase transition at absolute zero temperature, induced solely

due to quantum fluctuations. We do not know the order of the phase transition.

Finally, we wish to conjecture that the scale of the chiral phase transition Lc in QCD(adj)

is associated with the restoration of the spontaneously broken gauge symmetry. Consequently,

we believe that the chiral symmetry breaking is a strong coupling phenomena. Confinement

is not necessarily so.

3.3 Noncompact versus compact adjoint Higgs, final pass

Let us reconsider the SU(N) gauge theory with noncompact adjoint Higgs field and with

one Dirac fermions in adjoint representation on R
3.(Multiflavor generalization is obvious.)

The theory possess a U(1) fermion number symmetry. The generalization of the argument

of ref. [11] shows that the U(1) symmetry is spontaneously broken, and consequently, there

only exists one gapless excitation by Goldstone’s theorem. The other N − 2 photons of the

spontaneously broken gauge symmetry must acquire masses. We wish to know how this is

realized in the microscopic description.

When the SU(N) gauge symmetry breaks down to U(1)N−1 via an noncompact adjoint

Higgs field rather than a compact one (which was the case in QCD(adj)), monopoles only

comes in N − 1 varieties. The KK monopole is now absent. We may still define the magnetic

bions in the spontaneously broken SU(N) gauge theory for N ≥ 3, but there are only N−2 of

them. As before, a bion is a bound state of the monopole associated with magnetic charge αi
and anti-monopole associated with charge −αi+1 with null topological charge. The magnetic

charge of a bion is

Qi = αi − αi−1, i = 2, . . . N − 1 (3.48)

Hence, there are only N − 2 types of magnetic bions. In other words, the absence of αN ≡ α0

KK monopole removes two would be bions of the compact theory. Thus, the potential for the

σ field is a sum over N − 2 bions and their conjugates given by

V (σ) = −e−2S0

N−1∑

i=2

(
eiQiσ + c.c

)
(3.49)
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The potential generates mass terms only for N − 2 dual photons. The massless photon is the

Goldstone boson. Equivalently, we may say the sum in the prepotential is restricted to the root

system ∆0, W(σ) = e−S0
∑

αi∈∆0 eiαiσ , and from the study of the analogous supersymmetric

theory, we know that the reduction from affine Toda to nonaffine Toda renders the gapped

theory gapless [12,15].

4. Outlook: Confinement, and more on its persona and anima

A microscopic derivation of the mechanism which provides confinement in QCD(adj) quan-

tized on small S1 × R
3 is given. This is a QCD-like theory with no elementary scalars in

its Lagrangian, and no special properties such as supersymmetry (except the nf = 1 case).

We believe the solution provides a significant contribution to our current understanding of

QCD-like gauge theories, and teaches us many valuable lessons. We also found the underlying

dynamical reasons behind the lack of confinement in Yang-Mills noncompact Higgs systems

with adjoint fermions formulated on R
3. Let us quote our main result for the SU(2) gauge

group:

• QCD(adj) exhibits permanent confinement even at arbitrarily weak coupling (small

S1). In other words, in asymptotically free confining gauge theories, confinement is not

necessarily a strong coupling phenomena.

• In the presence of massless dynamical fermions, the objects with nonvanishing topolog-

ical charge must have compulsory fermion zero mode attached to them. Hence, they

induce fermion-fermion and fermion-dual photon interactions, neither of which can ap-

pear in the bosonic potential of the dual photon. Our arguments rules out monopoles

and monopole condensation as the microscopic mechanism of the confinement in QCD-

like theories with dynamical fermions in general.

• The beautiful and qualitative idea of dual superconductivity is quantitatively realized

in the vacuum of QCD(adj). Pairs with magnetic and topological charge (±2, 0) which

we referred as bions condenses, and magnetic bion condensation is the mechanism of

confinement.

• A new pairing mechanism is at play. The repulsive Coulomb repulsion between the

bion constituents [with charges (1,+1
2 ) and (1,−1

2 ) ] is overwhelmed by a attractive

logarithmic force. The pairing mechanism responsible for the bound state is induced by

2nf -fermion exchange in nf flavor theory.

• Bions generate the bosonic potential which provides the mass gap for the dual photon.

• This rationale also explains why the Yang-Mills with noncompact adjoint Higgs field

and adjoint fermions do not confine on R
3 despite the presence of monopoles. The

same rationale is also true for N = 2 SYM on R
3. These are examples as important as

QCD(adj) itself, because we believe it is equally important to understand the lack of

confinement in order to understand confinement.
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• In general SU(N) case, we demonstrated the area law of confinement for Wilson loops

in arbitrary representations. The dual theory hints an integrable (generalized Toda)

system behind QCD(adj), in the e−S0 expansion of the action at order e−2S0 . We do

not know whether this extends to higher order if we were to find higher order terms

in e−S0 expansion. We also do not know whether there may be integrability behind

QCD(adj) on R
4.

We wish to express that we are optimistic of future progress which will reveal the inner

goings-on of general QCD-like theories:

Incorporating fundamental representation fermions: For example, in a theory with two

adjoint and one fundamental fermion (mixed action), the back-reaction of fermion is in-

sufficient to induce center symmetry breaking in the small S1 regime. This theory has both

magnetic monopoles, and massless electric charges within the weak coupling regime examined

in this paper. This system should teach us something which may be relevant to the QCD

of Nature. Unfortunately, our techniques are not directly applicable to pure Yang-Mills or

QCD with fundamental fermions due to breaking of (temporal or spatial) center symmetry

at small S1.

Confinement on QCD-like theories on R
4: The techniques of this paper are strictly valid

in the gauge symmetry broken phase of the QCD(adj). However, we believe that certain

assertions are generalizable to R
4, and direct progress will occur in QCD(adj) on R

4, where

strong coupling necessarily occurs.

Lattice gauge theory: Many assertions made in this paper are directly testable in lattice

simulations with available technologies. In particular, the string tensions and characteristic

sizes of flux tubes 3.34, 3.43 can be extracted from the lattice simulations of QCD(adj) as

in [41]. QCD(adj) also undergoes a zero temperature quantum chiral transition in the absence

of any change in center symmetry realization. This should be directly testable on the lattice

by modifying the existing simulations (such as [42]) appropriately. It would also be useful

to construct the duality between QCD(adj) on R
3 × S1 with Lagrangian 2.1 and dual QCD

defined in 3.27 directly in lattice formulations.
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