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San José, Costa Rica, and

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309
∗E-mail: gdt@asterix.crnet.cr

The AdS/CFT correspondence between string theory in AdS space and

conformal field theories in physical space-time leads to an analytic, semi-

classical model for strongly-coupled QCD which has scale invariance and di-
mensional counting at short distances and color confinement at large distances.

One can use holography to map the amplitude describing the hadronic state in

the fifth dimension of Anti-de Sitter space AdS5 to the light-front wavefunc-
tions of hadrons in physical space-time, thus providing a relativistic description

of hadrons in QCD at the amplitude level. In particular, we show that there
is an exact correspondence between the fifth-dimensional coordinate of AdS

space z and a specific impact variable ζ which measures the separation of

the quark and gluonic constituents within the hadron in ordinary space-time.
New relativistic light-front equations in ordinary space-time can then be de-

rived which reproduce the results obtained using the 5-dimensional theory. The

effective light-front equations possess elegant algebraic structures and integra-
bility properties. This connection between the AdS and the light-front repre-

sentations allows one to compute the analytic form of the frame-independent

light-front wavefunctions, the fundamental entities which encode hadron prop-
erties and allow the computation of decay constants, form factors, deeply vir-

tual Compton scattering, exclusive heavy hadron decays and other exclusive
scattering amplitudes. As specific examples we compute the pion coupling con-
stant fπ and study the behavior of the pion form factor Fπ(q2) in the space

and time-like regions. We also determine the Dirac nucleon form factors F p1 (q2)
and Fn1 (q2) in the space-like region.
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1. Exclusive Processes in QCD

Exclusive processes provide essential tests of the quark and gluon structure
of hadrons at the amplitude level and a window into the form of bound-
state wavefunctions of QCD. For example, hadron form factors and the
generalized distributions which control deeply virtual Compton scattering
are expressible in terms of the light-front wavefunctions ψHn (xi,k⊥i, λi), the
bound-state eigensolutions of the QCD light-front Hamiltonian.

Light-front wavefunctions are the relativistic generalizations of the fa-
miliar Schrödinger wavefunctions of atomic physics, but they are deter-
mined at fixed light-front time τ = t+ z/c—the “front form” advocated by
Dirac1—rather than at fixed ordinary time t. The light-front wavefunctions
of a hadron are independent of the momentum of the hadron, and they are
thus boost invariant; Wigner transformations and Melosh rotations are not
required. The light-front formalism for gauge theories in light-cone gauge is
particularly useful in that there are no ghosts and one has a direct physical
interpretation of orbital angular momentum.

Given the light-front wavefunctions ψn/h one can compute a large range
of hadron observables. For example, the valence and sea quark and gluon
distributions which are measured in deep inelastic lepton scattering are
defined from the squares of the LFWFS summed over all Fock states n.
Form factors, exclusive weak transition amplitudes2 such as B → `νπ. and
the generalized parton distributions3 measured in deeply virtual Compton
scattering γ∗p→ γp are (assuming the “handbag” approximation) overlaps
of the initial and final LFWFS with n = n′ and n = n′ + 2. The gauge-
invariant distribution amplitude φH(xi, Q) defined from the integral over
the transverse momenta k2

⊥i ≤ Q2 of the valence (smallest n) Fock state
provides a fundamental measure of the hadron at the amplitude level;4,5

they are the nonperturbative input to the factorized form of hard exclusive
amplitudes and exclusive heavy hadron decays in perturbative QCD. The
resulting distributions obey the DGLAP and ERBL evolution equations as
a function of the maximal invariant mass, thus providing a physical factor-
ization scheme.6 In each case, the derived quantities satisfy the appropriate
operator product expansions, sum rules, and evolution equations. At large
x where the struck quark is far-off shell, DGLAP evolution is quenched,7

so that the fall-off of the DIS cross sections in Q2 satisfies Bloom-Gilman
inclusive-exclusive duality at fixed W 2.

One of the most significant theoretical advances in recent years has been
the application of the AdS/CFT correspondence8 between string theories
defined in 5-dimensional Anti–de Sitter (AdS) space-time and conformal
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field theories in physical space-time. QCD is not itself a conformal the-
ory; however there are indications, both from theory9,10 and phenomenol-
ogy,11,12 that the QCD coupling is slowly varying at small momentum trans-
fer. In addition, one can argue that if the gluon has a maximum wavelength
or an effective mass13 due to confinement, that gluonic vacuum polarization
corrections and the β-function must vanish in the infrared.

If there is a conformal window where the QCD coupling is large and
approximately constant and quark masses can be neglected, then QCD re-
sembles a conformal theory, thus motivating the application of AdS/CFT
to QCD. Thus, even though QCD is not conformally invariant, one can use
the mathematical representation of the conformal group in five-dimensional
anti-de Sitter space to construct an analytic first approximation to the the-
ory. The resulting AdS/QCD model gives accurate predictions for hadron
spectroscopy and a description of the quark structure of mesons and baryons
which has scale invariance and dimensional counting at short distances, to-
gether with color confinement at large distances.

As we shall discuss, one can use holography to map the amplitude Φ(z)
describing the hadronic state in the fifth dimension of Anti-de Sitter space
AdS5 to the light-front wavefunctions ψn/h of hadrons in physical space-
time,14 thus providing a relativistic description of hadrons in QCD at the
amplitude level. In fact, there is an exact correspondence between the fifth-
dimensional coordinate of anti-de Sitter space z and a specific impact vari-
able ζ in the light-front formalism which measures the physical separation
of the constituents within the hadron. One can derive this correspondence
by noticing that the mapping of z → ζ transforms the expression for the
form factors in AdS/CFT to the exact QCD Drell-Yan-West expression
in terms of light-front wavefunctions. The amplitude Φ(z) describing the
hadronic state in AdS5 can then be precisely mapped to the light-front
wavefunctions ψn/h of hadrons in physical space-time.14 One thus obtains
not only an accurate description of the hadron spectrum, but also a sim-
ple but realistic model of the valence light-front wavefunctions of mesons,
baryons, and glueballs. Thus there is a remarkable mapping between the
AdS description of hadrons and the Hamiltonian formulation of QCD in
physical space-time quantized at fixed light front time τ = t+ z/c.

The AdS/QCD correspondence is particularly relevant for the descrip-
tion of hadronic form factors, since it incorporates the connection between
the twist of the hadron to the fall-off of its current matrix elements, as well
as essential aspects of vector meson dominance. It also provides a convenient
framework for analytically continuing the space-like results to the time-like
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region. Recent applications to the form factors of mesons and nucleons 15–21

have followed from the pioneering work of refs. 22,23.

2. The AdS/CFT Duality

The essential principle underlying the AdS/CFT approach to conformal
gauge theories is the isomorphism of the group of Poincare’ and conformal
transformations SO(4, 2) to the group of isometries of Anti-de Sitter space.
The AdS metric is

ds2 =
R2

z2
(ηµνdxµdxν − dz2), (1)

which is invariant under scale changes of the coordinate in the fifth dimen-
sion z → λz and xµ → λxµ. Thus one can match scale transformations of
the theory in 3 + 1 physical space-time to scale transformations in the fifth
dimension z. In the AdS/CFT duality, the amplitude Φ(z) represents the
extension of the hadron into the additional fifth dimension. The behavior
of Φ(z)→ z∆ at z → 0 matches the twist-dimension of the hadron at short
distances x2 → 0.

2.1. The Hard-Wall Holographic Model

As shown by Polchinski and Strassler,24 one can simulate confinement by
imposing boundary conditions in the holographic variable at z = z0 =
1/ΛQCD. Confinement can also be introduced by modifying the AdS metric
to mimic a confining potential. The resulting models, although ad hoc,
provide a simple semi-classical approximation to QCD which incorporate
both constituent counting rule behavior at short distances and confinement
at large distances.

This simple approach, which has been described as a “bottom-up” ap-
proach, has been successful in obtaining general properties of scattering
amplitudes of hadronic bound states at strong coupling,24,25 the low-lying
hadron spectra26–29 and hadron couplings and chiral symmetry break-
ing.30–33 The gauge theory/gravity duality also provides a convenient frame-
work for the description of deep inelastic scattering structure functions at
small x34 and a unified description of hard and soft pomeron physics.35 Re-
cent applications to describe chiral symmetry breaking36 and other meson
and baryon properties, have also been carried out within the framework of
a top-bottom approach to AdS/CFT using higher dimensional branes.37
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2.2. The Soft-Wall Holographic Model

The predicted mass spectrum in the truncated space hard-wall (HW) model
is linear M ∝ L at high orbital angular momentum L, in contrast to the
quadratic dependence M2 ∝ L in the usual Regge parameterization. It has
been shown recently that by choosing a specific profile for a non-constant
dilaton, the usual Regge dependence can be obtained.38 The procedure
allows one to retain conformal AdS metrics (1) and to introduce a smooth
cutoff which depends on the profile of a dilaton background field ϕ

S =
∫
d4x dz

√
g e−ϕ(z)L, (2)

where ϕ is a function of the holographic coordinate z which vanishes in the
ultraviolet limit z → 0. The IR hard-wall or truncated space holographic
model, discussed in the previous section, corresponds to a constant dilaton
field in the confining region ϕ(z) = ϕ0, z ≤ 1/ΛQCD, and to very large
values elsewhere: ϕ(z) → ∞ for z > 1/ΛQCD. The introduction of a soft
cutoff avoids the ambiguities in the choice of boundary conditions at the
infrared wall. A convenient choice38 for the background field with usual
Regge behavior is ϕ(z) = κ2z2. The resulting wave equations are equivalent
to the radial equation of a two-dimensional oscillator previously found in
the context of mode propagation on AdS5×S5 in the light-cone formulation
of Type II supergravity.39

3. Light-Front Fock Representation

The light-front expansion is constructed by quantizing QCD at fixed light-
cone time1 τ = t + z/c and forming the invariant light-front Hamiltonian:
HQCD
LF = P+P− − ~P 2

⊥ where P± = P 0 ± P z.40 The momentum generators
P+ and ~P⊥ are kinematical; i.e., they are independent of the interactions.
The generator P− = i ddτ generates light-cone time translations, and the
eigen-spectrum of the Lorentz scalar HQCD

LF gives the mass spectrum of the
color-singlet hadron states in QCD: HLC |ψh〉 =M2

h |ψh〉. The state |ψh〉
is an expansion in multi-particle Fock eigenstates { |n〉} of the free light-
front Hamiltonian: |ψh〉 =

∑
n ψn/h|ψh〉; the projection of the eigensolution

on the free Fock basis gives the hadronic light-front wavefunctions. The
coefficients of the Fock expansion ψn/h(xi,k⊥i, λi) are independent of the
total momentum P+ and P⊥ of the hadron and depend only on the relative
partonic coordinates, the longitudinal momentum fraction xi = k+

i /P
+, the

relative transverse momentum k⊥i and λi, the constituent’s spin along the z
direction. Momentum conservation requires

∑n
i=1 xi = 1 and

∑n
i=1 k⊥i = 0.
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3.1. Light-Front Wavefunctions in Impact Space

The holographic mapping of hadronic LFWFs to AdS string modes is most
transparent when one uses the impact parameter space representation.41

The total position coordinate of a hadron or its transverse center of mo-
mentum R⊥, is defined in terms of the energy momentum tensor Tµν

R⊥ =
1
P+

∫
dx−

∫
d2x⊥ T++ x⊥. (3)

In terms of partonic transverse coordinates

xir⊥i = xiR⊥ + b⊥i, (4)

where the r⊥i are the physical transverse position coordinates and b⊥i
frame independent internal coordinates, conjugate to the relative coor-
dinates k⊥i. Thus,

∑n
i=1 b⊥i = 0 and R⊥ =

∑n
i=1 xir⊥i. The LFWF

ψn(xj ,k⊥j) can be expanded in terms of the n − 1 independent coordi-
nates b⊥j , j = 1, 2, . . . , n− 1

ψn(xj ,k⊥j) = (4π)
(n−1)

2

n−1∏
j=1

∫
d2b⊥j exp

(
i
n−1∑
j=1

b⊥j · k⊥j
)
ψ̃n(xj ,b⊥j).

(5)
The normalization is defined by

∑
n

n−1∏
j=1

∫
dxjd

2b⊥j
∣∣∣ψ̃n(xj ,b⊥j)

∣∣∣2 = 1. (6)

One of the important advantages of the light-front formalism is that cur-
rent matrix elements can be represented without approximation as overlaps
of light-front wavefunctions. In the case of the elastic space-like form fac-
tors, the matrix element of the J+ current only couples Fock states with
the same number of constituents. If the charged parton n is the active
constituent struck by the current, and the quarks i = 1, 2, . . . , n − 1 are
spectators, then the Drell-Yan West formula42–44 in impact space is

F (q2) =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥j exp
(
iq⊥ ·

n−1∑
j=1

xjb⊥j
) ∣∣∣ψ̃n(xj ,b⊥j)

∣∣∣2 , (7)

corresponding to a change of transverse momenta xjq⊥ for each of the n−1
spectators. This is a convenient form for comparison with AdS results, since
the form factor is expressed in terms of the product of light-front wave
functions with identical variables.
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4. Light-Front Mapping of String Amplitudes

We can now establish an explicit connection between the AdS/CFT and
the LF formulae. To make more transparent the holographic connection
between AdS5 and the conformal quantum field theory defined at its asymp-
totic z → 0 boundary, it is convenient to write the AdS metric (1) in terms
of light front coordinates x± = x0 ± x3

ds2 =
R2

z2

(
dx+dx− − dx2

⊥ − dz2
)
. (8)

It is also useful to express (7) in terms of an effective single particle trans-
verse distribution ρ̃ 14

F (q2) = 2π
∫ 1

0

dx
(1− x)
x

∫
ζdζ J0

(
ζq

√
1− x
x

)
ρ̃(x, ζ), (9)

where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j
∣∣∣, (10)

representing the x-weighted transverse impact coordinate of the spectator
system. On the other hand, the expression for the form factor in AdS space
is represented as the overlap in the fifth dimension coordinate z of the
normalizable modes dual to the incoming and outgoing hadrons, ΦP and
ΦP ′ , with the non-normalizable mode, J(Q, z) = zQK1(zQ), dual to the
external source34

F (Q2) = R3

∫
dz

z3
ΦP ′(z)J(Q, z)ΦP (z). (11)

If we compare (9) in impact space with the expression for the form factor
in AdS space (11) for arbitrary values of Q using the identity∫ 1

0

dx J0

(
ζQ

√
1− x
x

)
= ζQK1(ζQ), (12)

then we can identify the spectator density function appearing in the light-
front formalism with the corresponding AdS density

ρ̃(x, ζ) =
R3

2π
x

1− x
|Φ(ζ)|2

ζ4
. (13)

Equation (13) gives a precise relation between string modes Φ(ζ) in AdS5

and the QCD transverse charge density ρ̃(x, ζ). The variable ζ represents a
measure of the transverse separation between point-like constituents, and
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it is also the holographic variable z characterizing the string scale in AdS.
Consequently the AdS string mode Φ(z) can be regarded as the proba-
bility amplitude to find n partons at transverse impact separation ζ = z.
Furthermore, its eigenmodes determine the hadronic spectrum.14

In the case of a two-parton constituent bound state, the correspondence
between the string amplitude Φ(z) and the light-front wave function ψ̃(x,b)
is expressed in closed form14

∣∣∣ψ̃(x, ζ)
∣∣∣2 =

R3

2π
x(1− x)

|Φ(ζ)|2

ζ4
, (14)

where ζ2 = x(1 − x)b2
⊥. Here b⊥ is the impact separation and Fourier

conjugate to k⊥.
In presence of the dilaton background ϕ = κ2z2 the form factor in AdS

space has the additional term e−κ
2z2 in the metric

F (Q2) = R3

∫
dz

z3
e−κ

2z2Φ(z)Jκ(Q, z)Φ(z), (15)

to be properly normalized to the charge operator at Q = 0. The non-
normalizable electromagnetic mode Jκ(Q, z) in (15)

Jκ(Q, z) = Γ
(

1 +
Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
, (16)

couples to the dilaton field as it propagates in AdS space and U(a, b, c) is
the confluent hypergeometric function with the integral representation

Γ(a)U(a, b, z) =
∫ ∞

0

e−ztta−1(1 + t)b−a−1dt. (17)

In the large Q2 limit, Q2 � 4κ2 we find that Jκ(Q, z) → zQK1(zQ).
Thus, for large transverse momentum the current decouples from the dila-
ton background, and we recover our previous results for the ultraviolet
behavior of matrix elements. When summed over all Fock states the Drell-
Yan-West (DYW) formula gives an exact result. The formula describes the
coupling of the free electromagnetic current to the elementary constituents
in the interaction representation. In the presence of a dilaton field in AdS
space, the electromagnetic AdS mode is no longer dual to a the free quark
current, but dual to a dressed current, i.e., a hadronic electromagnetic cur-
rent including virtual qq pairs and thus confined. We thus expect that the
modified mapping corresponds to the presence of higher Fock states in the
hadron.
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4.1. Holographic Light-Front Representation

The mapping of z from AdS space to ζ in the LF space allows the equations
of motion in AdS space to be recast in the form of a light-front Hamiltonian
equation40

HLF |φ〉 =M2 |φ〉 , (18)

a remarkable result which allows the discussion of the AdS/CFT solutions
in terms of light-front equations in physical 3+1 space-time. By substituting

φ(ζ) =
(
ζ
R

)−3/2

Φ(ζ), in the AdS wave equation describing the propagation
of scalar modes in AdS space[

z2∂2
z − (d− 1)z ∂z + z2M2 − (µR)2

]
Φ(z) = 0, (19)

we find an effective Schrödinger equation as a function of the weighted
impact variable ζ [

− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (20)

with the effective potential V (ζ)→ −(1− 4L2)/4ζ2 in the conformal limit,
where we identity ζ with the fifth dimension z of AdS space: ζ = z. We have
written above (µR)2 = −4 +L2. The solution to (20) is φ(z) = z−

3
2 Φ(z) =

Cz
1
2 JL(zM). This equation reproduces the AdS/CFT solutions for mesons

with relative orbital angular momentum L. The holographic hadronic light-
front wave functions φ(ζ) = 〈ζ|φ〉 are normalized according to

〈φ|φ〉 =
∫
dζ |〈ζ|φ〉|2 = 1, (21)

and represent the probability amplitude to find n-partons at transverse im-
pact separation ζ = z. Its eigenmodes determine the hadronic mass spec-
trum.

The effective wave equation (20) is a relativistic light-front equation
defined at x+ = 0. The AdS metric ds2 (8) is invariant if x2

⊥ → λ2x2
⊥ and

z → λz at equal light-front time. The Casimir operator for the rotation
group SO(2) in the transverse light-front plane is L2. This shows the natural
holographic connection to the light front.

The lowest stable state L = 0 is determined by the Breitenlohner-
Freedman bound.45 Its eigenvalues are set by the boundary conditions at
φ(z = 1/ΛQCD) = 0 and are given in terms of the roots of Bessel functions:
ML,k = βL,kΛQCD. Normalized LFWFs ψ̃L,k follow from (14)

ψ̃L,k(x, ζ) = BL,k
√
x(1− x)JL (ζβL,kΛQCD) θ

(
z ≤ Λ−1

QCD

)
, (22)
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where BL,k = ΛQCD/
√
πJ1+L(βL,k). The resulting wavefunctions depicted

in Fig. 1 display confinement at large interquark separation and conformal
symmetry at short distances, reproducing dimensional counting rules for
hard exclusive processes and the scaling and conformal properties of the
LFWFs at high relative momenta in agreement with perturbative QCD.
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Fig. 1. AdS/QCD Predictions for the light-front wavefunctions of a meson in the hard-

wall model: (a) n = 0, L = 0, (b) n = 0, L = 1, (c) n = 1, L = 0.

Since they are complete and orthonormal, these AdS/CFT model wave-
functions can be used as an initial ansatz for a variational treatment or as
a basis for the diagonalization of the light-front QCD Hamiltonian. We are
now in fact investigating this possibility with J. Vary and A. Harinandrath.
Alternatively, one can introduce confinement by adding a two-dimensional
harmonic oscillator potential κ4ζ2 in the LF transverse plane to the con-
formal kernel in Eq. (20). One can also introduce nonzero quark masses for
the meson. The procedure is straightforward in the k⊥ representation by
using the substitution k2

⊥
x(1−x) →

k2
⊥+m2

1
x + k2

⊥+m2
2

1−x .

5. Integrability of AdS/CFT Equations

The integrability methods of Ref. [46] find a remarkable application in the
AdS/CFT correspondence. Integrability follows if the equations describing
a physical model can be factorized in terms of linear operators. These ladder
operators generate all the eigenfunctions once the lowest mass eigenfunction
is known. In holographic QCD, the conformally invariant 3 + 1 light-front
differential equations can be expressed in terms of ladder operators and
their solutions can then be expressed in terms of analytical functions. In
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the conformal limit the ladder algebra for bosonic (B) or fermionic (F )
modes is given in terms of the operator (ΓB = 1, ΓF = γ5)

ΠB,F
ν (ζ) = −i

(
d

dζ
−
ν + 1

2

ζ
ΓB,F

)
, (23)

and its adjoint

ΠB,F
ν (ζ)† = −i

(
d

dζ
+
ν + 1

2

ζ
ΓB,F

)
, (24)

with commutation relations[
ΠB,F
ν (ζ),ΠB,F

ν (ζ)†
]

=
2ν + 1
ζ2

ΓB,F . (25)

For ν ≥ 0 the Hamiltonian is written as a bilinear formHB,F
LC = ΠB,F

ν
†ΠB,F

ν .
In the fermionic case the eigenmodes also satisfy a first order LF Dirac
equation. For bosonic modes, the lowest stable state ν = 0 corresponds to
the Breitenlohner-Freedman bound. Higher orbital states are constructed
from the L-th application of the raising operator a† = −iΠB on the ground
state.

6. Hadronic Spectra in AdS/QCD

The holographic model based on truncated AdS space can be used to obtain
the hadronic spectrum of light quark qq, qqq and gg bound states. Specific
hadrons are identified by the correspondence of the amplitude in the fifth
dimension with the twist dimension of the interpolating operator for the
hadron’s valence Fock state, including its orbital angular momentum ex-
citations. Bosonic modes with conformal dimension 2 + L are dual to the
interpolating operator Oτ+L with τ = 2. For fermionic modes τ = 3. For ex-
ample, the set of three-quark baryons with spin 1/2 and higher is described
by the light-front Dirac equation(

αΠF(ζ)−M
)
ψ(ζ) = 0, (26)

where iα =
(

0 I

−I 0

)
in the Weyl representation. The solution is

ψ(ζ) = C
√
ζ [JL+1 (ζM) u+ + JL+2 (zM) u−] , (27)

with γ5u± = u±. A discrete four-dimensional spectrum follows when
we impose the boundary condition ψ±(ζ = 1/ΛQCD) = 0: M+

α,k =
βα,kΛQCD, M−α,k = βα+1,kΛQCD, with a scale-independent mass ratio.28
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Figure 2(a) shows the predicted orbital spectrum of the nucleon states
and Fig. 2(b) the ∆ orbital resonances. The spin-3/2 trajectories are deter-
mined from the corresponding Rarita-Schwinger equation. The solution of
the spin-3/2 for polarization along Minkowski coordinates, ψµ, is similar to
the spin-1/2 solution. The data for the baryon spectra are from [47]. The
internal parity of states is determined from the SU(6) spin-flavor symmetry.
Since only one parameter, the QCD mass scale ΛQCD, is introduced, the
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Fig. 2. Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The

56 trajectory corresponds to L even P = + states, and the 70 to L odd P = − states.

agreement with the pattern of physical states is remarkable. In particular,
the ratio of ∆ to nucleon trajectories is determined by the ratio of zeros
of Bessel functions. The predicted mass spectrum in the truncated space
model is linear M ∝ L at high orbital angular momentum, in contrast to
the quadratic dependence M2 ∝ L in the usual Regge parameterization.
One can obtain M2 ∝ (L+n) dependence in the holographic model by the
introduction of a harmonic potential κ2z2 in the AdS wave equations.38

This result can also be obtained by extending the conformal algebra writ-
ten above. An account of the extended algebraic holographic model and
a possible supersymmetric connection between the bosonic and fermionic
operators used in the holographic construction will be described elsewhere.

7. Analytic Results for Hadronic Observables in AdS/QCD

7.1. Hadronic Form Factors of Arbitrary Twist

A string mode φτ which couples to a local hadronic interpolating operator
of twist τ defined at the asymptotic boundary of AdS space has scaling
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dimension τ , Φτ ∼ zτ , as z → 0. In the soft-wall model a normalized string
mode Φτ is given by

Φτ (z) =
1

R3/2

√
2

Γ(τ−1)
κτ−1zτ . (28)

for n = 0. It is convenient to perform the change of variable t = x
1−x in

the integral representation for the bulk-to-boundary propagator (16). Upon
integration by parts the resulting expression, there follows

Jκ(Q, z) = κ2z2

∫ 1

0

dx

(1− x)2
x
Q2

4κ2 e−κ
2z2x/(1−x), (29)

the result found by Grigoryan and Radyuskin in Ref. 17. We can then find
an analytical expression for the form factor of a hadronic state of arbitrary
twist τ by substituting the integral representation (29) for Jκ(q, z) in (15).
We find the result

F (Q2) = Γ(τ)
Γ
(

1+ Q2

4κ2

)
Γ
(
τ+ Q2

4κ2

) . (30)

In the absence of anomalous dimensions, the twist is an integer, τ = N ,
and we can simplify (30) by using the recurrence formula

Γ(N + z) = (N − 1 + z)(N − 2 + z) . . . (1 + z)Γ(1 + z). (31)

We find

F (Q2)=
1

1 + Q2

4κ2

, N = 2, (32)

F (Q2)=
2(

1 + Q2

4κ2

)(
2 + Q2

4κ2

) , N = 3, (33)

· · ·

F (Q2)=
(N − 1)!(

1 + Q2

4κ2

)(
2 + Q2

4κ2

)
· · ·
(
N−1+ Q2

4κ2

) , N, (34)

which is expressed as a product of N − 1 poles, corresponding to the first
N−1 states along the vector meson radial trajectory. For large Q2 it follows
that

F (Q2)→ (N − 1)!
[

4κ2

Q2

](N−1)

, (35)

and we recover the conformal power-law counting rules for hard scatter-
ing.48–50
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7.2. Meson Form Factors

As we have discussed, hadron form factors can be predicted in AdS from
the overlap of the normalizable modes dual to the incoming and outgo-
ing hadrons with the bulk-to-boundary propagator, J(Q, z), dual to the
external source, or equivalently by using the DYW formula in physical
space-time. For example, we can compute the pion form factor from the
AdS expressions (11) and (15) for the hadronic string modes Φπ in the
hard-wall (HW)

ΦHWπ (z) =
√

2ΛQCD
R3/2J1(β0,1)

z2J0 (zβ0,1ΛQCD) , (36)

and soft-wall (SW) model

ΦSWπ (z) =
√

2κ
R3/2

z2, (37)

respectively. Since the pion mode couples to a twist-two boundary interpo-
lating operator which creates a two-component hadronic bound state, the
form factor is given in the SW model by the simple monopole form (32)
corresponding to n = 2

Fπ(Q2) =
4κ2

4κ2 +Q2
. (38)

The hadronic scale is evaluated by fitting the space-like data for the form
factor as shown in Figure 3, where we plot the productQ2Fπ(Q2) for the soft
and hard-wall holographic models. Both models would seem to describe the
overall behavior of the space-like data; however, when the low energy data
is examined in detail, the SW model gives a noticeable better description as
shown in Figure 4. When the results for the pion form factor are analytically
continued to the time-like region, q2 → −q2 we obtain the results shown in
Figure 5 for log

(
|Fπ(q2)|

)
. The monopole form of the SW model exhibits

a pole at the ρ mass and reproduces well the ρ peak with Mρ = 4κ2 = 750
MeV. In the strongly coupled semiclassical gauge/gravity limit hadrons
have zero widths and are stable. The form factor accounts for the scaling
behavior in the space-like region, but does not give rise to the additional
structure found in the time-like region, since the ρ pole saturates 100% the
monopole form (38).
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Fig. 3. Space-like scaling behavior for Q2Fπ(Q2) as a function of Q2 = −q2. The

continuous line is the prediction of the soft-wall model for κ = 0.375 GeV. The dashed

line is the prediction of the hard-model for ΛQCD = 0.22 GeV. The black triangles is
the data compilation from Baldini et al.,51 the red boxes are JLAB 1 data52 and cobalt

green diamonds are JLAB 2 data.53

7.3. Contributions to Meson Form Factors and Structure

Functions at Large Momentum Transfer in AdS/QCD

The form factor of a hadron at largeQ2 arises from the small z kinematic do-
main in AdS space. According to the AdS/CFT duality, this corresponds to
small distances xµxµ ∼ 1/Q2 in physical space-time, the domain where the
current matrix elements are controlled by the conformal twist-dimension, ∆,
of the hadron’s interpolating operator. In the case of the front form, where
x+ = 0, this corresponds to small transverse separation xµxµ = −x2

⊥.

As we have shown,14 one can use holography to map the functional
from of the string modes Φ(z) in AdS space to the light front wavefunc-
tions in physical space time by identifying z with the transverse variable
ζ =

√
x

1−x |~η⊥|. Here ~η⊥ =
∑n−1
i=1 xib⊥i is the weighted impact separa-

tion, summed over the impact separation of the spectator constituents. The
leading large-Q2 behavior of form factors in AdS/QCD arises from small
ζ ∼ 1/Q, corresponding to small transverse separation.

For the case of a meson with two constituents the form factor can be
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0.375 GeV and ΛQCD = 0.22 GeV. Continuous line: soft-wall model, dashed line: hard-
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written in terms of an effective light-front transverse density in impact space

F (q2) =
∫ 1

0

dx

∫
db2 ρ̃(x, b,Q), (39)

with ρ̃(x, b,Q) = πJ0 (bQ(1− x)) |ψ̃(x, b)|2 and b = |b⊥|. The kinematics
are illustrated in figure 6 for the case of a meson with two constituents in
the soft-wall model

ψ̃qq/π(x,b⊥) =
κ√
π

√
x(1− x) e−

1
2κ

2x(1−x)b2
⊥ , (40)

where the Gaussian form of the LFWF at large Q2 favors short-distance
configurations with small ζ2 = b2⊥x(1 − x) ∼ 1/Q2. Since we are mainly
interested in studying the contribution from different regions to the form
factor at large Q2, we have replaced the modified bulk-to-boundary propa-
gator Jκ(Q, z) (16) by its large Q2 form zQK1(zQ). One sees a shift of the
integrand ρ̃(x, b,Q) toward small |b⊥| and small 1−x at high Q2. A similar
behavior is observed for the LFWF obtained from the hard wall model.

0

0.2

0.4

0

0.5

1.0

0

0.5

1.0

01020 01020

0

0.2

0.4

(a) (b)

7-2007
8755A5

bb

xx

ρ(
x,b
)

Fig. 6. Effective partonic density ρ(x, b,Q) in terms of the longitudinal momentum

fraction x, the transverse relative impact variable b = |b⊥| and momentum transfer Q
for the soft wall model. As Q increases the distribution becomes increasingly important
near x = 1 and b⊥ = 0. This is illustrated in (a) for Q = 1 GeV/c. At very large Q
(figure (b)), the distribution is peaked towards b⊥ = 0. The value of κ is 0.375 GeV.

7.4. The Meson Structure Function

The pion structure function qπ(x,Q2) is computed by integrating the square
of the pion light-front wave function up to the scale Q2

qπ(x,Q2) =
∫ Q2

d2k⊥
16π3

∣∣ψqq/π(x,k⊥)
∣∣2 , (41)
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where the LFWF in k⊥ space

ψqq/π(x,k⊥) =
4π

κ
√
x(1− x)

e
− k2

⊥
2κ2x(1−x) . (42)

is the Fourier transform (5) for a two-parton bound state. We find

qπ(x,Q2) = 1− e−
Q2

κ2x(1−x) , (43)

In the large Q2 limit qπ(x,Q2 → ∞) ≡ qπ(x) = 1, which is the behavior
of a strongly coupled theory found in QCD(1+1).54 Identical results55 are
obtained for the pion in the hard wall model.

7.5. The Pion Decay Constant

The pion decay constant is given by the matrix element of the axial
isospin current Jµ5a between a physical pion and the vacuum state56〈
0
∣∣J+
W (0)

∣∣π−(P+, ~P⊥)
〉
, where J+

W is the flavor changing weak current. Only
the valence state with Lz = 0, Sz = 0, contributes to the decay of the π±.
Expanding the hadronic initial state in the decay amplitude into its Fock
components we find

fπ = 2
√
NC

∫ 1

0

dx

∫
d2~k⊥
16π3

ψqq/π(x, k⊥). (44)

This light-cone equation allows the exact computation of the pion decay
constant in terms of the valence pion light-front wave function.6

7.6. The Meson Distribution Amplitude

The meson distribution amplitude φ(x,Q) is defined as4

φ(x,Q) =
∫ Q2

d2k⊥
16π3

ψ(x,k⊥). (45)

It follows that

φπ(x,Q→∞) =
4√
3π
fπ
√
x(1− x), (46)

with

fπ =
1
8

√
3
2
R3/2 lim

ζ→0

Φ(ζ)
ζ2

, (47)

since φ(x,Q→∞)→ ψ̃(x,b⊥ → 0)/
√

4π and Φπ ∼ ζ2 as ζ → 0. The pion
decay constant depends only on the behavior of the AdS string mode near
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the asymptotic boundary, ζ = z = 0 and the mode normalization. For the
truncated-space (TS) pion mode we find fTSπ =

√
3

8J1(β0,k) ΛQCD = 83.4 MeV,
for ΛQCD = 0.22 MeV. The corresponding result for the transverse har-
monic oscillator (HO) pion mode is fHOπ =

√
3

8 κ = 86.6 MeV, for κ = 0.375
GeV. The values of ΛQCD and κ are determined from the space-like form
factor data as discussed above. The experimental result for fπ is extracted
from the rate of weak π decay and has the value fπ = 92.4 MeV.47

It is interesting to note that the pion distribution amplitude predicted
by AdS/QCD (46) has a quite different x-behavior than the asymptotic
distribution amplitude predicted from the PQCD evolution4 of the pion
distribution amplitude φπ(x,Q→∞) =

√
3fπx(1− x). The broader shape

of the pion distribution increases the magnitude of the leading twist pertur-
bative QCD prediction for the pion form factor by a factor of 16/9 compared
to the prediction based on the asymptotic form, bringing the NLO PQCD
prediction close to the empirical pion form factor.57 The Fermilab E791
measurements58 of the x and k⊥ fall-off of the diffractive dijet cross section
πA → Jet Jet A also suggest a broad pion distribution amplitude for jet
transverse momenta k2

⊥ < 2 GeV2.

7.7. The Nucleon Dirac Form Factors

As a final example we compute the spin non-flip nucleon form factor in the
soft wall model. Consider the spin non-flip form factors

F+(Q2)=g+

∫
dz

z
e−κ

2z2Jκ(Q, z)|Ψ+(z)|2, (48)

F−(Q2)=g−

∫
dz

z
e−κ

2z2Jκ(Q, z)|Ψ−(z)|2, (49)

where the effective charges g+ and g− are determined from the spin-flavor
structure of the theory. We choose the struck quark to have Sz = +1/2. The
two AdS solutions Ψ+ and Ψ− correspond to nucleons with total angular
momentum Jz = +1/2 and −1/2. For the SU(6) spin-flavor symmetry

F p1 (Q2)=
∫
dz

z
e−κ

2z2Jκ(Q, z)|Ψ+(ζ)|2, (50)

Fn1 (Q2)=−1
3

∫
dz

z
e−κ

2z2Jκ(Q, z)
[
|Ψ+(z)|2 − |Ψ−(z)|2

]
, (51)

where F p1 (0) = 1, Fn1 (0) = 0. The bulk-to-boundary propagator Jκ(Q, z) is
the solution (16) of the AdS wave equation for the external electromagnetic
current, and the plus and minus components of the twist 3 nucleon mode
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in the soft wall model are

Ψ+(z)=
√

2κ2

R3/2
z3, (52)

Ψ−(z)=
κ3

R3/2
z4. (53)

The results for Q4F p1 (Q2) and Q4Fn1 (Q2) follow from the analytic form for
the form factors for any τ given in Section 7.1 and are shown in Figure 7.
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Fig. 7. Predictions for Q4F p1 (Q2) and Q4Fn1 (Q2) in the soft wall model for κ = 0.424
GeV. The data compilation is from Diehl.59

8. Overview of Hard Exclusive Processes

The leading power fall-off of the hard scattering amplitude follows from
the conformal scaling of the underlying hard-scattering amplitude: TH ∼
1/Qn−4, where n is the total number of fields (quarks, leptons, or gauge
fields) participating in the hard scattering.48,49 Thus the reaction is dom-
inated by subprocesses and Fock states involving the minimum number of
interacting fields. In the case of 2 → 2 scattering processes, this implies
dσ/dt(AB → CD) = FAB→CD(t/s)/sn−2, where n = NA+NB +NC +ND
and nH is the minimum number of constituents of H. These dimensional
counting rules are also a key feature of AdS/CFT.24 The near-constancy of
the effective QCD coupling at small scales helps explain the general empir-
ical success of the dimensional counting rules for the near-conformal power
law fall-off of form factors and fixed-angle scaling.60 For example, mea-
surements of pion photoproduction are consistent with dimensional count-
ing s7dσ/dt(γp → π+n) ∼ constant at fixed CM angle for s > 7 GeV.
The angular distributions seen in hard large CM angle scattering reactions
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are consistent with quark interchange, a result predicted by the hard wall
AdS/QCD model. Reviews are given in refs. 61 and 62. One sees the onset
of perturbative QCD scaling behavior even for exclusive nuclear ampli-
tudes such as deuteron photodisintegration (Here n = 1 + 6 + 3 + 3 = 13)
s11dσ/dt(γd → pn) ∼ constant at fixed CM angle.63–65 The measured
deuteron form factor66 also appears to follow the leading-twist QCD pre-
dictions67 at large momentum transfers in the few GeV region. A measure-
ment of dσ/dt(γd → ∆++∆) in the scaling region can establish the role
of “hidden-color” degrees of freedom68 of the nuclear wavefunction in hard
deuteron reactions.

Recently the Hall A collaboration69 at JLab has reported a significant
exception to the general empirical success of dimensional counting in fixed
CM angle Compton scattering dσ/dt(γp → γp) ∼ F (θCM )/s8 instead of
the predicted 1/s6 scaling. The deviations from fixed-angle conformal scal-
ing may be due to corrections from resonance contributions in the JLab
energy range. It is interesting that the hadron form factor RV (t),70 which
multiplies the γq → γq amplitude is found by Hall-A to scale as 1/t2, in
agreement with the PQCD and AdS/CFT prediction. In addition the Belle
measurement71 of the timelike two-photon cross section dσ/dt(γγ → pp) is
consistent with 1/s6 scaling.

Although large-angle proton-proton elastic scattering is well described
by dimensional scaling s10dσ/dt(pp → pp) ∼ constant at fixed CM an-
gle, extraordinarily large spin-spin correlations are observed.72 The ratio
of scattering cross sections for spin-parallel and normal to the scattering
plane versus spin-antiparallel reaches RNN ' 4 in large angle pp → pp at√
s ' 5 GeV; this is a remarkable example of “exclusive transversity”. Color

transparency is observed at lower energies but it fails73 at the same energy
where RNN becomes large. In fact, these anomalies have a natural explana-
tion74 as a resonance effect related to the charm threshold in pp scattering.
Alternative explanations of the large spin correlation are discussed and re-
viewed in ref. 75. Resonance formation is a natural phenomenon when all
constituents are relatively at rest. For example, a resonance effect can oc-
cur due to the intermediate state uuduudcc at the charm threshold

√
s = 5

GeV in pp collisions. Since the c and c have opposite intrinsic parity, the
resonance appears in the L = J = S = 1 partial wave for pp→ pp which is
only allowed for spin-parallel and normal scattering ANN = 1.74 Resonance
formation at the charm threshold also explains the dramatic quenching of
color transparency seen in quasielastic pn scattering by the EVA BNL ex-
periment73 in the same kinematic region. The reason why these effects are
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so dramatic in pp → pp scattering is that the amplitude for the formation
of an uuduudcc s-channel resonance in the intermediate state is of the same
magnitude as the fast-falling background pp → pp PQCD amplitude from
quark interchange at large CM angles: M(pp→ pp) ∼ 1/u2t2. We have pre-
dicted that the open charm cross section in pp scattering will be of order
of 1 µb at threshold.74

Color transparency76,77 is a key property of color gauge theory, and it
thus stands at the foundations of QCD. Color transparency has been con-
firmed in diffractive dijet production,78 pion photoproduction79 and vector
meson electroproduction,80 but it is very important to also systematically
validate it in large angle hadron scattering processes. One also expects sim-
ilar novel QCD phenomena in large-angle photoproduction γp→ πN near
the charm threshold, including the breakdown of color transparency and
strong spin-spin correlations. These effects can be tested by measurements
at the new JLab 12 GeV facility, which would confirm resonance formation
in a low partial wave in γp→ πN at

√
s ' 4 GeV due to attractive forces

in the uudcc channel.

9. Conclusions

We have shown how the AdS/CFT correspondence between Anti-de Sitter
space and conformal gauge provides an analytically tractable approximation
to QCD in the regime where the QCD coupling is large and constant. In
particular, there is an exact correspondence between the fifth-dimension
coordinate z of AdS space and an impact variable ζ which measures the
invariant separation of the quark constituents within the hadron in ordinary
space-time. This connection allows one to compute the analytic form of
the frame-independent light-front wavefunctions of mesons and baryons,
the fundamental entities which encode hadron properties and allow the
computation of exclusive scattering amplitudes.

The phenomenology of the AdS/QCD model is just beginning, but it
can be anticipated that it will have many applications to hadron dynamics.
For example, the model LFWFs obtained from AdS/QCD provide a basis
for understanding hadron structure functions and fragmentation functions
at the amplitude level; the same wavefunctions also describe hadron for-
mation from the coalescence of co-moving quarks. The spin correlations
which underly single and double spin correlations are also described by the
AdS/QCD eigensolutions. The AdS/QCD hadronic wavefunctions provide
predictions for the generalized parton distributions of hadrons and their
weak decay amplitudes from first principles. The amplitudes relevant to
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diffractive reactions could also be computed. We also anticipate that the
extension of the AdS/QCD formalism to heavy quarks will allow a great
variety of heavy hadron phenomena to be analyzed from first principles.
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