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ABSTRACT 

The interface between hafnium oxide grown by atomic layer deposition and (100) 

GaAs treated with HCl cleaning and (NH4)2S passivation has been characterized. 

Synchrotron radiation photoemission core level spectra indicated successful removal of 

the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-

layer removal of the hafnia film revealed a small amount of As2O3 formed at the interface 

during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia 

film were observed after a 450
o
C post-deposition anneal, and may be the origins for the 

electrically active defects. Transmission electron microscopy cross section images 

showed thicker HfO2 films for a given precursor exposure on S-treated GaAs versus the 
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non-treated sample. In addition, the valence-band and the conduction-band offsets at the 

HfO2/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, 

respectively. It appears that HCl+(NH4)2S treatments provide a superior chemical 

passivation for GaAs and initial surface for ALD deposition. 

I. INTRODUCTION 

The ever increasing need for higher speed and lower power computing has already 

pushed  Si-based transistors close to their performance limit.  Alternative materials with 

high carrier mobility like III-V compound semiconductors are being actively evaluated in 

research to supplement the present infra-structure. Bulk GaAs in particular exhibits 

higher electron mobility and larger bandgap as compared to Si
1
.  However, unlike Si, it is 

difficult to achieve a stable passivating native insulator by thermal oxidation and native 

oxides on GaAs are observed to induce high density of interface traps and cause Fermi 

level pinning
2, 3

.  

Recent research has resulted in different types of interfaces with high-k dielectrics 

that demonstrate successful III-V MOSFET devices. These include in-situ molecular 

beam deposited Gd2O3
4
, and Gd2O3-Ga2O3 mixtures,

5,6
 as well as ex-situ atomic layer 

deposited (ALD) Al2O3 or HfO2 on GaAs.
7,8

 It was also reported that an interfacial 

passivation layer (IPL) such as Si
9,10

, Ge
10

 or AlON
11

 between HfO2 and GaAs showed 

improved capacitance-voltage characteristics and low leakage current. All these findings 

suggest that a stable and passivated interface between dielectrics and GaAs is the key 

component for successful GaAs MOS devices because the GaAs surface is easily 

degraded during the dielectric deposition. In previous studies on GaAs surface cleaning, 

wet chemical treatments by sulfide solutions including Na2S, (NH4)2Sx, and (NH4)2S 
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were reported to be effectively reducing the GaAs surface state density and controlling 

the Fermi-level position.
12-14

 Although several attempts 
9-11,15

 applied sulfur treatment as 

a GaAs surface preparations and improved electrical performance for ALD high-k on III-

V MOS devices was reported, the bonding arrangement at the sulfide passivated interface 

with deposited high-k dielectrics has still not been clearly revealed.  

In this paper, we report the interface bonding configuration between the ALD HfO2 

and the (NH4)2S passivated GaAs by using synchrotron radiation photoemission 

spectroscopy (SRPES) with high surface sensitivity and fine energy resolution. Upon 

layer by layer removal of the HfO2 film from the GaAs substrate, the compositional 

evolution was monitored. The topography of the GaAs surface and HfO2 film were 

examined via atomic force microscopy (AFM). Cross section high resolution 

transmission electron microscopy (HRTEM) images revealed the structure of the 

HfO2/S/GaAs interface.  In addition, the HfO2/S/GaAs interface energy-band alignment 

was determined by monitoring offsets in the valence-band photoemission spectra. 

II. EXPERIMENT 

Epitaxial 300nm thick (Si-doped, 5~10×10
17

/cm
3
) GaAs was grown by MBE on 2 

inch epi-ready n-type (100)GaAs wafers as the starting substrates. 2×2 cm
2
 cleaved GaAs 

pieces were degreased by immersing into acetone and methanol for 5 min each. The 

surface native oxides were removed by diluted HCl etching for 3 min and the cleaned 

GaAs was passivated in diluted 5% (NH4)2S aqueous solution for 15 min (S-passivated 

GaAs). The HfO2 dielectric films were deposited on both chemically treated and non-

treated GaAs pieces by 250 cycles (~20 nm) of atomic layer deposition process at 150
o
C 

using H2O and tetrakisdiethylaminohafnium (TEDAH) precursors. Portions of the 
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HfO2/(S)/GaAs samples were ex-situ annealed in N2 ambient for 1 min at 450
o
C in an 

RTA chamber. The high resolution transmission electron microscopy (HRTEM) images 

of these dielectric stacks were obtained in a Philips CM20 FEG-TEM with samples 

prepared by FEI dual-beam FIB/SEM, equipped with an Omniprobe micromanipulator.   

The HfO2 film was etched by 1:200 HF aqueous solutions in a layer by layer 

fashion with numerous SRPES spectra taken between these etchings. This layer-by-layer 

etching was carried out in an argon purged glove bag connected to the analytical load-

lock of the photoemission chamber to avoid any air exposure. In order to guarantee the S-

passivated GaAs surface and the HF-etched HfO2 surfaces were smooth and without 

pinholes, AFM was used to monitor the surface morphology and extract root-mean-

square roughness (Rrms) as a function of etching time as illustrated in Figure 1. Note that 

AFM was not carried out in the glove bag, so the interpretation rests on assuming that 

native oxide surface has similar roughness as the etched. As shown in Figure 1, the GaAs 

surface roughness was slightly increased after the chemical treatments, and the Rrms 

level during HF etching was maintained around 0.42~0.58 nm before the entire HfO2 

layer was removed. The SRPES experiments were performed at beam line 8-1 and 10-1 

of Stanford Synchrotron Radiation Laboratory (SSRL). Beam line 8-1 has a photon 

monochromatic energy range from 30-190 eV, where the Ga 3d, As 3d, Hf 4f and the 

valence-band (VB) spectra at 120eV were taken. Beam line 10-1 has a photon energy 

range from 210-800 eV, allowed the S 2p core level spectra taken at 260 eV to be studied. 

The photoemission spectra were measured with a PHI model 10-360 hemispheric 

capacitor electron energy analyzer with the Omni Focus III small-area lens mounted on 

the chamber with an angle of 54
o
, with respect to the incoming photon beam direction. 
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The spectra collected were fitted with a Voigt function, which is a Gaussian-broadened 

Lorentzian line shape. The deconvolution parameters are listed in Table 1.  

III. RESULTS AND DISCUSSION 

A. GaAs surface characterization 

The first objective of this work is to evaluate the GaAs surface after chemical 

cleaning and passivation. As displayed in Figure 1, the GaAs surface roughness slightly 

increases from 0.28 nm to 0.31 nm after HCl + (NH4)2S treatments due to the etching of 

GaAs in the (NH4)2S solution. The Ga 3d and As 3d SRPES spectra of GaAs samples 

taken at a photon energy of 120 eV, including (a) HCl cleaned (in an Ar ambient), (b) 

HCl+ (NH4)2S treated, and (c) HCl+ (NH4)2S+vacuum annealing (400 
o
C) are shown in 

Figure 2. In Figure 2(a), the HCl cleaning performed in an argon (Ar) ambient leaves an 

oxide free GaAs surface, where Ga-O bonding, given a 0.85eV shift to lower kinetic 

energy (KE) from bulk GaAs peak,
16

 does not appear. Meanwhile, on the surface arsenic 

sites, a calculation using the equation by Carlson and McGuire
16, 17

 yields a 0.8 

monolayer (ML) elemental arsenic layer formed on top of the GaAs surface with a 

chemical shift of 0.58 eV to lower KE. No evidence of As-O bonding is observed in the 

measured chemical shifts
18

. The spectra after HCl + (NH4)2S treatments are illustrated in 

Figure 2(b), where the sulfide bonding on the GaAs is clearly shown. In the spectra, two 

different Gallium sulfides are observed. One has a 0.69 eV shift (a gallium rich sulfide, 

Gax-S, x>1) with a 0.5 ML coverage, and another has a 1.72 eV shift (a sulfur rich sulfide, 

Ga-Sx, x>1) with a 0.9 ML on top of GaAs surface. For the As 3d spectra shown in lower 

Figure 2(b), the elemental arsenic generated after HCl cleaning appears to dissolve in the 

(NH4)2S solution while the newly formed passivation prevents the generation of new 
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elemental As. Instead, the arsenic sulfide (As-S) which has an energy shift of 1.44 eV to 

the lower KE and a thickness of 0.6 ML appears to cover on the GaAs surface. Both the 

deconvoluted spectra of the Ga 3d and As 3d suggest a sulfide passivated GaAs surface 

without re-oxidation. In Figure 2(c), an in situ 15 min annealing at 400
o
C on the 

chemically treated samples in the SRPES vacuum chamber (~4×10
-9

 torr) shows some 

difference. First, the elemental As is thermally desorbed and leaves a tiny trace of the 

signal in As 3d spectrum. Besides, no trace of As-S could be resolved after the annealing. 

On the other hand, it appears that the intensity ratio of gallium rich sulfide (Gax-S) to 

sulfur rich sulfide (Ga-Sx) increases after the annealing. These results suggest that Gax-S 

is most thermally stable which is inconsistent with the earlier observations from 

Sugahara
19

 and Spindt
20

. These authors argued that the annealed S-passivated GaAs will 

leave a gallium rich sulfide terminated surface and the As-S overlayer on GaAs is not 

completely desorbed until after 250
o
C anneal. 

B. HfO2/S/GaAs interface characterization 

As described previously, the instability of sulfides on GaAs surface may affect 

HfO2 deposition at 150
o
C. In order to trace the compositional and chemical evolution 

within the HfO2/S/GaAs stack, a layer-by-layer wet etching of the HfO2 film was 

performed. A 260 eV input photon energy was selected to detect all core level spectra of 

interest simultaneously with the same system settings. A fixed HF etching period of 3 sec 

was used, and part of the etching profile was focused in 234 ± 4eV KE region (Ga 3d and 

Hf 4f photoemission features), as illustrated in Figure 3(a). In Figure 3(a), the spectra 

were first aligned with the Hf 4f7/2 peak obtained from the HfO2 around 235 eV before 

etching. Qualitatively, the Ga 3d core level spectrum hardly appears before the sample 
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had been etched for ~194 sec, which corresponds to the removal of HfO2.  Beyond this 

point, the Ga-As bulk signals were strong enough to be resolved, since the inelastic 

mean-free paths (IMFPs)
21

 of Ga 3d core level electrons are 5.6~5.8 Å  in this KE range. 

Moreover, no trace of As 3d and S 2p spectra (not shown) were observed until 194 sec 

etching.  

The detail scanned spectra of the interfacial elements, including Ga 3d/Hf 4f and As 

3d are plotted in Figure 3(b) and (c), respectively. In Figure 3(b), in addition to the Hf-O 

bonding contributed from the residual thin HfO2 film, the deconvoluted spectra of Hf 4f 

also suggests a Hf-F signal with a 1.01 eV chemical shift to lower KE. This Hf-F bonding 

was confirmed in a smaller electron emission angle experiment on the 170 sec etched Hf 

4f spectrum (not shown) that showed an overlayer of hafnium fluoride covers on the 

HfO2 after the HF etching. For the interfacial gallium bonding, the gallium sites appear to 

remain passivated by both Gax-S (larger ratio) and Ga-Sx during the ALD HfO2 

deposition. However, in Figure 3(c), the interfacial arsenic sites appear to be partially re-

oxidized as an As2O3-like structure with an As 3d feature shifted 3.18eV to lower KE. 

The re-oxidation may occur at arsenic sites from which sulfur desorption occurs in the 

150
o
C ALD deposition with H2O oxidant. Since there is no evidence of any Hf-S or Ga-O 

bonding according to the interfacial SRPES spectra, we conclude that the de-passivated 

interfacial arsenic sites re-oxidized in the initial ALD cycles and formed an incubation 

HfO2 layer for the following up ALD deposition cycles.  

C. Annealing on HfO2/S/GaAs 

In order to evaluate the thermal effect on the HfO2/S/GaAs layer stack, a 1 minute 

450
o
C post deposition anneal (PDA) in the N2 ambient was performed ex-situ. Layer-by 
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layer HfO2 removal by HF etching was performed again with the simultaneous 

acquisition of SRPES spectra. The photoemission etching profiles of Ga 3d/Hf 4f, As 3d, 

and S 2p core level spectra taken at 260 eV photon energy are shown in Figure 4. Among 

them, the spectra were first calibrated by the Hf 4f7/2 position of the pure HfO2 around 

233eV at 0 sec etching time. Noticeably, as shown in Figure 4(a), a longer etching time 

over 235 sec is required to etch away the HfO2 over-layer. This may result from 

crystallization and densification of the HfO2 film after the 450
o
C PDA as displayed later 

in the HRTEM image of Figure 6(b). Evidence of gallium out-diffusion is hard to observe 

since the Ga spectra overlap with strong HfO2 and hafnium fluoride features before the 

235 sec etching. On the other hand, since the inelastic mean-free paths (IMFPs)
21

 of As 

3d and S 2p core level electrons are 7.0~7.2 Å  and 5.1~5.2 Å  in these KE ranges, the 

photoemission signals of As 3d from the bulk GaAs and S 2p from the interfacial sulfides 

should start to appear after 229 sec etching if the 235 sec etching corresponds to removal 

of ~20 nm HfO2. Evidently in Figure 4(b) and (c), traces of the out-diffused arsenic are 

observable starting from 203 sec etching (about 3 nm above the interface) and a later time 

~208 sec for sulfur because of its shorter IMFP. These out-diffused signals are 

sporadically observed between 203 sec to 232 sec which may be due to the limited 

diffusion paths locate at the partially crystallized interfacial HfO2. In Figure 4(b), it 

appears the out-diffused As 3d signals are mainly attributed to Ga-As bonding because 

their photoemission positions are much closed to the bulk GaAs signal around 209.7 eV. 

It may suggest that the interface roughness or porosity lead to the simultaneous detection 

of substrate Ga-As signal under HfO2. In Figure 4(c), other than the sulfides, there is no 
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trace of the out-diffused pure sulfur atoms which are expected to have photoemission 

signal at 86eV KE range. 

   Detailed scanned spectra of the annealed interface, including Ga 3d/Hf 4f, and As 

3d taken after 235 sec etching are plotted in Figure 5(a) and (b), respectively.  An extra 

As 3d spectrum after 208 sec etching for the out-diffused arsenic bonding is illustrated in 

Figure 5(c). In Figure 5(a), the deconvoluted bonding configuration of the interfacial 

gallium and the over-layered HfO2 film after anneal is similar to that in Figure 3(b) 

except the decreasing amount of sulfur rich gallium sulfide (Ga-Sx) which might be 

thermally out-diffused to HfO2 film. There is still no sign of gallium re-oxidation in the 

interface even after the PDA. Quantitatively, decreasing As-S bonding can be observed in 

Figure 5(b) as compared with Figure 3(c). Simultaneously, a larger amount of As2O3 

present at the dielectric interface demonstrates the bonding changes at the depassivated 

arsenic after anneal. Furthermore, as shown in Figure 5(c), other than the Ga-As signal 

which may be contributed from the rough GaAs interface as described previously, the 

deconvoluted As 3d spectrum indicates that the out-diffused arsenic has several bonding 

configurations, including the diffusion by itself as the elemental arsenic, and the 

formation of the non-stoichiometric arsenic oxides (AsxOy) with the oxygen ambient. 

The cross-section high resolution transmission electron microscopy (HRTEM) 

images of these 450
o
C annealed structures are illustrated in Figure 6. In Figure 6(a), the 

250 cycles of ALD HfO2 was deposited on an as received (100) GaAs substrate. A layer 

of native oxides with 2~3 nm thickness at the dielectric interface, and a largely 

amorphous HfO2 film with a thickness of 19 nm is resolved. Figure 6(b) demonstrates the 

physical structure of the ALD HfO2 deposited on S-passivated (100) GaAs. A 22 nm 
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thick HfO2 film covers on a 1~3 ML of sulfur transition region in between HfO2 and 

GaAs suggests successful native oxides removal and the effective chemical passivation of 

GaAs interface. In addition, the partially crystallized HfO2 film after 450
o
C annealing is 

observed and can be the possible diffusion paths responsible for out-diffusion of the 

arsenic and sulfur which were previously observed in Figure 4. 

D. Interface energy-band alignment 

For better device scaling potential in terms of low gate leakage current, the 

dielectric layer is required to have sufficient barrier heights for both electron and hole 

injection. In the SRPES technique, the monitored offsets in the valence-band spectra can 

be utilized to map out the energy-band alignment
22,23

 for the interface between deposited 

ALD HfO2 and the passivated GaAs. In order to have an accurate valence-band edge 

measurement, the energy shift induced by the surface charging during photoemission 

should be corrected by aligning to the Ga 3d core level peak. In Figure 7(a), the 

deconvoluted SRPES spectrum of a 75 sec HF etched ALD HfO2 (~10nm)/S/GaAs was 

first referenced to the bulk Ga-As peak from a clean bulk GaAs taken at 120 eV. The 

clean bulk GaAs sample was prepared from the HCl cleaned (100) GaAs substrate which 

was in situ heated to 400
o
C for 15 min in the SRPES analytical high vacuum chamber to 

desorb any surface oxides and elemental arsenic
16

. The corresponding binding energy (EB) 

was calculated using the equation of 𝐸𝐵 = ℎ𝜈 − 𝐸𝐾𝐼𝑁 − Φ𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 + Δ𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 , which 

the Δcalibration is the previously aligned energy deviation from Figure 7(a).  After 

calibrating the valence-band spectra with corrected binding energies, the valence-band 

offset (ΔEV) between the bulk GaAs and HfO2 was found to be 3.18 eV as highlighted in 

Figure 7(b). The HfO2/S/GaAs interface energy-band alignment was then constructed as 
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shown in Figure 8. Taking the measured energy-band gap of ALD deposited HfO2 (𝐸𝐺
𝐻𝑓𝑂2) 

to be 5.51 to 5.61 eV,
24

 and together with the GaAs energy-band gap (𝐸𝐺
𝐺𝑎𝐴𝑠 ) as 1.46 eV 

at 300 K,
25

  the conduction-band offset (Δ𝐸𝐶 ) was deduced to be 0.87-0.97 eV.  

IV. CONCLUSIONS 

The bonding configurations of the chemically treated (100) GaAs surface and the 

ALD HfO2/GaAs interface have been characterized by synchrotron radiation 

photoemission spectroscopy. Detailed core level spectra fittings indicated successful 

removal of the native oxides and formation of ~1ML thick sulfides on the GaAs surface. 

The thermal instability of the passivating sulfides played an important role for the 

HfO2/GaAs interfacial bonding rearrangement during the dielectric deposition. 

Layer-by-layer removal of the hafnia film revealed no re-oxidation of gallium but 

small amount of As2O3 formed at the interface during ALD deposition. Traces of arsenic 

and sulfur diffusion into HfO2 were observed from 3 nm above the GaAs surface after 

450
o
C PDA, and could be the origins of electrically-active defects. Transmission electron 

microscopy cross section images showed thicker HfO2 on the S-passivated GaAs versus 

the non-treated sample under the same ALD deposition conditions. It also verified the 

HfO2 film on S-passivated GaAs after 450
o
C PDA was partially crystallized which may 

be the paths for the out-diffusion.  

In addition, the energy-band diagram of the annealed HfO2/S/GaAs structure was 

constructed by monitoring the valence-band offsets in the SRPES spectra. The valence-

band and the conduction-band offsets have been deduced to be 3.18 eV and a range of 

0.87-0.97 eV, respectively. It appears that these treatments provide a superior chemical 

passivation for GaAs and initial surface for ALD deposition. 
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Figures Captions 

Figure 1 HfO2/S/GaAs sample surface root-mean-square roughness (Rrms) measured 

by atomic force microscopy (AFM) as a function of the etch time in 200:1 

aqueous HF solution. 

Figure 2 Deconvoluted SRPES Ga 3d and As 3d spectra of the GaAs surface with (a) 

HCl cleaned, (b)HCl cleaned + (NH4)2S passivated, (c) HCl clean+ (NH4)2S 

passivation+ 400
o
C 15min in situ vacuum anneal.  

Figure 3 (a) Evolution of the Ga 3d/Hf 4f core-level SRPES spectra as a function of 

wet-etching time on the as deposited HfO2/S/GaAs stack taken at a photon 

energy of 260eV. Deconvoluted interfacial core-level SRPES spectra of (b) 

Ga 3d/Hf 4f , (c) As 3d taken after 194 sec of HF etching.  

Figure 4 Evolution of the (a) Ga 3d/Hf 4f, and (b) As 3d, and (c) S 2p core-level 

SRPES spectra as a function of wet-etching time for the 450
o
C annealed 

HfO2/S/GaAs stack taken at a photon energy of 260eV. 

Figure 5 Deconvoluted interfacial core-level SRPES spectra of (a) Ga 3d/Hf 4f, (b) As 

3d taken after 235 sec of HF etching on the 450
o
C annealed HfO2/S/GaAs 
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stack. (c) As 3d SRPES spectrum for the out-diffused Arsenic taken after 

208sec of HF etching.  

Figure 6 The cross-section high resolution transmission electron microscopy 

(HRTEM) images of the 450
o
C annealed (a)HfO2/native oxide/GaAs stack, 

(b)HfO2/S/GaAs stack 

Figure 7 (a) SRPES spectra for the 75sec 1:200 HF etched (~10nm)HfO2/S/GaAs 

aligned from a clean bulk GaAs. (b) Calibrated valence-band photoemission 

spectra and deduced valence band offset.  

Figure 8 Energy-band diagram of HfO2/S/GaAs structure inferred from the SRPES 

measurements. 
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Table 

Table 1 Fitting parameters for the Ga 3d, As 3d, and Hf 4f core-level spectra. All 

energy in eV. 
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Figure 2 
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Figure 4 
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Figure 5 
  
Figure 5
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Figure 6 
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 Figure 7 
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Figure 8 
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Table 1 

 Ga 3d As 3d Hf 4f 

Spin-orbit splitting 0.44 0.70 1.62 
Branching ratio 1.50 1.50 1.33 
Gaussian width 0.44±0.01 0.46±0.03 1.15±0.02 
Lorentzian width 0.18 0.27 0 

 

 




