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Abstract: We examine whether the
√

s = 500 GeV International Linear Collider

with 80% electron beam polarization can be used to solve the LHC Inverse Prob-

lem within the framework of the MSSM. We investigate 242 points in the MSSM

parameter space, which we term models, that correspond to the 162 pairs of models

found by Arkani-Hamed et al. to give indistinguishable signatures at the LHC. We

first determine whether the production of the various SUSY particles is visible above

the Standard Model background for each of these parameter space points, and then

make a detailed comparison of their various signatures. Assuming an integrated lu-

minosity of 500 fb−1, we find that only 82 out of 242 models lead to visible signatures

of some kind with a significance ≥ 5 and that only 57(63) out of the 162 model pairs

are distinguishable at 5(3)σ. Our analysis includes PYTHIA and CompHEP SUSY

signal generation, full matrix element SM backgrounds for all 2 → 2 , 2 → 4, and

2 → 6 processes, ISR and beamstrahlung generated via WHIZARD/GuineaPig, and

employs the fast SiD detector simulation org.lcsim.
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8. Conclusions 124

1. Introduction

The LHC is scheduled to begin operations within a year and is expected to change

the landscape of particle physics. While the Standard Model (SM) does an excellent

job describing all strong interaction and electroweak data to date [1, 2], there are

many reasons to be dissatisfied with the SM. Chief among them are issues related to

electroweak symmetry breaking. As is by now well-known, the SM with a single Higgs

doublet that is responsible for generating the masses of both the electroweak gauge

bosons and fermions encounters difficulties associated with stability, fine-tuning, and

naturalness. Addressing these issues necessitates the existence of new physics at the

Terascale. To this end, numerous creative candidate theories that go beyond the SM

have been proposed and many yield characteristic signatures at the LHC. When the

ATLAS and CMS detectors start taking data at the LHC, they will explore this new

territory. They will then begin the process of identifying the nature of physics at the

Terascale and of determining how it fits into a broader theoretical structure.

Of the several proposed extensions of the SM that resolve the issues mentioned

above, the most celebrated is Supersymmetry (SUSY) [3]. Our working hypothesis

in this paper is that SUSY has been discovered at the LHC, i.e., that new particles

have been observed and it has been determined that they arise from Supersymmetry.

Identifying new physics as Supersymmetry is in itself a daunting task, and we would

be lucky to be in such a situation! However, even in this optimistic scenario, much

work would be left to be done as SUSY is a very broad framework. We would

want to know which version of SUSY nature has realized and for this we would

need to map the LHC observables to the fundamental parameters in the weak scale

SUSY Lagrangian. A question that would arise is whether this Lagrangian can be

uniquely reconstructed given the full set of LHC measurements. This issue has been

recently quantified in some detail by the important work of Arkani-Hamed, Kane,

Thaler and Wang (AKTW) [4], which demonstrates what has come to be known

as the LHC Inverse Problem. AKTW found that even in the simplest realization

of Supersymmetry, the Minimal Supersymmetric Standard Model (MSSM), such a

unique mapping does not take place given the LHC observables alone and that many

points in the MSSM parameter space cannot be distinguished from each other. Here,

we extend their study and examine whether data from the proposed International

Linear Collider (ILC) can uniquely perform this inverse mapping and resolve the

model degeneracies found by AKTW.

In brief, AKTW considered a restricted Lagrangian parameter subspace of the

MSSM. They forced all SUSY partner masses to lie below 1 TeV (in order to obtain
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a large statistical sample at the LHC), fixed the third generation A-terms to 800

GeV and set the pseudoscalar Higgs mass to be 850 GeV. Points in the MSSM pa-

rameter space, hereafter referred to as models for brevity, were generated at random

with the conditions that tanβ lies in the range 2-50, squark and gluino Lagrangian

mass terms lie above 600 GeV, and Lagrangian mass terms for the non-strongly in-

teracting particles be greater than 100 GeV. 43,026 models were generated in this

15-dimensional parameter space under the assumption that all parameter ranges were

uniformly distributed, i.e., flat priors were employed. No further constraints, such

as the LEP lower bound on the Higgs mass [1] or consistency with the relic density

of the universe were applied. For each model, PYTHIA [5] was used to calculate

the resulting physical SUSY spectrum and to generate 10 fb−1 of SUSY ‘data’ at

the LHC, including all decays and hadron showering effects. This ‘data’ was then

piped through the PGS fast detector simulation [6] to mimic the effects of the AT-

LAS or CMS detectors. From this ‘data,’ AKTW constructed a very large number

of observables associated with the production and decay of the SUSY partners. No

SM backgrounds were included in their ‘data’ sample. AKTW then observed that

a given set of values for these observables along with their associated errors, i.e., a

fixed region in LHC signature space, corresponded to several distinct regions in the

15-dimensional MSSM parameter space. This implies that the mapping from data

to the underlying theory is far from unique and produces an Inverse Problem at the

LHC. This problem is so named because this procedure is the inverse of most phe-

nomenological studies; normally a point in model parameter space is chosen and the

values of the relevant experimental observables are calculated. Here, AKTW per-

formed the reverse procedure (which mirrors the experimental reality) and worked

from a given set of observables to determine the relevant underlying model param-

eters, but in doing so found many SUSY models whose signatures at the LHC are

essentially identical. Clearly, if one incorporates the existing SM backgrounds as

well as systematic effects into this kind of study, the number of possible models that

share indistinguishable signatures will only increase, potentially significantly. The

LHC Inverse Problem is thus a very serious one.

However, the fact that an LHC Inverse Problem exists is not overly surprising

and the real issue we face is how to resolve it. In this paper we will begin to address

the question of whether the models that AKTW found to be indistinguishable at the

LHC can be resolved by a high luminosity e+e− collider operating at 500 GeV in

the center of mass with a polarized initial electron beam, i.e., the ILC. Traditional

ILC lore indicates this is the case, as studies have shown [7, 8], e.g., the mass and

couplings of any kinematically accessible weakly interacting state should be measured

at the 1% level or better at the ILC. Such precise determinations imply that decay

signatures and distributions produced by new particles such as the SUSY partners

will be observed with relative cleanliness and be well measured. The LHC Inverse

Problem provides us with a unique opportunity to test this lore over a very wide range
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of the MSSM parameter space by comparing the signatures of hundreds of models.

We will show that, as believed, the ILC can generally distinguish models, at least in

the case of this restricted scenario of the MSSM, and we will explore the reasons why

it fails when it does. We will find that some SUSY measurements are more difficult

to obtain than previously thought, and we will identify some problematic areas of

the MSSM parameter space which require further study.

On our way to addressing the Inverse Problem at the ILC, we face the more

immediate issue of the visibility of the various SUSY particles in the AKTW models.

We find that this is surprisingly non-trivial and is perhaps a more important task as

one cannot differentiate between models which have no visible SUSY signatures. In

our analysis below, we will perform a detailed study of the visibility of the various

SUSY particles in all of the models. We will employ an extensive menu of search

techniques and examine when they succeed and how they fail. Our philosophy will be

to apply a general search strategy that performs uniformly well over the full MSSM

parameter region, rather than make use of targeted searches for particular parameter

points. We believe this mirrors the reality of an experimental search for new physics

and reflects the fact that not all of the SUSY particles in these models will have

been observed at the LHC (recall that the models we have inherited from AKTW

are difficult cases at the LHC).

The possibility of measuring specific SUSY particle properties at the ILC for

particular special points in the MSSM parameter space has a long history [7]. Our

approach here, however, provides several aspects which have not been simultaneously

featured in earlier analyses: (i) We examine several hundred, essentially random,

points in MSSM parameter space, providing a far wider than usual sampling of mod-

els to explore and compare. This gives a much better indication of how an arbitrary

MSSM parameter point behaves and what experimental techniques are necessary to

adequately cover the full parameter space. (ii) We include all effects arising from

initial state radiation (ISR), i.e., bremsstrahlung, as well as the specific ILC beam-

strahlung spectrum for the superconducting RF design, including finite beam energy

spread corrections. The beam spectrum is generated by GuineaPig [9, 10]. (iii) We

incorporate all 2 → 2, 2 → 4 and 2 → 6 SM background processes, including those

resulting from initial state photons (i.e., from the corresponding γγ and γe± interac-

tions). These are generated with full matrix elements via WHIZARD/O’MEGA [11]

for arbitrary beam polarization configurations and are fragmented using PYTHIA.

There are well over 1000 of these processes [10]. (iv) We include ILC detector effects

by making use of the java-based SiD [12] detector fast simulation package org.lcsim

[13, 14]. All in all, we believe that we have performed our analysis in as realistic a

manner as possible.

The outline of this paper is as follows: Section 2 contains a discussion of the

various kinematical features of the AKTW models under consideration, while Section

3 provides an overview of our analysis procedure as well as a general discussion of
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the SM backgrounds. In the next Sections we separately consider the individual

SUSY particle analyses for sleptons (Section 4), charginos (Section 5) and neutralinos

(Section 6). This leads to an overall set of model comparisons in Section 7 where we

discuss the ability of the ILC to distinguish the AKTW models and resolve the LHC

Inverse Problem. This is followed by a discussion of our results and conclusions.

2. Spectrum and Kinematical Features of the Models

Before beginning our analysis, we first examine the kinematical traits and features

of the SUSY models that AKTW found to be indistinguishable at the LHC.1 This

consists of a set of 383 models (i.e., 383 points in a 15-dimensional MSSM parameter

space; we hereafter refer to distinct points in the MSSM parameter space as models).

In their study, AKTW compared models pairwise, so that these 383 models corre-

spond to 283 pairs of models which gave indistinguishable signatures at the LHC. In

some cases, models were found to give degenerate signatures multiple times. While

this may naively seem to be a relatively small number of inseparable models, one

needs to recall that AKTW performed a small sampling of a large parameter space

(due to computational limitations). Based on the number of models AKTW gen-

erated, the number of degeneracies they found led AKTW to estimate that a more

complete statistical sampling of the available parameter space volume would yield a

degeneracy of each model with O(10 − 100) other points.

One may wonder if there are any common features of these models that give rise

to their indistinguishability at the LHC. AKTW demonstrated that these degenera-

cies are essentially the result of three possible characteristics that involve the relative

composition of the physical electroweak gaugino sector in terms of the higgsino, wino,

and bino weak eigenstates. These mechanisms are referred to as ‘Flippers’, ‘Sliders’

and ‘Squeezers’ and are schematically shown in Figs. 1, 2, and 3. The ambigui-

ties that arise from these model characteristics originate directly from the manner

in which SUSY is produced and observed at the LHC; several of these mechanisms

can be simultaneously present. As is well-known, the (by far) dominant production

mechanism for R-parity conserving SUSY at the LHC is via the strong interactions,

i.e., the production of squarks and gluinos. These particles then decay through a long

cascade chain via the generally lighter electroweak gaugino/higgsino partner states.

This eventually leaves only the SM fields in the final state together with the stable

Lightest SUSY Particle (LSP), which is commonly the lightest neutralino, appearing

as additional missing energy. The decays of the SM fields produce additional jets,

leptons, and missing transverse energy from neutrinos. Unfortunately sleptons do

not always play a major role in these cascades (due to phase space considerations

in the sparticle spectrum, see, e.g., the models in Fig. 1) so that much valuable

1We thank AKTW [4] for giving us the weak scale parameters for these models.
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information associated with their properties is generally lost. When comparing the

possible decay chains which result from the produced squarks and gluinos, similar

final states can occur if the identities of the higgsino, wino and bino weak states in

the spectrum are interchanged while their masses are held approximately fixed. This

is an example of the so-called ‘Flipper’ ambiguity (Fig. 1) where two spectra with

interchanged electroweak quantum numbers can produce very similar final state sig-

natures. A second possible source of degeneracy can arise from the fact that absolute

masses, and in particular the mass of the LSP, are not well measured at the LHC

in contrast to the mass differences between states [8, 15]. Thus models can have

similar spectra but be somewhat off-set from each other in their absolute mass scale

and hence be difficult to distinguish; this represents the ‘Slider’ degeneracy (Fig. 2).

Lastly, pairs of states in the spectra with relatively small mass differences compared

to the overall SUSY scale lead to relatively soft decay products in the cascade chain.

Such a possibility can cause significant loss of information as well as general confusion

in parameter extractions and are termed ‘Squeezers’ (Fig. 3). Of course in all these

cases some shifts are needed in the strongly interacting part of the SUSY spectrum

to keep the various production rates and decay distributions comparable between
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Figure 1: Illustration of the Flipper ambiguity in the MSSM spectrum. The left panel

displays a typical mass value for the Bino, Wino, and Higgsino mixing parameter in the

weak eigenstate basis for two models A and B. The right panel shows the corresponding

sparticle spectrum in two of the AKTW models, with the red arrows indicating the Flipper

effect.
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potentially indistinguishable models. It goes without saying that some degeneracies

can also arise when more than one of these mechanisms are active simultaneously.

We now examine the physical particle spectra in the 383 models found by AKTW

to be indistinguishable at the LHC. First, we note that since AKTW have required

squarks and gluinos to have Lagrangian masses greater than 600 GeV in their param-

eter scans, the only states potentially accessible to the ILC will be the sleptons and

the sparticles associated with the electroweak gaugino/higgsino sector. Of particular

phenomenological interest is the mass splitting between the Next-to-LSP(NLSP) and

LSP (see Fig. 4). Here, this is usually that between the lightest chargino, χ̃±
1 , and

lightest neutralino state, χ̃0
1. Generally this distribution for our set of AKTW models

appears rather flat except for a huge and puzzling feature near ∼ 270 MeV. It would

seem that almost 40%, i.e., 141 of these models, experience this exact mass splitting

between these two states.

An investigation shows that this result is an artifact of the manner in which

PYTHIA6.324 generates the physical SUSY particle spectrum at tree-level from the

Lagrangian parameters. Recall that AKTW randomly generated points in a 15-

dimensional weak scale MSSM parameter space, described in the previous Section,

from which the physical SUSY particle masses are then calculated at tree-level via
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Figure 2: Illustration of the Slider ambiguity in the MSSM spectrum. The left panel

displays a typical mass value for the Bino, Wino, and Higgsino mixing parameter in the

weak eigenstate basis for two models A and B. The right panel shows the corresponding

sparticle spectrum in two of the AKTW models, with the red arrows indicating the Slider
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PYTHIA6.324. With this procedure, it is possible that sometimes the mass of the

lightest chargino χ̃±
1 turns out to be less than that of the χ̃0

1 once the mass eigen-

states are computed; this is usually considered to be ‘unphysical’ as it would imply

charged Dark Matter in the standard cosmological picture. PYTHIA6.324 handles

this situation by artificially resetting the chargino mass to be greater than that of

the LSP by mχ̃±

1
= mχ̃0

1
+ 2mπ without an associated warning message. This ap-

parently happens frequently and causes the large peak in the distribution shown in

Fig. 4. This feature is mentioned in the PYTHIA manual (where it is noted that

the tree-level SUSY spectrum calculator is not for publication quality), and has been

further clarified in later versions of PYTHIA [16]. However, here we need to follow

the analysis of AKTW as closely as possible to reproduce their sparticle spectra and

specific model characteristics. Due to this and additional reasons discussed below in

the text, in our analysis we use a slightly modified version of PYTHIA6.324. In the

strictest sense, these models are only ‘unphysical’ at the tree-level since loop correc-

tions restore the correct mass hierarchy. We have checked that all 383 of the AKTW

models have an appropriate mass spectrum when the SuSpect2.34 routine [17], which

includes the higher order corrections, is employed to generate the physical spectrum.
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Figure 3: Illustration of the Squeezer ambiguity in the MSSM spectrum. The left panel

displays a typical mass value for the Bino, Wino, and Higgsino mixing parameter in the

weak eigenstate basis for two models A and B. The right panel shows the corresponding

sparticle spectrum in two of the AKTW models, with the red arrows indicating the Squeezer
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However, in the present work, the 141 models cannot be artificially saved simply by

employing this mass re-assignment or by using SuSpect as their collider production

and signature properties would be modifiedas compared to the AKTW study. We

thus drop them completely from further consideration. This leaves us with a sample

of 242 models which consist of 162 degenerate model pairs to examine.2

Given these 242 models, we next address the question of what fraction of their

SUSY spectra are kinematically accessible at a 500 or 1000 GeV ILC. The results

are shown in Figs. 5, 6 and 7, which display the individual mass spectra for the

weakly interacting sectors of the various SUSY models under consideration. The full

accessible sparticle count for
√

s = 500 and 1000 GeV is presented in Fig. 8. There

are many things to observe by examining these Figures. First, we recall from the

discussion above that in all cases the squarks are too massive to be pair produced at

the ILC so that we are restricted to the slepton and electroweak gaugino sectors. Here

in Table 1 and in the Figures we see that for a 500(1000) GeV collider, there are only

22(137)/242, i.e., 22(137) out of 242, models with kinematically accessible (which

here means via pair production) selectrons and smuons at
√

s = 500(1000) GeV; note

that these two sparticles are degenerate in the MSSM. Similarly, 28(145)/242 of the

models have accessible light staus, 6(55) of which also have kinematically accessible

selectrons/smuons. 53(92)/242 models have kinematically accessible light charginos,
2Note again that some models are members of degenerate triplets or quartets which influences

this counting.
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– 9 –



4(12) of which also have accessible selectrons/smuons and 6(12) of which also have

accessible staus. At
√

s = 1 TeV, 19 of these 92 models with accessible light charginos

also have the second chargino accessible by pair production. Very importantly, at√
s = 500 GeV, in 96/242 models the only kinematically accessible sparticles are

neutral, e.g., χ̃0
1 or ν̃, while 61/242 other models have no SUSY particles accessible

whatsoever. At
√

s = 1 TeV, these numbers drop to only 0/242 and 3/242 in each

of these latter categories, respectively. Recalling that we are looking at essentially

random points in the MSSM parameter space, we see from this simple counting

exercise that ∼ 60% of the models will have no ‘traditional’ SUSY signatures at a

500 GeV ILC, whereas a 1 TeV machine essentially covers almost all the cases. This

is a strong argument for having the capability of upgrading to 1 TeV at the ILC as

quickly as possible. However, in the analysis that follows we will consider only the

case of a 500 GeV ILC with the 1 TeV case to be considered separately in the future.

Table 1 summarizes the kinematic accessibility of all the relevant MSSM final states

for
√

s = 500 GeV in our study as well as the corresponding results for 1 TeV.

Given that so many models have such a sparse SUSY spectrum at
√

s = 500

GeV, it is not uncommon for one of the two models in the pair we are comparing

to have no kinematically accessible sparticles. In such a case, breaking the model

degeneracy at the LHC might seem to be rather straightforward, as for one model we

might observe SUSY signals above the SM background but not for the other in the

pair. Of course, at the other end of the spectrum of difficulty, one can imagine cases

where both models being compared are Squeezers, in which case model differentiation

will be far more difficult and having an excellent ILC detector will play a much more

important role.
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3. Analysis Procedure and General Discussion of Background

To determine whether or not
Final State 500 GeV 1 TeV

ẽ+
L ẽ−L 9 82

ẽ+
R ẽ−R 15 86

ẽ±L ẽ∓R 2 61

µ̃+
L µ̃−

L 9 82

µ̃+
Rµ̃−

R 15 86

Any selectron or smuon 22 137

τ̃+
1 τ̃−

1 28 145

τ̃+
2 τ̃−

2 1 23

τ̃±
1 τ̃∓

2 4 61

ν̃eµν̃
∗
eµ 11 83

ν̃τ ν̃
∗
τ 18 83

χ̃+
1 χ̃−

1 53 92

Any charged sparticle 85 224

χ̃±
1 χ̃∓

2 7 33

χ̃0
1χ̃

0
1 180 236

χ̃0
1χ̃

0
1 only 91 0

χ̃0
1 + ν̃ only 5 0

χ̃0
1χ̃

0
2 46 178

χ̃0
1χ̃

0
3 10 83

χ̃0
2χ̃

0
2 38 91

χ̃0
2χ̃

0
3 4 41

χ̃0
3χ̃

0
3 2 23

Nothing 61 3

Table 1: Number of models at
√

s = 500 GeV and

1 TeV which have a given final state kinematically

accessible. Note that for the 500 GeV case, 96/242

models have only LSP or neutral pairs accessible while

61/242 models have no SUSY particles accessible.

the ILC resolves the LHC inverse

problem, we compare the ILC ex-

perimental signatures for the pairs

of SUSY models that AKTW found

to be degenerate, and see whether

these signatures can be distin-

guished. We examine numerous

production channels and signa-

tures for supersymmetric parti-

cle production in e+e− collisions.

Before the model comparisons can

be carried out, we must first as-

certain if the production of the

kinematically accessible SUSY par-

ticles is visible above the SM back-

ground. Our analysis procedure

is described in this Section.

3.1 Event Generation of Sig-

nal and Background

We generate 250 fb−1 of SUSY

events at
√

s = 500 GeV for each

of the AKTW models for both

80% left- and 80% right-handed

electron beam polarization with

unpolarized positron beams, pro-

viding a total of 500 fb−1 of in-

tegrated luminosity. To gener-

ate the signal events, we use

PYTHIA6.324 [5] in order to re-

tain consistency with the AKTW analysis. However, as will be described in detail

below, we find that PYTHIA underestimates the production cross section in two of

our analysis channels, and in these two cases we employ CompHEP [18]. We also

analyze two statistically independent 250 fb−1 sets of Standard Model background

events for each of the two electron beam polarizations. We then study numerous

different analysis channels. When we determine if a signal is observable over the SM

background in a particular channel, we statistically compare the combined distribu-

tion for the signal plus the background from our first background sample with the
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distribution from our second, independent background sample. When we perform the

model comparisons, we add each set of SUSY events to a distinct Standard Model

background sample generated for the same beam polarization. We then compare

observables for the many different analysis channels for these two samples of signal

and background (i.e., model A + background sample 1 is compared to model B +

background sample 2). It is important to note that we take into account the full

Standard Model background in all analysis channels rather than only considering

the processes that are thought to be the dominant background to a particular chan-

nel; surprisingly, sometimes many small contributions can add up to a significant

background.

Our background contains all SM 2 → 2, 2 → 4, and 2 → 6 processes with the

initial states e+e−, e±γ, or γγ; in total there are 1016 different background channels.

These events were generated by T. Barklow [10] with O’MEGA as implemented in

WHIZARD [11], which uses full tree-level matrix elements and incorporates a realis-

tic beam treatment via the program GuineaPig [9]. The use of full matrix elements

leads to qualitatively different background characteristics in terms of both total cross

section and kinematic distributions compared to those from a simulation that uses

only the production and decay of on-shell resonances, e.g., the procedure generally

employed in PYTHIA. WHIZARD models the flux of photons in e±γ and γγ initiated

processes via the equivalent photon approximation. However, in the standard code,

the electrons and positrons which emit the photon(s) that undergo hard scattering

do not receive a corresponding kick in pT , in contrast to the electrons or positrons

that undergo initial state radiation. The version of WHIZARD used here to generate

the background events was thus amended to correct this slight inconsistency in the

treatment of transverse momenta. An illustration of the resulting effects from em-

ploying exact matrix elements and modeling the transverse momentum distributions

in a realistic fashion is presented in Fig. 9. This Figure compares the transverse mo-

mentum distribution for the process e+e− → e+e−νeν̄e in the SM after our selectron

selection cuts (see Section 4.1) have been applied, as generated with PYTHIA versus

the modified version of WHIZARD, using the same beam spectrum in both codes.

We see that in this case, the pT distribution generated by PYTHIA is smaller and

has a shorter tail.

We now discuss our treatment of the beam spectrum in further detail. The

backgrounds were generated using a realistic beam treatment, employing the program

GuineaPig [9] to model beam-beam interactions. Finite beam energy spread was

taken into account and combined with a beamstrahlung spectrum specific to a cold

technology linear collider, i.e., the ILC. The effect of beamstrahlung is displayed in

Figure 10, which shows the invariant mass of muon pairs formed by e+e− collisions

with the beam spectrum we employ. The resulting spectrum is somewhat different

qualitatively from a commonly used purely analytic approximate approach [19, 20,

21].
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e

Figure 9: Transverse momentum distribution in e+e− → e+e−νeν̄e as generated via

PYTHIA and WHIZARD, for 250 fb−1 of integrated luminosity with 80% left-handed

electron beam polarization at
√

s = 500 GeV. Our selectron selection cuts (discussed in

the text below) have been applied.

While our backgrounds contain 500 fb−1 of total integrated luminosity for pro-

cesses with initial e+e− or e±γ states, some γγ initiated processes yield very high

cross sections, and thus a smaller number of events had to be generated and then

rescaled due to limited storage space. In total, our background sample uses ap-

proximately 1.7 TB of disk space. This rescaling of some γγ processes introduces

artificially large fluctuations in the corresponding analysis distributions. In order to

remedy this, we employ the following procedure: we combine the two independent

background samples for the affected reactions, and then randomly reallocate each

entry on a bin by bin basis to one of the two background sets. Thus, on average,

each histogram contains an equal amount of entries bin per bin, while remaining sta-

tistically independent. Of course, this procedure does not completely eliminate the

fluctuations. However, due to the random reallocation of entries, the contribution of

these fluctuations to the statistical analyses in our comparison of models performed

in Section 7 is greatly reduced.
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Figure 10: Invariant mass of the muon pairs in e+e− → µ+µ− at
√

s = 500 GeV, using

the beamspectrum described in the text.

3.2 Analysis Procedure

For each SUSY production process, we perform a cuts-based analysis, and histogram

the distributions of various kinematic observables that we will describe in detail in

the following Sections. We apply a general analysis strategy that performs uniformly

well over the full MSSM parameter region. Each analysis is thus applied to every

model in exactly the same fashion; there are no free parameters, and we do not make

use of any potential information from the LHC; in particular we assume that the

LSP mass is not known. Recall that the AKTW models that we have inherited are

difficult cases at the LHC, and thus in general we cannot make any assumptions

about what measurements, if any, will have been performed by the LHC detectors.

We also note that AKTW did not impose any additional constraints from flavor

physics, cosmological observations, etc. Such a global analysis is clearly desirable but

is beyond the scope of the present study and is postponed to a future publication.

Our background and signal events described above are piped through a fast de-

tector simulation using the org.lcsim detector analysis package [13], which is currently

specific to the SiD detector design [12]. org.lcsim is part of the Java Analysis Stu-

dio (jas3) [22], a general purpose java-based data analysis tool. The org.lcsim fast

detector simulation incorporates the specific SiD detector geometry, finite energy
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resolution, acceptances, as well as other detector specific processes and effects. Un-

fortunately, the identification of displaced vertices and a measurement of dE/dx are

not yet implemented in the standard, fully tested version of the simulation package

employed here, although preliminary versions of these functions are under develop-

ment. The present study represents the first large end user application of the lcsim

software package and hence we prefer to use the standard, tested, version of the

software without these additional features. The output of our lcsim-based analysis

code is given in terms of AIDA histograms, where AIDA refers to Abstract Interfaces

for Data Analysis [23], a standard set of java and C++ interfaces for creating and

manipulating histograms, which is incorporated into the jas3 framework.

org.lcsim allows for the study of various different detectors, whereby an xml

description of the specific detector is loaded into the software in a modular fash-

ion. Currently, xml descriptions for various slightly different versions of the SiD

detector geometry are publicly available. We use the SiD detector version stud-

ied extensively at Snowmass 2005 (sidaug05) [24]. In addition, two files, called

ClusterParameters.properties and TrackingParameters.properties allow the

user to adjust various tracking and energy resolution parameters. We set the param-

eters such that we closely follow the SiD detector outline document (DOD) [14]. In

particular, we employ the following configuration in our study:

• The minimum transverse momentum of registered tracks is given by pT > 0.2

GeV.

• There is no tracking capability below 142 mrad, which corresponds to |cos θ| <

0.99.

• Between 142 mrad and 5 mrad, electromagnetically charged particles appear

as neutral clusters.

• There is no detector coverage below 5 mrad.

• The jet energy resolution is set to 30%/
√

E.

• The electromagnetic energy resolution is set to 18%/
√

E.

• The hadronic energy resolution is set to 50%/
√

E.

• The hadronic degradation fraction is r = 1.0.

• The electromagnetic jet energy fraction is wγ = 0.28.

• The hadronic jet energy fraction is wh = 0.1.

For a detailed explanation of these parameters we refer to the SiD DOD, specifically

Section IV.B regarding the energy resolution parameters.
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However, we note that the lack of tracking capability below 142 mrad causes

highly energetic forward muons to not be reconstructed. They are too energetic to

deposit energy into clusters and are thus undetected and appear as missing energy.

This effect produces a substantial Standard Model background to, e.g., our stau

analysis (see Section 4.1.3), where we allow one tau to decay hadronically and the

other leptonically. In this case, we keep events with one electron and one muon of

opposite charge, which can be mimicked by γγ → µ+µ− events where one of the

beam electrons is kicked out sufficiently to be detected, but one of the final state

muons is too energetic and too close to the beam axis to be reconstructed. We find

that this background is substantial and, given these detector parameters, can only

be eliminated by discarding all tau events with electrons/positrons in the final state.

The default jet finding algorithm of org.lcsim is the JADE jet algorithm [25]

in the E scheme with ycut = 0.005 employed as the default setting. The JADE jet

algorithm in the E scheme is defined as follows:

min (pi + pj)
2 =min 2EiEj(1 − cos θij) > ycuts (3.1)

pij = pi + pj for the recombination scheme

The default ycut, however, is too small, and causes soft gluons to produce far too

many jets. We therefore set the value of ycut to ycut = 0.05 within the JADE jet

algorithm. In addition, one must take care when using the default org.lcsim jet

finder, as every parton, including leptons and photons, is in principle identified as

a jet. More sophisticated jet finders are in the development stage. We thus use the

default jet finder, but with additional checks on the jet particle content to discard

non-hadronic “jets”.

We perform searches for slepton, chargino, and neutralino production and in

many cases design analyses for several different decay channels of these sparticles.

Each of our analyses is designed to optimize a particular signature, and we apply

each analysis to every AKTW model. A particular model may or may not produce

a visible signature in a specific channel. We will describe our cuts in detail for each

analysis channel in the Sections below.

As a starting point, we incorporate sets of kinematic cuts that were developed in

various previous supersymmetric studies in the literature (the specific references are

given in the following Sections). However, in many cases we find that some of these

cuts are optimized for specific Supersymmetry benchmark points, e.g., the Snowmass

Points and Slopes (SPS) [15], and are too stringent for the general class of models

we study here. In other cases, we find that the cuts employed in the literature are

not stringent enough to sufficiently reduce the Standard Model background in order

to obtain a good signal to background ratio. Through a seemingly endless series of

iterations, we have thus designed sets of cuts (which are described in the following

Sections) that optimize the signal to background ratio for an arbitrary point in MSSM
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Sparticles Produced Signature Main Background Observable

ẽ+ẽ− e+e− + missing E e+e− → e−ν̄lνle
+, energy of e+, e−

µ̃+µ̃− µ+µ− + missing E e+e− → µ−ν̄lνlµ
+, energy of µ+, µ−

τ̃+τ̃− τ+τ− + missing E e±γ → e±νν̄ energy of tau jets

e±γ → e±l+l−

ν̃ν̃∗ jjjjl+l− + missing E γγ → cc̄, bb̄ missing energy

ν̃ν̃∗ jjjjjj + missing E none missing energy

χ̃+
1 χ̃−

1 µ+µ− + missing E e+e− → l−ν̄lνl′ l
′+ energy of µ+, µ−

χ̃+
1 χ̃−

1 jjµ± + missing E e+e− → qq̄′lν̄l energy and invariant

γγ → τ+τ− mass of dijet pair

γγ → qq̄

χ̃+
1 χ̃−

1 jjjj + missing E γγ → qq̄ energy and invariant

mass of dijet pairs,

missing energy

χ̃+
1 χ̃−

1 γ + charged tracks e+e− → l−ν̄lνl′ l
′+ recoil mass

e±γ → e±l+l−

χ̃+
1 χ̃−

1 or τ̃+τ̃− 2 stable charged tracks e+e− → e+e− + ISR,BS p/E

χ̃0
2χ̃

0
1 l+l− + missing E γγ → l+l− invariant mass

of lepton pair

χ̃0
2χ̃

0
1 jj + missing E e±γ → νeqq̄ invariant mass

of jet-pair

χ̃0
1χ̃

0
1 γ + nothing e+e− → γνν̄ photon energy

Table 2: Summary of signatures and observables in all analysis channels that we study

and sources of the main standard model background. l = e, µ, τ

parameter space. This scenario corresponds to a first sweep of ILC data in search

of a SUSY signal, and is therefore a reasonable course of action. We also remind

the reader that these AKTW models are difficult at the LHC and hence the slepton,

chargino, and neutralino states will not necessarily be observable at the LHC.

The signatures that we have developed analyses for are summarized in Table 2,

which lists the signature, dominant background source, and the observable kinematic

distribution for each SUSY production process. We note that in some cases, the same

signature can arise from different sources of sparticle production, e.g., µ+µ−+ missing

energy can occur from both smuon and chargino production. Indeed, it is well known

that sometimes SUSY is its own background and we will note this in the following

Sections. Our cuts, however, are chosen such to minimize this effect.

As discussed in the introduction, the first step in our analysis is to determine

whether or not a given SUSY particle is visible above the SM background. Specifi-

cally, for a kinematic distribution resulting from our analysis of a given observable,

we ask whether or not there is sufficient evidence to claim a ‘discovery’ for a SUSY

particle within a particular model. There are many ways to do this, but we follow
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the Likelihood Ratio method, which we base on Poisson statistics. (See, e.g., Ref.

[26]). In this method, we introduce the general Likelihood distribution:

L(n, µ) =

bins
∏

i

µni

i eµi

ni!
, (3.2)

where ni(µi) are the number of observed (expected) events in each bin i and we take

the product over all the relevant bins in the histogram. As discussed above, we have

generated two complete and statistically independent background samples, which we

will refer to as B1 and B2. Combining the pure signal events, S, which we generate

for any given model with one of these backgrounds, we form the Likelihood Ratio

R = L(S + B1, B2)/L(B1, B2) . (3.3)

The criterion for a signal to be observed above background is that the significance,

S, satisfy

S =
√

2 log R > 5 . (3.4)

This corresponds to the one-sided Gaussian probability that a fluctuation in the

background mimics a signal of ≃ 2.9 · 10−7, which is the usual 5σ discovery criterion.

When employing this method, we sometimes encounter bins within a given histogram

for which there is no background due to low statistics but where a signal is observed.

In this case, the function L is not well-defined. When this occurs we enter a single

event into the empty background histogram in that bin.

Given that our full SM background samples are only available at fixed energies,

our toolbox does not include the ability to do threshold scans. As is well known, this

is a very powerful technique that can be used to obtain precision mass determinations

for charged SUSY (or any other new) particles that are kinematically accessible. Such

measurements would certainly aid in the discrimination between models, especially

in difficult cases where the measurements we employ do not suffice. In addition,

especially for sparticles which decay inside the detector volume, input from the ex-

cellent SiD vertex detector could prove extremely useful. In the analysis presented

below, the vertex detector is used only for track matching and not as a search tool

for long-lived states.

4. Slepton Production

4.1 Charged Slepton Pair Production

For detecting the production of charged sleptons, we focus on the decay channel

l̃+l̃− → l+l−χ̃0
1χ̃

0
1 , (4.1)
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that is, the signature is a lepton pair plus missing energy. In the cases of selectrons

and smuons these signatures are fairly straightforward to study; the stau case is

slightly more complicated due to the more involved tau identification.

As is well known, the main Standard Model background for all of these cases

arises from the production of W pairs followed by their subsequent decay into lepton-

neutrino pairs and from Z-boson pair production, where one Z decays into a charged

lepton pair and the other into a neutrino pair. A significant background also arises

from gamma-induced processes through beam- and bremsstrahlung.

The W pair background produces leptons that are predominantly along the beam

axis towards | cos θ| ≈ 1, where θ takes on the conventional definition. This is because

the decaying W bosons are produced either through s-channel Z- or γ-exchange, for

which the differential cross section is proportional to (1+cos2 θ), or through t-channel

neutrino-exchange, which behaves as 1/ sin4(θ/2). The photon-induced background

also yields electrons that are peaked along the beam axis because they are mainly

produced at low pT from beam- and bremsstrahlung, although our more realistic

beamspectrum has a larger pT tail than the PYTHIA-generated backgrounds stud-

ied conventionally (cf. the discussion in Sec. 3). As we will illustrate below in

Section 4.1.3, having the best possible forward detector coverage in terms of track-

ing and particle identification (ID) is therefore of utmost importance to reduce the

Standard Model background.

To reduce the SM background, we employ a series of cuts that have been adapted

and expanded from previous studies [27, 28, 29]. Our cuts are fairly similar for all

slepton analyses. We will discuss them in detail in our selectron analysis presented

below, and then will list the cuts with only brief comments in our discussion of smuon

and stau production.

4.1.1 Selectrons

As discussed above, in the case of selectron production we study the clean decay

channel

ẽ+ẽ− → e+e−χ̃0
1χ̃

0
1 , (4.2)

that is, the signature is an electron pair plus missing energy. The main backgrounds

arising from the SM originate in W and Z pair production, followed by their leptonic

decays, along with several processes originating from both γγ and γe interactions.

To reduce these backgrounds we employ the following cuts, which are expanded from

those in [27]:

1. We require exactly two leptons, identified as an electron and a positron, in

the event and that there be no other charged particles. This removes SM

backgrounds where, for example, both Z bosons decay into charged leptons.

2. Evis < 1 GeV for | cos θ| ≥ 0.9, where Evis corresponds to the visible energy

in the event. This helps to reduce large SM background from forward W
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production, as well as beam-/bremsstrahlung reactions that yield leptons pre-

dominantly along the direction of the beam axis.

3. Evis < 0.4
√

s in the forward hemisphere. Here, the forward hemisphere is

defined as the hemisphere around the thrust axis which has the greatest visible

energy. Since we only have 2 visible particles in the final state, this amounts to

defining the forward hemisphere about the particle with the highest energy. The

SUSY signal has missing energy in both hemispheres, whereas the SM reaction

e+e− → ZZ → e+e−νν̄ has missing energy in only one of the hemispheres since

the decay Z → νν̄ occurs in the hemisphere opposite of the Z decay to charged

leptons.

4. The angle between the reconstructed electron-positron pair is restricted to have

cos θ > −0.96. Since SUSY has a large amount of missing energy, the selectron

pair will not be back-to-back, in contrast to the SM background events.

5. We demand that the visible transverse momentum, or equivalently, the trans-

verse momentum of the electron-positron pair, pT vis = p e+e−

T > 0.04
√

s. This

cut significantly reduces both the γγ and e±γ backgrounds which are mostly

at low pT .

6. The acoplanarity angle must satisfy ∆φe+e− > 40 degrees. Since we demand

only an electron and positron pair, the acoplanarity angle is equivalent to π

minus the angle between the transverse momentum of the electron and positron,

∆φe+e− = π−θT . This requirement translates to a restriction on the transverse

angle of cos θT > 0.94. This cut further reduces contributions from both the

W -pair and γγ backgrounds where the e+e− pair tends to be more back-to-

back.

7. Me+e− < MZ − 5 GeV or Me+e− > MZ + 5 GeV, where Me+e− is the invariant

mass of the lepton pair. This cut is to further remove events from Z boson

pair production with subsequent decays into e+e− pairs.

As already mentioned above, we note that below 142 mrad (|cos θ| > 0.99), the

SiD detector does not have particle tracking information according to the current

detector design [14], and any charged particle in this region appears only as a neutral

electromagnetic cluster. However the first cut listed above, where we demand exactly

an e+e− pair in the final state, substitutes for potentially more detailed cuts that

assume tracking capabilities down to much smaller angles.

The standard selectron search analysis is based on the energy distribution of the

final state electron or positron. Since the selectron decays into a clean 2-body final

state, the e−/e+ energy distribution has a box-shaped “shelf” in a high statistics,

background-free, perfect detector environment in the absence of radiative effects.
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Kinematics determines the minimum and maximum electron energies which are re-

lated to the two unknown masses of the selectron and LSP by

Emax =

√
s

4

(

1 +

√

1 − 4m2
ẽ

s

)(

1 −
m2

χ̃0
1

m2
ẽ

)

, (4.3)

Emin =

√
s

4

(

1 −
√

1 − 4m2
ẽ

s

)(

1 −
m2

χ̃0
1

m2
ẽ

)

. (4.4)

The sharp edges of this box-shaped energy distribution allow for a precise deter-

mination of the selectron and LSP masses. However, due to beamstrahlung, the

effective
√

s above will vary, and once detector effects are also included the edges of

this distribution will tend to be slightly washed out. Since our goal here is to simply

detect superpartners and then distinguish models with different sets of underlying

parameters, we do not need to perform a precise mass determination in the present

analysis. We also consider additional kinematic observables, such as the distribution

of pvis
T and the e+e− invariant mass Mee, as they will be useful at separating different

SUSY signal sources.
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Figure 11: Standard Model background after each of the cuts listed in the text is suc-

cessively imposed for an incoming right-handed electron beam with 80% polarization and

250 fb−1 of integrated luminosity.
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Figure 12: Remaining SM background after the full set of selectron selection cuts listed

in the text are imposed. This is generated from 250 fb−1 of SM events with 80% right-

handed (solid blue line) and 80% left-handed (solid red line) electron beam polarization,

and unpolarized positron beam at
√

s = 500 GeV. The dotted lines show the main process

contributing to the background, e+e− → ℓ−ν̄ℓνℓ′ℓ
′+, with ℓ(′) = e, τ , for 80% right-handed

(dotted pink line) and 80% left-handed (dotted green line) electron polarization. Note

that here and in other Figures below the spikes in the full background and the main

contributions are because of rescaling issues and the thus necessary mixing of the two

independent background samples (cf. the discussion in Section 3.1). This mixing is a

random procedure which explains why the spikes are not all in the same bins.

The successive effect of each of the above cuts on the SM background is illustrated

in Fig. 11. Here, we show the electron and positron energy distribution for 250

fb−1 of simulated Standard Model background for RH electron beam polarization at√
s = 500 GeV. The y-axis corresponds to the number of events per 2 GeV bin. We

note that cuts number 1-5 essentially eliminate any potential background arising from

the large Bhabha scattering and γγ → e+e− cross sections. The main contribution

to the background remaining after these cuts arises from processes involving W and

Z pair production from electron positron initial states, i.e., e+e− → ℓ−ν̄ℓνℓ′ℓ
′+, with

ℓ(′) = e, τ , as shown in Fig. 12. We find that most of the photon initiated background

has been removed by our cuts. Note that applying these cuts in a different order

would necessarily show a different level of effectiveness.

A further comment on cut number 5 is in order. One finds that increasing this
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cut from p e+e−

T > 20 GeV to p e+e−

T > 30 GeV at
√

s = 500 GeV to further reduce

the photon initiated background, introduces a dip in the center of the “shelves” for

MSSM models that have edges near Ee ≃ 30-40 GeV. This apparently occurs when

both visible leptons have approximately the same amount of energy, so that their

transverse momenta partially cancel, leaving insufficient visible transverse momen-

tum to pass the cut. When one of the leptons is more energetic than the other,

the visible pT is generally above the cut. Thus increasing the cut on visible pT in

order to reduce the background further also affects the signal in a perhaps somewhat

unexpected way. The same observation also applies in the smuon analysis below.

Figure 13 shows how a typical signal from a model with kinematically accessible

selectrons responds to the same cuts that were applied to the backgrounds above.

Note that while the cuts reduce the backgrounds by many orders of magnitude, the

signal is reduced only by a factor of 2 − 3.

We now examine selectron pair production for the AKTW models. In this case,

there are 22/242 (22 out of 242) models with kinematically accessible selectrons at√
s = 500 GeV. The ẽL(R) is accessible in 9(15) of these 22 models; for 2 models

we find that both states are potentially visible. Note that fewer than 10% of our

Figure 13: The electron energy distribution for selectron production after successively

imposing each of the cuts listed in the text for the case of a right-handed incoming electron

beam with 80% polarization and 250 fb−1 of integrated luminosity.
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models have this relatively clean channel accessible. Selectrons are pair produced via

s-channel γ and Z exchange as well as t-channel neutralino exchange. For the case of

the well-studied ẽ → eχ̃0
1 decay mode, which we examine here, selectrons are usually

searched for by examining the detailed structure of the resulting individual e± energy

spectra and looking for any excesses above the expected SM background. As is by

now well-known and briefly discussed above, in the absence of such backgrounds, with

high statistics and neglecting any radiative effects, the 2-body decay of the selectrons

lead to flat, horizontal shelves in this distribution. In a more realistic situation where

all such effects are included and only finite statistics are available, the general form

of the shelf structure remains but they are now jagged, tilted downwards (towards

higher e± energies), and have somewhat smeared edges. These effects are illustrated

in Fig. 14 which shows examples of the e± spectra (adding signal and background)

for some representative AKTW models containing kinematically accessible selectrons

with either beam polarization configuration. There are several important features to

note in these Figures. The detailed nature of the ẽ signal in the e± energy spectrum

shows significant variation over a wide range of both magnitude and width depending

upon the ẽL,R and χ̃0
1 masses and the resulting production cross sections. Recall that

t-channel sneutrino exchange can be important here and dramatically affects the size

of this cross section. The ratio of signal to background is not always as large as

in most cases discussed in the literature. In addition, we note that the range of

possible signal shapes relative to the SM background can be varied; not all of our

signals appear to be truly shelf-like. In some models, the background overwhelms

the signal. Note that RH polarization leads to far smaller backgrounds than does

LH polarization as would be expected, this being due to the diminished contribution

from W -pairs which prefer LH coupling.

Of the 22 kinematically accessible models, 18(15) lead to signals with a visibil-

ity significance over background of S > 5 at these integrated luminosities assuming

RH(LH) beam polarization. Combining the LH and RH polarizations channels we

find that 18/22 models with selectrons lead to signals with significance > 5. Further-

more, 8/9 models with kinematically accessible ẽL are observable while 12/15 models

with ẽR are visible. Note that 4 models have selectrons with masses that are in excess

of 241 GeV. This leads to a strong kinematic suppression in their cross sections and,

hence, very small signal rates, so they are missed by the present analysis. Some of

the models in both the RH and LH polarization channels have a rather small S/B

and are not easily visible at this level of integrated luminosity; typical examples of

‘difficult’ models are presented in Figs. 15 and 16.

It is interesting to compare these results to what we obtain in the case of the well-

studied SPS1a’ benchmark model [15]; Fig. 17 shows the electron energy distribution

for this model for both beam polarization choices in an analogous manner to that

shown in the previous Figures for the AKTW models. Due to the large production

cross section, detecting the signal in this case is rather trivial as we would expect
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from the detailed studies made in the literature. The most important thing to notice

from this Figure is that SPS1a’ leads to substantially larger signal rates than in any

of the models we are investigating in the present analysis. In fact, the SPS1a’ signal

rates can be almost two orders of magnitude larger than some of the models we are

examining here. We also observe the obvious presence of two shelves, especially in

the case of LH beam polarization, clearly indicating that both the ẽL and ẽR states

are kinematically accessible and are being simultaneously produced.

Interestingly, one finds that there are a number of models, particularly in the

case of RH polarization, which do not have kinematically accessible selectrons but

which have visible signatures in the ẽ-pair analysis. This is an example of SUSY

being a background to SUSY. There are, of course, other SUSY particles which can

decay into e± and missing energy, e.g., chargino pair production followed by the

decay χ̃+
1 → W ∗χ̃0

1 with W ∗ → eν, or associated χ̃0
2χ̃

0
1 production followed by the

decay χ̃0
2 → e+e−χ̃0

1. Both of these processes result in the same observable final state.

Figure 18 shows some of these ‘fake’ models that appear in our selectron analysis in

the case of RH polarization. Fake models, by which we mean models where other

SUSY particle production leads to a visible signature in the selectron analysis, also

appear for LH polarization and, in fact, we find 14 counterfeit models for either

polarization. Note that the shapes of these fake model signatures are somewhat

different than those in a typical model with actual selectrons present; there are no

truly shelf-like structures and the e± energies are all peaked at relatively low values.

This occurs because in these examples the final state electrons are the result of a 3-

(or more) body decay channel when the W boson is off-shell and because the χ̃±
1 − χ̃0

1

mass splitting is relatively small. Both of these conditions are present in most of our

models.

If further differentiation from the fake signatures is required, we need to examine

a different kinematic distribution, e.g., the invariant mass of the e+e− pair, Mee. One

would expect the counterfeit signals to populate small values of Mee while the models

with actual selectrons will have a higher number of events with larger values of Mee.

This is indeed the case as can be clearly seen in Fig. 19. As we will see below, fake

signals occur quite commonly in almost all of our analyses. Though specific analyses

are designed to search for a particular SUSY partner it is quite easy for other SUSY

states to also contribute to a given final state and be observed instead, e.g., a similar

signature can be generated using the visible pT of the electron.

It would be interesting to return to this issue with a wider set of models that lead

to larger mass splittings in the electroweak gaugino sector to see how well selectrons

and charginos can be differentiated under those circumstances.
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Figure 14: Electron energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for several representative models. RH(LH) beam

polarization is employed in the top(bottom) panel, assuming 80% electron beam polariza-

tion an integrated luminosity of 250 fb−1 for either polarization. The SM background is

shown as the black histogram.
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Figure 15: Same as the previous Figure but now for three models which are difficult to

observe due to small cross sections in the RH polarization channel.
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Figure 16: Same as the previous Figure but now for the LH polarization channel for two

sets of models which are a bit more difficult to observe due to small cross sections.
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Figure 17: The electron energy distribution after imposing the full set of cuts discussed in

the text for the benchmark model SPS1a’. RH(LH) beam polarization is employed in the

top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for either polarization.

The SM background is shown as the black histograms.
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Figure 18: The electron energy distribution after imposing the full set of cuts discussed

in the text for a subset of fake selectron models in the RH polarization channel. The SM

background is shown as the black histogram as usual.
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Figure 19: The dielectron invariant mass spectrum in the RH polarization channel for

true selectron models (top) and those caused by other SUSY particles (bottom).
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4.1.2 Smuons

For µ̃ pair production the standard search/analysis channel is

µ̃+µ̃− → µ+µ−χ̃0
1χ̃

0
1 , (4.5)

i.e., the signature is a muon pair plus missing energy. Smuon production occurs via s-

channel γ and Z exchange; there is no corresponding t-channel contribution as in the

case of selectrons. As in the selectron analysis, the dominant background arises from

leptonic decays of W -pair and Z-pair production, as well as the ubiquitous (though

somewhat less important in this case) γγ background. Since the background and

signal are similar to those for selectron production, our choice of cuts here will follow

those employed in the selectron analysis above and are adapted from those proposed

by Martyn [28] (see also [29]):

1. No electromagnetic energy (or clusters) > 0.01
√

s in the region | cos θ| > 0.995.

2. Exactly two muons are in the event with no other charged particles and they

are weighted by their charge within the polar angle −0.9 < Qµ cos θµ < 0.75

with no other visible particles. This removes a substantial part of the W -pair

background.

3. The acoplanarity angle satisfy ∆φµµ > 40 degrees. This reduces both the

W -pair and γγ backgrounds.

4. | cos θpmissing
| < 0.9.

5. The muon energy is constrained to be Eµ > 0.004
√

s.

6. The transverse momentum of the dimuon system, or equivalently, visible trans-

verse momentum (since only the muon pair is visible), satisfy pT vis = pµµ
T >

0.04
√

s. This removes a significant portion of the remaining γγ and e±γ back-

grounds.

The remaining SM background after these cuts have been imposed are displayed

in Fig. 20 for both polarization configurations. The main background to µ̃-pair

production, e+e− → l−ν̄lνl′ l
′+, l = µ, τ , is also shown in the Figure, and we see that

it essentially comprises the full background sample. The background is somewhat

smaller here than in the case for selectron production, as beam remnants from γ-

induced reactions are not confused with the signal for smuon production.

As in the case of selectron production, there are only 22 out of 242 models which

have kinematically accessible smuons at
√

s = 500 GeV. The µ̃L(R) is found to be

kinematically accessible in 9(15) of these cases, there again being 2 models where

both smuon states can be simultaneously produced. In the µ̃ → µχ0
1 decay channel,
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smuons are observed by detecting a structure above the SM background in the muon

energy distribution, similar to the search for selectrons. Here too, as is well-known,

in the absence of such backgrounds, with high statistics and neglecting radiative

effects, the 2-body decay of the µ̃’s leads to horizontal shelf-like structures. In the

more realistic situation where all such effects are included, the shelves remain but

are now tilted downward (towards higher muon energies), as in the selectron case

and have somewhat rounded edges. Examples of the muon energy spectra for some

representative AKTW models displaying these effects are shown in Fig. 21 for either

beam polarization configuration. Several things are to be noted in these Figures. The

µ̃ signals in the muon energy distribution vary over a wide range of both height and

width depending upon the values of the µ̃ and χ0
1 masses and the production cross

sections. The range of possible signal shapes relative to the background is varied, but

generally the signal is separable from the background in most models. We note again

that the background is somewhat reduced compared to selectron production since

there are fewer issues with beam remnants here. Again, we see that RH electron

Figure 20: The muon energy distribution of the SM background after the smuon selection

cuts described in the text have been imposed. The red(blue) solid curves correspond to the

full background sample with 80% LH(RH) electron beam polarization, and the green(pink)

dotted lines represent the contribution from the process e+e− → l−ν̄lνl′l
′+, l = µ, τ , with

LH(RH) beam polarization, respectively. 250 fb−1 of integrated luminosity for each beam

polarization has been assumed.
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beam polarization leads to far smaller backgrounds than does LH beam polarization,

as expected due to the diminished contribution from W -pair production.

Of the 22 kinematically accessible models, 19(17) lead to signals with signifi-

cance > 5 at these integrated luminosities with RH(LH) electron beam polarization.

Combining the LH and RH polarization channels, we find that 19/22 models with

accessible smuons lead to signals that meet our visibility criteria. We display a rep-

resentative set of these models in Fig. 21 for both beam polarizations. The three

models that do not pass our discovery criteria have smuons with masses in excess

of 241 GeV; this leads to a strong kinematic suppression in their cross sections, and

hence, very small signal rates. The S/B ratio is somewhat small for some of the mod-

els in the LH polarization channel, as can be seen in Fig. 22, and are not so easily

visible at this integrated luminosity. However, they nonetheless pass our significance

tests for discovery.

It is again interesting to compare the AKTW models that have visible smuons

at the ILC with the well studied case of SPS1a’. Fig. 23 shows the muon energy

spectrum we obtain after imposing our kinematic cuts in the case of SPS1a’ for both

beam polarizations. As in our selectron analysis, we observe that the event yield

for SPS1a’ is far larger than all the AKTW models we study here, in some cases

by as much as a factor of order 50. Also, as in the previous analysis, two distinct

shelves are observed since both µ̃L,R are being simultaneously produced. The muon

energy distribution is slightly different from that obtained for electrons in this model,

not only because of the small differences in our cuts, but also due to the fact that

the mixed final state µ̃Lµ̃R is not produced due to the absence of the t-channel

contribution. Clearly, in comparison to the bulk of our models, it is rather trivial to

discover and make precise determinations of the smuon properties in SPS1a’.

Note that 4 of the models with kinematically accessible smuons also have kine-

matically accessible lightest chargino states. However, since all of these charginos

are rather close in mass to the LSP, i.e., within 5 GeV, the existence of the charginos

does not constitute a large additional source of background and does not significantly

affect the qualitative structure of the muon energy spectra. They could, however,

modify the extracted values of the particle masses obtained from an analysis of the

endpoints of the muon energy spectra and this possibility should be studied further.

Interestingly, as in the selectron case above, a number of models which do not

have kinematically accessible smuons give rise to visible signals in the µ̃-pair analy-

sis. This is just another example of the well-known phenomenon where SUSY is a

background to itself. We find that there are 20(15) models which yield fake signals

in the case of RH(LH) polarization. As in the previous analysis, decays of other

SUSY particles into muons, e.g., χ̃+
1 → W ∗χ0

1 with W ∗ → µν, can lead to the same

observable final state in both polarization channels. We present examples of such

misleading signals in Fig. 24. Note that in the case of RH beam polarization, the

fake signature looks quite different than in a typical model which really has smuons
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present; there are no shelf-like structures and the muon energies are relatively low.

This is to be expected when the final state muons are the result of a 3-(or more)

body decay channel, and when chargino-neutralino mass splittings are small. How-

ever, for LH polarization, two representative fake models (labeled 8324 and 39331 in

the Figures) appear to mimic the smuon shelf-like feature. This is due to the fact

that in these particular models, as will be discussed further below in Section 5.1, the

W boson in the χ̃±
1 decay process is on-shell so that the final state muons are the

result of true 2-body decays.

In order to assist in the differentiation of models with real smuons from ones

that do not, it is necessary to examine other kinematic distributions. Figures 25

and 26 show the pvis
T distributions for the real smuon and fake models, respectively.

Here we see that the models with real smuons generally lead to harder muons in the

final state than do the counterfeit cases; this holds to some extent in the fake models

where the charginos decay to on-shell W bosons.
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Figure 21: Muon energy distribution: the number of events/2 GeV bin (combined signal

and background) after imposing the cuts described in the text for several representative

models, with RH(LH) beam polarization in the top(bottom) panel, assuming an integrated

luminosity of 250 fb−1 for either polarization. The SM background is represented by the

black histogram.
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Figure 22: Same as the previous Figure but now showing AKTW models that result in a

small S/B ratio in the LH polarization channel in the µ̃-pair analysis.
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Figure 23: Muon energy distribution: the number of events/2 GeV bin (combined signal

and background) after imposing the cuts described in the text for the benchmark model

SPS1a’, with RH(LH) beam polarization in the top(bottom) panel, assuming an integrated

luminosity of 250 fb−1 for either polarization. The SM background is represented by the

black histogram.

– 42 –



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

mixR1.aida

R27075.aida

R15898.aida

R14343.aida

R12843.aida

R6006.aida

R39331.aida

R39331.aida
  Entries : 1568 
  Mean : 67.212 
  Rms : 52.759 

R6006.aida
  Entries : 1526 
  Mean : 55.270 
  Rms : 57.580 

R12843.aida
  Entries : 1514 
  Mean : 55.795 
  Rms : 57.603 

R14343.aida
  Entries : 1452 
  Mean : 57.528 
  Rms : 58.151 

R15898.aida
  Entries : 1286 
  Mean : 62.405 
  Rms : 60.000 

R27075.aida
  Entries : 1436 
  Mean : 57.533 
  Rms : 58.595 

mixR1.aida
  Entries : 1012 
  Mean : 75.539 
  Rms : 61.276 

E(mu+,mu−)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

mixL1.aida

L39331.aida

L27075.aida

L14343.aida

L12843.aida

L8324.aida

L6006.aida

L6006.aida
  Entries : 4633 
  Mean : 60.647 
  Rms : 52.596 

L8324.aida
  Entries : 5593 
  Mean : 61.808 
  Rms : 47.116 

L12843.aida
  Entries : 4537 
  Mean : 61.705 
  Rms : 52.638 

L14343.aida
  Entries : 4615 
  Mean : 60.938 
  Rms : 52.524 

L27075.aida
  Entries : 4465 
  Mean : 62.206 
  Rms : 52.917 

L39331.aida
  Entries : 5509 
  Mean : 61.585 
  Rms : 47.347 

mixL1.aida
  Entries : 3969 
  Mean : 68.196 
  Rms : 53.123 

E(mu+,mu−)

Figure 24: Muon energy distribution: the number of events/2 GeV bin (combined signal

and background) after imposing the cuts described in the text for representative models

which lead to fake smuon signatures from chargino and neutralino decays. Here, we show

RH(LH) beam polarization in the top(bottom) panel, assuming an integrated luminosity of

250 fb−1 for either polarization. The SM background is represented by the black histogram.
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Figure 25: The pvis
T distribution for the same models shown in Fig. 21 with real smuons.

Here, we show RH(LH) beam polarization in the top(bottom) panel, assuming an integrated

luminosity of 250 fb−1 for either polarization. The SM background is represented by the

black histogram.

– 44 –



10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

mixR1.aida

R27075.aida

R15898.aida

R14343.aida

R12843.aida

R6006.aida

R39331.aida

R39331.aida
  Entries : 793 
  Mean : 90.174 
  Rms : 54.708 

R6006.aida
  Entries : 772 
  Mean : 78.138 
  Rms : 61.694 

R12843.aida
  Entries : 766 
  Mean : 78.601 
  Rms : 61.708 

R14343.aida
  Entries : 735 
  Mean : 80.981 
  Rms : 61.896 

R15898.aida
  Entries : 652 
  Mean : 86.992 
  Rms : 63.213 

R27075.aida
  Entries : 727 
  Mean : 80.923 
  Rms : 62.491 

mixR1.aida
  Entries : 515 
  Mean : 103.46 
  Rms : 61.356 

pTvis − smuon

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

mixL1.aida

L39331.aida

L27075.aida

L14343.aida

L12843.aida

L8324.aida

L6006.aida

L6006.aida
  Entries : 2260 
  Mean : 83.805 
  Rms : 55.804 

L8324.aida
  Entries : 2740 
  Mean : 84.142 
  Rms : 49.774 

L12843.aida
  Entries : 2212 
  Mean : 85.130 
  Rms : 55.677 

L14343.aida
  Entries : 2251 
  Mean : 84.196 
  Rms : 55.640 

L27075.aida
  Entries : 2176 
  Mean : 85.713 
  Rms : 56.001 

L39331.aida
  Entries : 2698 
  Mean : 83.715 
  Rms : 50.205 

mixL1.aida
  Entries : 1928 
  Mean : 93.461 
  Rms : 54.869 

pTvis − smuon

Figure 26: The pvis
T distribution for the same models shown in Fig. 24 with fake smuons.

Here, we show RH(LH) beam polarization in the top(bottom) panel, assuming an integrated

luminosity of 250 fb−1 for either polarization. The SM background is represented by the

black histogram.
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4.1.3 Staus

This analysis is similar to the other charged slepton analyses discussed above. We

analyze the channel

τ̃+τ̃− → τ+τ−χ̃0
1χ̃

0
1 , (4.6)

that is, the signature is a tau pair plus missing energy. Staus are pair produced via

s-channel γ and Z exchange and receive no t-channel contribution. The left- and

right-handed staus mix to form two mass eigenstates, which have mixing-dependent

couplings to the Z boson. In contrast to the other charged slepton analyses above,

the identification of the final state tau leptons is nontrivial, because the tau decays

in the detector, predominantly into hadrons.

We focus on the hadronic decays of taus into pions, τ → πντ ; τ → ρντ →
π±π0ντ ; τ → 3πντ , the latter being a 3-prong jet, but also include the leptonic

decays of the τ . In the hadronic decay channel, taus are identified as jets with a

charged multiplicity of 1 or 3, and with invariant mass less than some maximum

value. Our tau selection criteria are as follows [30, 28] (note that we employ the

notation tau-jet to describe the visible τ decay products):

1. We require 2 jets in the event, each with charged multiplicity of 1 (where the

tau decays into a lepton, ρ, π, or 3π-decay with 2π0s) or 3 (where the tau

decays into 3 charged pions).

2. The invariant mass of tau-jet, i.e., the visible tau decay products, must be <

1.8 GeV.

3. If the tau-jet is 3-prong (charged multiplicity of 3), then none of the charged

particles should be an electron or muon.

4. If both tau-jets in the event are 1-prong, then we reject events where both jets

are same flavor leptons, that is, an electron-positron or a muon pair. However

we keep pairs of tau-jets that are, for example, an electron and a muon, or an

electron and a pion, whereby a pion is defined as a charged track that is not

identified as an electron or a muon.

As an alternative analysis, we follow the above criteria and allow leptonic tau

decays into muons, but reject taus that decay into electrons. This reduces contami-

nation from photon-induced backgrounds.

As mentioned above in our description of the SiD detector in Section 3.2, the

current detector design does not allow for tracking, and hence does not have the

capability for particle ID, below 142 mrad. Thus muons at low angles are completely

missed if they are too energetic to deposit energy into clusters. As we will see, certain

γ-induced processes constitute a significant background to stau production, particu-

larly in the case where such energetic muons are produced but not reconstructed and
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the beam electron (or positron) receives a sufficient transverse kick to be detected.

In this case, the final visible state is an electron and a muon, which would pass

the standard tau ID preselection described above. The alternative tau preselection

criteria, which rejects the electron decay channel, eliminates this background at the

price of reducing the signal correspondingly by roughly 30%.

After these tau identification criteria are imposed, we employ cuts to reduce the

SM background. Following [28], we demand:

1. No electromagnetic energy (or clusters) in the region | cos θ| > 0.995.

2. Two tau candidates as identified above, are weighted by their charge within the

polar angle −0.75 < Qτ cos θτ < 0.75. This reduces the W -pair background.

3. The acoplanarity angle must satisfy ∆φττ > 40 degrees. Here, since we demand

two tau candidates, the acoplanarity angle is equivalent to π minus the angle

between the pT of the taus, ∆φττ = π − θT . The above requirement then

translates to cos θT > 0.94. This cut reduces the W -pair and γγ-induced

background.

4. | cos θpmissing
| < 0.8.

5. The transverse momentum of the ditau system be in the range 0.008
√

s <

pττ
T < 0.05

√
s. This decreases the γγ-induced background.

6. The transverse momentum of each of the tau candidates be pT > 0.001
√

s.

This cut is crucial to reduce the γγ and eγ background.

7. The combined cut on
∑

pτ

⊥, ~T
and ∆φττ ,

∑

pτ

⊥, ~T
< 0.00125

√
s (1 + 5 sin ∆φττ )

= 0.00125
√

s
(

1 + 5
√

1 − cos2 θττ
T

)

(4.7)

is imposed. Here,
∑

pτ

⊥, ~T
is the sum of the tau momenta projected onto the

transverse thrust axis ~T⊥, where the transverse thrust axis is given by the xy-

components of the thrust axis. This last cut is necessary in the tau decay

channel to further decrease the γγ background.

As in the other slepton analyses, we histogram the resulting τ± energy spectrum

as well as pT vis in this case. We show the remaining SM backgrounds after these

cuts are imposed in Fig. 27; the dominant background left after the cuts stems from

γ-induced lepton-pair production processes.

In Fig. 27, we also display the effect of the alternative tau ID criteria discussed

above. This alternative technique nearly completely eliminates the background since
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events where a beam electron/positron is falsely identified as a tau decay product

are rejected. Of course, as mentioned above this technique also reduces the signal

by approximately 30%. Augmenting the detector with muon ID capabilities at lower

angles could reduce the γ-induced background without having to pay the price of

introducing a restricted tau identification. As we will see below, a significant portion

of the AKTW models have very low stau signal rates, and an improved tracking

capability could be crucial if in fact this portion of the SUSY parameter space is

realized in nature.

In 28 of the 242 AKTW models, the lightest stau is kinematically accessible for

pair production at the 500 GeV ILC, and in one of these models the heavier stau

partner can also be produced. The signal for stau production is somewhat different

than in the case for selectrons and smuons as the final state tau decays in the detector.

In this case, we no longer have the distinctive shelf-like feature in the resulting energy

spectrum of the reconstructed tau. The shape of these spectra is highly dependent

on the mass difference between the stau and the LSP as shown in Fig. 28, which

displays the pure signal in 3 models before our selection cuts have been imposed.

Here we see that small mass differences result in a sharply peaked distribution at low

tau energies, while a larger mass difference yields a flatter distribution, albeit at a

lower event rate. In principle, the search strategy, and hence the set of selection cuts,

could be tailored to maximize the signal to background ratio once the stau−LSP mass

difference is known. However, until the stau is discovered a general search strategy,

such as that presented here, that applies for all mass regions must be employed.

Of these 28 models, we find that 18 lead to signals which can be observed at the

significance level S > 5. We also find that the heavier stau with mτ̃2 = 240 GeV is

not produced with large enough event rates to be visible above the SM background.

In addition, in 3 of these 28 models the mass difference between the lightest stau and

the LSP is small enough such that the stau decays outside the detector, and it can

be observed in our stable charged particle search (described below in Section 5.3).

Of the 18 detectable stau models, 9(10) are visible via our standard search criteria

in the LH(RH) beam polarization configuration. The total (combining signal and

background) τ± energy distribution is shown for a representative set of these models

for both beam polarizations in Fig. 29. Here, we see that some of these models cleanly

rise above the SM background, while others are just barely visible. The number of

detectable stau signals is greatly increased when we apply our alternative set of

preselection criteria discussed above. One finds that 17(12) models are observable

with LH(RH) electron beam polarization; the tau energy spectrum for a sampling of

these models is displayed in Fig. 30. In this case, we see that the signal is cleanly

visible above the background for all models.

In all of the 18 models with observable staus, we find that the number of stau

events that pass our cuts is dramatically reduced compared to the event rate in Fig. 28

before the cuts were applied. In addition, due to our cuts, the tau energy distribution
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is always peaked at low values, regardless of the stau-LSP mass difference, which

ranges from 7 − 94 GeV in these 18 models. In the 7 models where the signal is

not observable, 2 are phase-space suppressed with mτ̃1 > 240 GeV. The remaining

5 models all have reasonable τ̃1 masses and the τ̃1 − χ̃0
1 mass difference ranges from

42 − 108 GeV, but nonetheless have a small production cross section due to stau

mixing.

Unlike many of the AKTW models we are examining, stau production at the

ILC is straightforwardly observable in the case of the benchmark model SPS1a’.

This holds in either of the analysis channels as can be observed in Figs. 31 and 32.

Here we see that the stau signal is quite substantial and can be cleanly observed over

the SM background for both choices of the electron beam polarization.

We find that many AKTW models which do not contain kinematically accessible

stau states nonetheless give rise to visible signatures with significance > 5 in this

analysis, providing yet another example of SUSY being a background to itself. The

tau energy distribution for a representative sampling of these SUSY background

models is presented in Fig. 33, using the alternative set of kinematic cuts. We find

that there are 29(28) models which yield fake signals with LH(RH) electron beam

polarization in our standard set of kinematic cuts. For our alternative analysis which

rejects electrons in the final state, there are 30(28) models with false signatures for the

LH(RH) polarization configuration. This analysis clearly has a very large number

of false signals. We note that in every one of these ”fake” models, χ̃±
1 χ̃∓

1 , χ̃0
2χ̃

0
1,

and χ̃0
2χ̃

0
2 production is kinematically possible, and in one case selectron and smuon

production is also viable. There are thus several sources of SUSY background which

can lead to the same final state as that for stau pair production.

In order to distinguish between stau production and these SUSY background

sources, we investigate the variable

Meff = Emiss
T +

∑

i=1,2

|Eτi

T | . (4.8)

This variable is presented in Fig. 34 for both real and fake stau production. Here, we

see that the false signals are slightly more peaked at lower values of Meff than does

actual stau production. However, the distinction is not as clear as in the identification

of selectron and smuon fake signatures discussed above, which makes use of the

observable pvis
T . This is because the full τ energy is not carried by its visible decay

products. We note that the pvis
T observable is not effective in distinguishing stau states

from SUSY background sources, as in this case both the staus and the background

sparticles have multi-body decays.
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Figure 27: The τ± energy spectrum of the SM background after the tau identification

and stau selection cuts have been imposed. The solid blue and red lines are the full SM

background for 80% right- (blue) and left-handed (red) electron polarization, the dashed

lines (pink, right-handed, green left-handed) represent the dominant background source,

e±γ → e±νν̄, e±l+l−, l = e, µ, τ . Furthermore, the effect of eliminating the misidentifica-

tion of beam electrons as tau decay products via the alternative tau ID described in the

text is represented by the solid cyan line (80% right-handed beam polarization) and solid

black line (80% left-handed polarization).
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Figure 28: Tau energy distribution stemming from stau pair production before our set

of kinematic cuts have been imposed in three AKTW models. The red, blue, magenta

histograms correspond to a stau-χ̃0
1 mass difference of order 25, 100, and 0.5 GeV, respec-

tively.
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Figure 29: Tau energy distribution: the number of events/2 GeV bin after imposing the

standard set of tau ID and τ̃ selection criteria described in the text for several represen-

tative AKTW models (signal and background combined). RH(LH) beam polarization is

employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for each

polarization configuration. The SM background corresponds to the black histogram.
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Figure 30: Tau energy distribution: the number of events/2 GeV bin after imposing the

alternative set of tau ID and τ̃ selection criteria described in the text for several repre-

sentative AKTW models (signal and background combined). RH(LH) beam polarization

is employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

each polarization configuration. The SM background corresponds to the black histogram.
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Figure 31: Same as in Fig. 29 except now for SPS1a’.
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Figure 32: Same as in Fig. 30 except now for SPS1a’.
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Figure 33: Tau energy distribution: the number of events/2 GeV bin after imposing the

alternative set of tau ID and τ̃ selection criteria described in the text for several represen-

tative AKTW models that give a fake signal in this channel. RH(LH) beam polarization

is employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

each polarization configuration. The SM background corresponds to the black histogram.
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Figure 34: Invariant mass of the products from the decays of objects identified as tau

pairs produced from stau production (top panel) and from other, non-stau SUSY sparticles

(bottom panel). Here we present the number of events/2 GeV bin assuming RH polarization

and 500 fb−1 of integrated luminosity for several models shown in comparison to the SM

background represented as the black histogram.
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4.2 Sneutrino Pair Production

We now examine the neutral slepton sector, i.e., sneutrinos, which provides another

potential handle for distinguishing between models. For all three sneutrino families

there is the usual Z boson exchange contribution to the production amplitude in the

s-channel, while for electron sneutrinos there is an additional t-channel graph due to

χ̃±
1,2 exchange. If the charginos are heavy, then the Z-exchange graph dominates for

all three generations and the resulting production cross section is determined solely

by the amount of available phase space. 11/242 of our AKTW models have electron

or muon sneutrino pairs which are kinematically accessible at
√

s = 500 GeV, while

18/242 models contain accessible tau sneutrinos. In one of the models the sneutrino

is the LSP.

Sneutrinos, being neutral and weakly-interacting, are essentially only visible

through their decay modes, of which there are several possible channels to con-

sider: (i) ν̃ℓ → νℓχ̃
0
1 largely dominates in most cases, but leads to an invisible final

state which, by itself, is clearly useless for either discovery or model comparison.

(ii) ν̃ℓ → Wℓ̃ is kinematically forbidden as an on-shell mode when ℓ = e, µ in all of

our AKTW models and thus the corresponding 3-body branching fraction mediated

by off-shell W bosons is very small. However, due to large τ̃ mixing, this 2-body

mode is allowed for 6 of our models in the case of ℓ = τ . When both the W and τ de-

cay hadronically, we can search for final states with multiple jets plus missing energy

in this case. (iii) ν̃ℓ → νℓχ̃
0
2 can also occur, with the subsequent decay χ̃0

2 → χ̃0
1jj

via a Z or Higgs boson. This occurs in 1(3) models in our sample when ℓ = e/µ(τ).

However, in this case the resulting jets are likely to be relatively soft, due to a smaller

χ̃0
2−χ̃0

1 mass difference, making this mode difficult to observe above background. (iv)

ν̃ℓ → χ̃+
1 ℓ− is accessible in 1(6) of these models when ℓ = e/µ(τ), and leads to a final

state of multiple jets plus two charged leptons plus missing energy. As before, it

is probable that these jets will be soft due to a smaller mass splitting between the

chargino and the LSP and will most likely be difficult to observe depending upon

the details of the rest of the spectrum.

We first study the final state jjjjl+l− + missing energy. This final state results

from the decays

ν̃ → Wl̃ → jjlχ̃0
1 ,

ν̃ → lχ̃±
1 → ljjχ̃0

1 . (4.9)

For our signal selection, we require:

1. Precisely one opposite sign lepton pair and two jet-pairs and no other charged

particles in the event.

2. No particles/clusters below the angular region of 100 mrad.
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3. Missing energy to be > 2 mχ̃0
1,min. We take mχ̃0

1,min = 46 GeV, which is the

current (weak, yet model-dependent) bound on the mass of the lightest neu-

tralino [2]. This bound arises from the invisible decay width of the Z boson

and holds unless the χ̃0
1 is very fine-tuned to be a pure Bino state and thus

has no couplings to the Z [31]. However, in order to estimate the effect on

the background if this bound is increased, we perform a second analysis with

mχ̃0
1,min = 100 GeV.

4. In order to eliminate background that originates from very soft leptons or jets,

we demand Ejet,l > 0.01
√

s.

These cuts effectively remove most of the SM background as can be seen in

Fig. 35, which displays the missing energy distribution for the background sample.

Here, we see that at large values of missing energy, the dominant background remain-

ing after the cuts arises from the process γγ → cc̄, bb̄. Unfortunately, the sneutrino

signal rates are also small. Fig. 36 presents the results of our analysis: none of the

sneutrino models rise above the background, but several of the ‘fake’ models, where

the signals arise from other SUSY particles, do appear. 4(3) fake models yield visible

signals in the case of RH(LH) beam polarization. The counterfeit signals here are

due to chargino and neutralino production and decay. We find that increasing the

minimum LSP mass to 100 GeV does not improve these results.

We also study a second channel, with 6 jets and missing energy in the final state.

This is produced from the decay ν̃ → Wτ̃ → jjjχ̃0
1. The cuts and observables are

similar to those of the 4j2ℓ+ missing energy analysis, with the obvious substitution

that we demand precisely 6 jets and no other charged particles to appear in the

event. We find that there is little to no SM background in this channel. However,

we also find that none of our models are observable in this channel.

An additional possible way to observe sneutrinos is via the radiative process

e+e− → ν̃ℓν̃ℓ + γ. This may be particularly useful in the case where the decay

channel ν̃ℓ → νℓ + χ̃0
1 dominates. This reaction leads to a final state with a photon

and missing energy and is thus similar to radiative LSP pair production, which we will

discuss in detail below in Section 6.2. We find that radiative sneutrino production

generally occurs with a smaller cross section than its LSP counterpart. As we will

see below, the SM background from e+e− → νν̄γ are generally too large to see this

radiative process.

In the case of the SPS1a’ benchmark model, the sneutrino pair production mode

is invisible as the sneutrinos dominantly decay into the νχ0
1 final state, as in most of

our models here.

Taking these results together for these various sneutrino analyses, we conclude

that the direct observation of ν̃ℓ production is very difficult, if not essentially hopeless

for the set of AKTW models.

– 59 –



Figure 35: Missing energy distribution in 2 GeV bins for the SM background after the

sneutrino selection cuts for the 4jet +2ℓ channel have been imposed. The blue(red) his-

togram corresponds to 80% RH(LH) electron beam polarization. The green dotted curve

corresponds to the dominant background source, γγ → cc̄, bb̄. 250 fb−1 of integrated lumi-

nosity was assumed for each polarization channel at 500 GeV.
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Figure 36: Missing energy distribution for the sneutrino 4j+lepton pair analysis: the

number of events/2 GeV bin for several the fake models, with RH(LH) beam polariza-

tion in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for either

polarization. The SM background is shown as the black histogram.
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5. Chargino Production

The chargino sector is simpler than that of the neutralinos as in the CP-conserving

MSSM; it depends on only three real Lagrangian parameters at tree-level: M2, µ,

and tan β. The resulting mass eigenstates, χ̃±
1,2, are thus general admixtures of the

charged Wino and Higgsino weak states. Figure 37 displays the Wino/Higgsino con-

tent of the lightest chargino, χ̃±
1 , in the 53 AKTW models that contain kinematically

accessible charginos at
√

s = 500 GeV. We see that the lightest chargino tends to be

an almost pure Wino or Higgsino state in most of our models. In e+e− collisions,

such particles can be produced via two mechanisms; s-channel γ, Z exchange pro-

duces either pure Wino or Higgsino pairs but no mixed Wino-Higgsino final states

as the analogous WZH± coupling is absent. In addition, the t−channel sneutrino

exchange amplitude produces pairs of charged winos only. Clearly, the cross section

for chargino pair production not only depends on the eigenstate masses but also on

the various mixing angles present in the chargino sector. At
√

s = 500 GeV, χ̃±
2 pairs

are typically too heavy to pair produce, so we will consider only χ̃±
1 pair production

in our analysis below.3

Once produced, the detailed nature of the χ̃±
1 decays critically depends upon the

mass difference ∆mχ̃ = mχ̃±

1
− mχ̃0

1
, with the latter being the LSP. In all cases, χ±

1

decay can proceed via either a W , χ̃±
1 → Wχ̃0

1, or through an intermediate slepton,

e.g., χ̃±
1 → ℓν̃, ν̃ → νχ̃0

1. As seen above in Fig. 4, and in Figs. 38 and 39, the

mass spectrum of the models that have chargino states kinematically accessible at√
s = 500 GeV is such that the distribution of values for ∆mχ̃ are concentrated in

the region < 5 GeV. The variation in ∆mχ̃ yields several distinct signatures for χ̃±
1

production and thus all possible values of ∆mχ̃ must be considered when performing

our analysis. For example, if ∆mχ̃ > MW then on-shell W bosons can be produced

and may be identified either through their leptonic or hadronic decay modes. We

thus consider channels such as χ̃±
1 → jj Emiss, with the dijets reconstructing to the W

mass, or χ̃±
1 → µEmiss, with the latter mode also covering decays through the slepton

channels: χ̃±
1 → µ̃±ν, µ±ν̃ → µEmiss. Hence, in this region, we search for the final

states χ̃+
1 χ̃−

1 → 4j Emiss, 2j µ± Emiss or µ+µ− Emiss. For smaller values of ∆m, but still

greater than a few GeV, we search for the same final states although the dijets will

no longer reconstruct to MW . A more difficult region is reached when ∆mχ̃ is only

a few GeV or less, as then the visible part of the χ̃±
1 decays are very τ -like. Fig. 4

shows this region of chargino-LSP mass splitting for the range ∆mχ̃ < 6 GeV as

a function of the chargino mass; we see that this region comprises the bulk of our

models with accessible χ̃±
1 states at

√
s = 500 GeV.

At the other end of the spectrum, we must consider the case of small values of

3Associated χ̃±
1

χ∓
2

production is also possible in 7 of our models, but has not been considered

in this analysis. However, the analysis of associated χ̃0

2χ̃
0

1 production, presented below in Section

6.1, also picks up some contributions from χ̃±
1

χ∓
2

.
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∆mχ̃ <∼ 1 GeV. The branching fractions for the χ̃±
1 decay channels in this case are

presented in Fig. 40. If ∆mχ̃ is very small, <∼ 100 MeV, then the chargino is long lived,

and will travel many meters before decaying into an electron and missing energy. In

such a case, we perform a massive stable charged particle search, determining the

velocity of the χ̃±
1 via momentum and energy measurements. As ∆mχ̃ increases from

this tiny value and the thresholds for χ̃±
1 decay into the µ and pion(s) are passed, the

chargino lifetime decreases substantially and the chargino now decays to soft charged

particles. In this mass range there are two possible search techniques: one can either

look for decays in the detector from (semi-)long-lived χ̃±
1 states, or tag these soft

decays via photon emission off of the initial and final state particles. The latter

corresponds to the radiative process e+e− → χ̃+
1 χ̃−

1 γ [32, 33], and is the approach we

will pursue below.

At
√

s = 500 GeV, we find that 53/242 of the AKTW models have kinematically

accessible charginos. Figure 38 shows that in all but two cases (which we label here

as models 8324 and 39331) the models populate the region ∆mχ̃ ≤ 5.5 GeV; for the

two exceptions we see that ∆mχ̃ > 100 GeV. Interestingly, we note that models with
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Figure 37: Wino/Higgsino content of the χ̃±
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accessible charginos at
√

s = 500 GeV. U(V ) is the left(right) diagonalizing matrix. In the

lower left (upper right) corner of the Figure, the physical chargino is dominantly Higgsino
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small ∆m ≤ 1 GeV tend to have a large Wino content, while those in the range

∆mχ̃ ≃ 4 ∼ 5 GeV are found to have a large Higgsino content as can be seen in

Fig. 37.

We now discuss our analyses for each region of ∆mχ̃.

5.1 Non-Close Mass Case

We first examine the case where

∆mχ̃ ≡ mχ̃± − mχ̃0
1

> 1 GeV. (5.1)

As already mentioned above, there are several possible final states that can be studied

in this mass region. Analysis techniques have been developed for the cases where

the chargino decay proceeds through on- or off-shell W bosons (with W → jj or

W → lν̄l) or via sleptons (e.g., µ̃ → µχ̃0
1). We discuss each of these in turn.

5.1.1 Chargino Decays via On-Shell W bosons

This analysis applies to the case ∆mχ̃ > MW . Here, we examine four-jet final states,

stemming from the decays of the chargino pair into W bosons with subsequent decays
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Figure 38: Lightest chargino-LSP mass difference for the region 0 < ∆mχ̃ < 800 GeV.

Note that the chargino states in the models where ∆mχ̃ > 150 GeV are not kinematically

accessible at sqrts = 500 GeV.
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into quark pairs,

χ̃+
1 χ̃−

1 → W+W−χ̃0
1χ̃

0
1 , (5.2)

with

W± → qq̄ . (5.3)

Taking the hadronic decay mode of both W bosons yields the final state with the

largest statistical sample.

As always, the SM background is significant. In order to reduce the background,

we demand, as expanded and adapted from [34, 35]:

1. There be precisely 4 jets in the final state and no other charged particles. As

mentioned in section 3.2, we employ the JADE jet algorithm in the E scheme,

with ycut = 0.05. This choice of ycut avoids the situation where soft gluons

produce too many jets.

2. Evis > 0 in the backward direction. Here, the backward direction is defined

with respect to the thrust axis, and corresponds to the hemisphere with the

lesser amount of energy. This cut is designed to reduce SM background from

Z pair production, where one Z boson decays into neutrinos, and the other Z

decays into quarks, which then radiate hard gluons.
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Figure 39: Lightest chargino-LSP mass difference for the close mass region 0 < ∆mχ̃ < 1

GeV.
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3. In the forward direction, the visible energy is constrained to be Evis < 1
2

√
s −

mχ̃0
1,min. As in the case of stau production, we take mχ̃0

1,min = 46 GeV, which is

the current bound on the mass of the lightest neutralino [2] in the case where

the χ̃0
1 is not a pure Bino eigenstate.

4. The visible energy is constrained to be Evis < 1 GeV in the region 0.9 ≤
| cos θ| ≤ 0.99. This is to decrease the W pair background which is strongly

peaked in the forward direction.

5. The acoplanarity angle satisfy ∆φjetpair jetpair > 30 degrees. Since we demand

that two jet pairs recombine into W bosons, the acoplanarity angle is equivalent

to π minus the angle between the pT of the W bosons, i.e., ∆φjetpair jetpair = π−θT .

This significantly reduces the W pair and γγ background, since the W bosons

from the chargino decays are accompanied by missing energy from the LSP.

The standard search analysis for this final state is based on the energy distri-

bution of the jet-pairs which reconstruct into a W boson. As in the case of the

selectron analysis, this distribution should have a box-like shape with a shelf and

sharp endpoints in the presence of a high statistics, background-free, perfect detec-

tor environment with the absence of radiative effects. Here, the 2-body decay is

taken to be χ̃±
1 → W + χ̃0

1 and the expressions in Eqs. (4.3)-(4.4) need to be adapted
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to include the massive W boson. In this case, one can solve the equations for the

chargino and LSP masses and finds

m2
χ̃±

1

=
(m2

W + EmaxEmin) ±
√

(m2
W − E2

max)(m
2
W − E2

min)

2(Emax + Emin)2/s
, (5.4)

m2
χ̃0

1
= m2

χ̃±

1

+ m2
W

(

1 − 2
(Emax + Emin)√

s

)

, (5.5)

where Emax, Emin are determined experimentally.

We refrain from presenting the remaining SM background after these cuts are

imposed, as only a handful of events pass the cuts. As mentioned above, only 2

models in our sample lie in the kinematic region ∆mχ̃ > MW . The jet-pair energy

distribution for these two cases is displayed in Fig. 41 for left- and right-handed

electron beam polarization. Here, we see that the overall event rate that survives

the kinematic cuts is not large, but the signal cleanly towers above the even smaller

background. We can see the effects of the cuts and the detector environment in these

cases, as the shape of the spectrum does not display the shelf-like behavior discussed

above. Note that an additional model (labeled 1822), which has ∆mχ̃ ∼ 1 GeV,

also passes the kinematic cuts for this analysis. This model yields a smaller event

rate than the cases with on-shell W bosons, but populates a different region of the

spectrum. However, this model contains a light χ̃±
1,2 , χ̃0

1,2,3 sector and the signal that

passes our cuts here is due to the production of these heavier gaugino states and

not from the χ̃+
1 and is thus a fake. Three out of 53 AKTW models with accessible

charginos are thus visible with a significance S > 5 in this channel. We note that

fake signals from the production of other SUSY particles do not satisfy our visibility

criteria in this channel, except for model 1822. It would thus seem that that this

analysis is relatively free from Supersymmetric backgrounds, at least in the case of

the AKTW models.

In summary, if ∆mχ̃ is large enough to produce on-shell W bosons, this is clearly

a very clean channel.

5.1.2 Chargino Decays via Off-Shell W s and/or Sleptons

We search for three final states in the kinematic region MW > ∆mχ̃ > 1 GeV where

the W boson is produced off-shell in the χ̃±
1 decay: four jet events plus missing

energy, two jets and a lepton plus missing energy or two leptons plus missing energy.

In order to avoid the large SM background from the beam remnants in γe±, γγ

reactions, we require that the final state leptons be muons.

In the fully leptonic decay channel, the kinematic cuts we employ [36] to distin-

guish signal from background are very similar to the slepton searches described in

Section 4 above. As in the case of smuon production, one searches for a structure

above the SM background in the final state muon energy distribution. Here, how-

ever, the signal distribution is not expected to display the by-now familiar shelf-like
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behavior, due to the 3-body nature of the chargino decay. Examples of the muon

energy spectra for some representative AKTW models are shown in Fig. 42 for both

beam polarization states. Here, we see that the Eµ spectrum for the signal varies

greatly in size and shape between the various models depending on the value of ∆mχ̃

and the production cross section, but is nonetheless clearly separable from the SM

background for these cases. Comparing with Fig. 21 we note that the SM background

has a similar shape, but is slightly larger throughout the spectrum in this analysis.

As usual, RH electron beam polarization leads to a smaller SM background since the

t-channel contribution to W pair production is suppressed in this case.

Of the 53 models with kinematically accessible χ̃±
1 states, we find that 12(11) lead

to visible signals over the background at a significance of S > 5 for RH(LH) electron

beam polarization. Combining the two polarization channels, a total of 14/53 models

meet our visibility criteria. From Fig. 42 we note, however, that S/B can be small

enough in some cases to render a detailed study of the chargino properties difficult.

SUSY can be a substantial background to itself in this channel, with smuon pro-

duction being a particularly large background source. We find that 14(12) models

yield fake signals that pass our visibility criteria for a RH(LH) polarization con-

figuration. We note that in all cases, the counterfeit signal indeed arises from the

production of smuons. The muon energy distribution for some representative exam-

ples of such misleading signals are presented in Fig. 43. From the Figure, we see

that the signal tends to have a shelf-like behavior, as would be expected for smuon

production, and thus looks quite different than the case of chargino production.

We now turn to the fully hadronic channel, where the final state is 4 jets plus

missing energy. We employ the following kinematic cuts (based on, e.g., [35]):

1. There be precisely 4 jets in the final state and no other charged particles.

2. No tracks (or clusters) be present below an angle of 100 mrad. This reduces

photon-initiated backgrounds.

3. Missing energy is constrained to be > 0.5
√

s. This favors the signal, which con-

tains a large amount of missing energy compared to many background sources.

4. In the forward direction, the visible energy is constrained to be Evis < 1
2

√
s −

mχ̃0
1,min. We, again, take mχ̃0

1,min = 46 GeV. However, in order to estimate

the effect on the background if this bound is increased, for example by future

studies at the LHC, we perform a second analysis with mχ̃0
1,min = 100 GeV.

5. We require precisely two jets in each hemisphere as determined by the thrust

axis. This cut eliminates jets stemming from τ decays arising from tau pair

production, where one τ has a one-prong decay, and the other is 3-prong.

6. We reconstruct the off-shell W bosons by coalescing the 4 jets into 2, one for

each W boson. We force this by adjusting the ycut parameter of the JADE
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jet finding algorithm until two jets are found (see Section 3 for details of the

algorithm), and then require the resulting dijet invariant masses to be > 2

GeV.

The first observable we consider for this channel is the missing energy distribu-

tion, where we expect a peak from the signal at large values of Emiss. This spectrum

is presented in Fig. 44 where the black histogram corresponds to the SM background,

as usual. We find that a particularly troublesome background arises from the process

γγ → qq̄. It is clear from the Figure that this background reaction stubbornly yields

a significant event rate even after the above cuts are imposed. The missing energy

spectra for representative AKTW models are also shown in the Figure for both po-

larization states and by eye seem barely visible above the background. However, the

statistical sample is large, and nonetheless, chargino production in several AKTW

models are observable in this channel. We find that 9(31) models are observable with

significance > 5 in the RH(LH) polarization state. All models that are visible with

RH beam polarization are also observed with LH beam polarization. If we increase

the minimal value of the bound on the LSP mass to 100 GeV as mentioned in the

kinematic cuts above, we find that 4 additional models satisfy our visibility criteria.

We note that the production of other Supersymmetric particles do not pass our cuts

in this channel and hence there are no ‘fake’ signals.

We next examine the distribution of the two dijet invariant masses to see if the

photon-induced background is less problematic for this observable. Figure 45 displays

the SM background for this case for both electron beam polarizations. Here, we see

that the background from two-photon initiated processes is still significant, with the

dominant channel passing the cuts being γγ → qq̄. The results for the AKTW

models are presented in Fig. 46 for both electron beam polarizations. We find that

with RH polarization none of the AKTW models with chargino decays into off-shell

W bosons are visible over the background in this observable. In the case of LH

electron beam polarization, we find that 2 such models (labeled as 12843 and 14343)

are detectable with a significance > 5. These models yield an excess of events in the

first two bins of the distribution; this excess is not visible by eye, but is statistically

significant due to the large sample size. The two models with chargino decays into

on-shell W bosons (labeled as 8324 and 39331) display a clear signal for both beam

polarizations as shown in the Figure. We see that the invariant Mjj spectrum is

broader for these two models and yields a high event rate at large invariant masses.

If the minimum value of the LSP mass is raised to 100 GeV in our kinematic cuts, we

find that only the on-shell W boson decays are visible above the background. One

additional model (labeled as 1822) is also distinguishable from the background. In

this case, however, it is due to the pair production of χ̃0
2 states, with their subsequent

decays into Z + χ̃0
1 → 2jets + χ̃0

1, that passes our cuts and provides a fake signal.

Further attempts to decrease the SM background in the 4-jet channel prove
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to be difficult and tend to remove the signal as well as the background. This is

because the characteristics of the signal and remaining background are similar for

variables such as the missing energy spectrum, acoplanarity, and pT vis (see Fig. 47).

In particular, both signal and background distributions peak at low values of pT vis

and acoplanarity and at high values of missing energy as discussed above. Previous

searches for charginos in the literature (e.g., [35]) have employed additional cuts on

pT vis and/or acoplanarity. In particular, we find that an additional restriction on the

transverse momentum,

7. pT vis > 0.06
√

s

effectively reduces the background as shown in Fig. 48, but also removes the signal

for all of the AKTW models with chargino decays into off-shell W bosons. We

show the effect of this additional cut on transverse momentum in the missing energy

and jetpair invariant mass distributions in Figs. 49 and 50 for both electron beam

polarizations. Here, we display all of the AKTW models which yield a visible signal

with significance > 5. We see that the signal for the models where the chargino decays

into on-shell W bosons (labeled as 8324 and 39331) towers above the background for

both observables with both beam polarizations. As we saw above, the visible signal

for model 1822 is due to the production of χ̃0
2 states and is thus fake. We emphasize

that none of the AKTW models with chargino decays into off-shell W bosons are

observable once this additional pT cut is applied.

Lastly, we examine the mixed decay channel,

χ̃+
1 χ̃−

1 → qq̄χ̃0
1 + µν̄µχ̃0

1 , (5.6)

which can proceed via (if kinematics allow)

χ̃+
1 χ̃−

1 → W ∗±χ̃0
1 + µ∓ν̃µ, W ∗±χ̃0

1 + µ̃∓νµ (5.7)

with

W ∗± → qq̄ , (5.8)

or via

χ̃+
1 χ̃−

1 → W ∗+W ∗− , (5.9)

where one of the virtual W bosons decays hadronically while the other decays lep-

tonically into a muon.

For this channel, we employ the cuts

1. There be 2 jets (with no muonic component) plus one muon with no other

visible particles in the final state.

2. There be no tracks or clusters of energy within 100 mrad of the beampipe as

the signal is peaked at wide angles.
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3. The visible energy satisfy Evis < 1
2

√
s − mχ̃0

1,min in the forward direction. As

above, we take mχ̃0
1,min = 46 GeV [2]. However, in order to estimate the effect

on the background if this bound is increased, we perform a second analysis

with mχ̃0
1,min = 100 GeV.

4. The invariant mass of the jet-pair be larger than 2.4 GeV. This cut is used to

eliminate jets stemming from τ decays.

Here, we examine the energy and invariant mass of the jet-pair. We find that

the same issues discussed above in the 4-jet channel regarding potential additional

cuts based on acoplanarity and transverse momentum are also relevant in this case

and thus these cuts are not employed in our analysis. The background remaining

after our cuts are imposed is presented in Fig. 51 for the invariant mass distribution,

where the dominant remaining SM background processes are γγ → qq̄, γγ → τ+τ−

and e+e− → qq̄′lν̄l. We see that the background distribution is roughly the same for

both beam polarizations as is to be expected for γγ induced processes.

The invariant mass spectrum for the case where the charginos decay to off-shell

W bosons is displayed in Fig. 52 for both beam polarizations. In both cases, the

signal rises above the background in the region of smaller (< 60 GeV) invariant

masses of the jet pair, as is expected due to the off-shell nature of the W bosons.

The model labeled as 1822 also shows a visible signature, with a peak located at

Mjj ∼ 80 − 90 GeV. As we saw above, this is due to χ̃0
2 production in this model

with the subsequent decay χ̃0
2 → Z + χ̃0

1 with the Z decaying hadronically and is a

false signal. The Mjj distribution for the 2 AKTW models where the charginos decay

to on-shell W bosons is shown in Fig. 53. Here, we would expect to see a peak above

the SM background in the distribution around MW , and indeed, that is the case. In

summary, we find that 23(35) of the AKTW models with kinematically accessible

charginos lead to signals in this observable with a visibility significance S > 5 for

RH(LH) electron beam polarization at these integrated luminosities. We note that

none of the AKTW models are visible over the background in the case where the

minimum value of the LSP mass is increased to 100 GeV as described in our cuts.

The second observable we examine in this analysis is the energy of the jet pair

which is displayed in Fig. 54 for several AKTW models where the chargino decays

to an off-shell W boson. Again, we see that the signal rises above the background

for lower values of Ejj (<∼ MW ), except for the case of model 1822 which is a fake as

described above. For comparison, the results for the two models which have decays

to on-shell W bosons are shown in Fig. 55, where we see that the Mjj spectrum

is peaked at larger values in this case. For this observable, we find that 26(35) of

the AKTW models meet our visibility criterion. We note that two more models are

visible with RH polarization in this observable compared to the Mjj distribution

discussed above. Again, none of the models are visible when the minimum value of

the LSP mass is increased in the analysis.
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Except for model 1822, we note that there are no fake signals from the production

of other SUSY particles for either observable in this channel.

We now compare these results to those for the case of the well-studied benchmark

point SPS1a’. Figures 56 and 57 display the jet pair invariant mass spectrum and

energy distribution, respectively, for both polarization choices. The chargino in this

model decays to an on-shell W boson and has a large production cross section; both

of these features are observable in the Figures. The signal for this model is clearly

visible above the SM background and there is a peak at Mjj ≃ MW in the invariant

mass distribution.
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Figure 41: Jet-pair energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for chargino production and on-shell decays to a W

boson for the three models which are visible in this channel. RH(LH) beam polarization

is employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 42: Muon energy distribution: the number of events/2 GeV bin after imposing the

full set of cuts discussed in the text for chargino production for representative models which

are visible in this channel. RH(LH) beam polarization is employed in the top(bottom)

panel, assuming an integrated luminosity of 250 fb−1 for either polarization. The SM

background is shown as the black histogram.
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Figure 43: Muon energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for representative models which fake a chargino

signal in this channel. RH(LH) beam polarization is employed in the top(bottom) panel,

assuming an integrated luminosity of 250 fb−1 for either polarization. The SM background

is shown as the black histogram.
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Figure 44: Missing energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for the fully hadronic chargino decay channel

for representative models which are visible in this channel. RH(LH) beam polarization

is employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 45: Distribution of dijet invariant masses from the remaining SM background after

the chargino 4-jet selection cuts listed in the text have been imposed. This is generated for

250 fb−1 of SM events with 80% right-handed (solid blue line) and 80% left-handed (solid

red line) electron beam polarization, and unpolarized positron beam at
√

s = 500 GeV.

The dashed green line shows the main processes contributing to the background, γγ → qq̄,

which is independent of the beam polarization.
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Figure 46: Jet-pair invariant mass distribution: the number of events/2 GeV bin after im-

posing the full set of cuts discussed in the text for the fully hadronic decays of the chargino

for representative models which are visible in this channel. RH(LH) beam polarization

is employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 47: Transverse momentum distribution of remaining SM background after the

chargino 4-jet selection cuts listed in the text have been imposed. This is generated from

250 fb−1 of SM events with 80% left-handed electron beam polarization, and unpolarized

positron beam at
√

s = 500 GeV (solid blue line). The dashed purple and red lines show

signal events produced in two AKTW models that are representative for the class of models

with ∆mχ̃ of the order of a few GeV.
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Figure 48: Distribution of dijet invariant masses from the remaining SM background after

the chargino 4-jet selection cuts listed in the text have been imposed with the additional

cut on transverse momentum. This is generated from 250 fb−1 of SM events with 80%

right-handed (dashed pink line) and 80% left-handed (dashed green line) electron beam

polarization, and unpolarized positron beam at
√

s = 500 GeV. The solid lines are as in

fig. 45.
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Figure 49: Missing energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for the fully hadronic chargino decay channel,

including an additional cut on transverse momentum, for representative models which are

visible in this channel. RH(LH) beam polarization is employed in the top(bottom) panel,

assuming an integrated luminosity of 250 fb−1 for either polarization. The SM background

is shown as the black histogram.
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Figure 50: Jet-pair invariant mass distribution: the number of events/2 GeV bin after im-

posing the full set of cuts discussed in the text for the fully hadronic chargino decay channel,

including an additional cut on transverse momentum, for representative models which are

visible in this channel. RH(LH) beam polarization is employed in the top(bottom) panel,

assuming an integrated luminosity of 250 fb−1 for either polarization. The SM background

is shown as the black histogram.
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Figure 51: Distribution of dijet invariant mass from the remaining SM background after

the chargino 2-jet plus muon selection cuts listed in the text have been imposed. This is

generated from 250 fb−1 of SM events with 80% right-handed (solid blue line) and 80%

left-handed (solid red line) electron beam polarization, and unpolarized positron beam at√
s = 500 GeV. The other dashed, and solid lines show the main processes contributing to

the background, γγ → qq̄ (dashed green line), γγ → τ+τ− (dashed pink line), which are

independent of beam polarization, and e+e− → qq̄′lν̄l, for 80% right-handed (solid cyan

line) and 80% left-handed (solid black line) electron polarization.
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Figure 52: Jet-pair invariant mass distribution: the number of events/2 GeV bin after

imposing the full set of cuts discussed in the text for the 2-jet +µ channel with ∆mχ̃ < MW

for representative models which are visible in this channel. RH(LH) beam polarization is

employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 53: Jet-pair invariant mass distribution: the number of events/2 GeV bin after

imposing the full set of cuts discussed in the text for the 2-jet +µ channel with ∆mχ̃ > MW

for representative models which are visible in this channel. RH(LH) beam polarization is

employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 54: Jet-pair energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for the 2-jet +µ channel with ∆mχ̃ < MW for

representative models which are visible in this channel. RH(LH) beam polarization is

employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 55: Jet-pair energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for the 2-jet +µ channel with ∆mχ̃ < MW for

representative models which are visible in this channel. RH(LH) beam polarization is

employed in the top(bottom) panel, assuming an integrated luminosity of 250 fb−1 for

either polarization. The SM background is shown as the black histogram.
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Figure 56: Jet-pair invariant mass distribution: the number of events/2 GeV bin after

imposing the full set of cuts discussed in the text for the benchmark model SPS1a’. RH(LH)

beam polarization is employed in the top(bottom) panel, assuming an integrated luminosity

of 250 fb−1 for either polarization. The SM background is shown as the black histogram.
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Figure 57: Jet-pair energy distribution: the number of events/2 GeV bin after imposing

the full set of cuts discussed in the text for the benchmark model SPS1a’. RH(LH) beam

polarization is employed in the top(bottom) panel, assuming an integrated luminosity of

250 fb−1 for either polarization. The SM background is shown as the black histogram.
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5.2 Radiative Chargino Production

As was pointed out by Gunion and collaborators [32, 37, 38] (see also Riles et al.[33]),

in the case where ∆mχ̃ is in the approximate range 0.1 GeV <∼ ∆m <∼ 2 GeV, the

dominant decay mode of the charginos is into soft pions plus the LSP (which appears

as missing energy), as shown in Fig. 40. The dominant SM background to this final

state is from γγ interactions and has an enormous event rate. If ∆mχ̃ < mπ, however,

the dominant chargino decay is leptonic, χ̃±
1 → e±νeχ̃

0
1, and does not pose a problem

for detection as this essentially results in a charged stable-particle search. In this

subsection, we discuss the radiative chargino search where the hard photon emitted

in the process e+e− → χ̃+
1 χ̃−

1 γ is tagged. Unlike the other chargino signatures we

consider, the strength of this signal is not very dependent on the mass splitting

between the lightest chargino and the LSP neutralino.

5.2.1 Event Generation

An immediate issue in performing the search for radiative chargino production is that

we find PYTHIA underestimates the rate and energy distribution of hard photon

emission from the final state charginos. Thus we use CompHEP [18] to generate

the e+e− → χ̃+
1 χ̃−

1 γ (as well as e+e− → χ̃+
1 χ̃−

1 ) events from the explicit (tree-level)

matrix elements.

In particular, we find that PYTHIA with default ISR and FSR options yields

a lower cross section for chargino production with an associated photon than does

CompHEP. This is illustrated in Fig. 58 where we display the cross section for e+e− →
χ̃+χ̃−γ in one of the AKTW models (labeled as model 13348) as a function of photon

transverse momentum. For this model (where the χ̃+
1 has a mass of ≃ 124 GeV) the

cross section computed by PYTHIA is about 20% smaller than the CompHEP cross

section for all values of pT . In examining the MSSM parameter space further, we

find points where the PYTHIA generated cross section can be as low as 50% of that

calculated via CompHEP; for the models considered in this paper, the PYTHIA cross

section is generally 80 − 90% of that from CompHEP. As CompHEP uses an exact

(tree-level) matrix element calculation, it is presumably more accurate. Therefore we

use CompHEP when calculating the cross sections for radiative chargino production

in each of our models and to generate the events for this process.

CompHEP does not allow one to set an arbitrary beam polarization. However,

one may set the electron beam polarization to be, for example, purely left-handed,

by effectively inserting the relevant projection operator into the expression for the

matrix element. Thus we can calculate the desired cross sections and generate events

for each of the two initial helicity states that we consider here. For each pure initial

helicity state we generate two large event files and find the relevant cross sections.

We then choose the correct number of events for each of our two partial electron
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beam polarizations (80% left-handed and 80% right-handed) and pipe this through

our analysis as described in Section 3.

CompHEP includes the option of using a beamstrahlung spectrum calculated

from the beam dimensions and the number of particles per bunch. However, for

consistency with the rest of our signal and background, we must use the same beam

spectrum as described above. To implement this spectrum in CompHEP, we read in

the beamspectrum as generated by GuineaPig [9]4. We checked that the normaliza-

tion was correct by comparing the cross sections for e+e− → tt̄ as generated by our

modified CompHEP code and by PYTHIA.

In calculating the cross section and generating events for the χ̃+
1 χ̃−

1 γ final state,

we demand that the transverse momentum of the photon be greater than 5 GeV. This

cut is much softer than that we apply in our analysis with the detector simulation;

we do not wish to eliminate the possibility of low pT signal events passing the final

pT cut due to mismeasurement. We do, however, need to apply a cut at this stage

for the purpose of regularization.

5.2.2 Analysis

In our analysis, we tag on a high-pT photon, produced by the signal either off the

initial state electron-positron pair, or radiated off of one of the charginos. We apply

the following kinematical cuts as suggested in [32, 39]:

1. There be exactly one photon in the event with pT > 0.035
√

s and no other

charged tracks within 25 degrees. This isolation cut removes most of the two-γ

background.

2. There be no identified (i.e., above 142 mrad) electrons or muons in the event.

Although this cut slightly reduces the signal, we find it dramatically decreases

the background from γγ and e±γ events. For the signal, we see from Fig. 40

that the branching fraction of charginos to electrons or muons is less than

30 − 40% in the relevant ∆mχ̃ range.

3. We demand that the number of charged tracks be in the range 1 to 11. Note

that below 142 mrad the detector only observes clusters of energy, however,

we nonetheless treat clusters on the same footing as tracks. This cut removes

high-multiplicity events. In particular, the removal of high-multiplicity events

restricts this analysis to the range of ∆mχ̃ that we are targeting in this analysis.

Models with larger values of ∆mχ̃ generate harder partons in the chargino decay

that radiate more gluons and hence result in more tracks.

4A slight complication arises from the need to deconvolute this from one part of the beamspec-

trum that is already present in one of the precompiled CompHEP libraries that cannot be changed

by the user.
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4. We demand that the photon energy and the energy of the remaining visible

particles satisfy Evis, other particles − Eγ < 0.35
√

s. This cut further reduces the

two-γ background. It also serves to restrict this analysis to the relevant range

of ∆mχ̃, as the amount of visible energy increases with ∆mχ̃.

5. We demand that the ratio of total visible transverse momentum to transverse

energy satisfy pT vis

ET vis
> 0.4 and that the ratio of total visible transverse momen-

tum to total momentum be pT vis

ptot vis
> 0.2. This removes most of the hadronic

two-γ and e+e− initiated processes.

6. We require that the recoil mass be Mrecoil =
√

s
√

(1 − 2Eγ/
√

s) > 160 GeV.

This is the recoil mass of the tagged photon, which should be at least twice the

current lower bound on the chargino mass, which we take to be 160 GeV from

the approximate 80 GeV lower limit on the chargino mass from LEP II [2].

After applying these cuts we examine the recoil mass of the tagged photon,

Mrecoil =
√

s
√

(

1 − 2Eγ/
√

s
)

. (5.10)

The dominant remaining SM background again arises from the reaction e+e− →
l−ν̄lνl′ l

′+ as illustrated in Fig. 59.

This analysis is designed to only catch charginos in a relatively narrow mass

and ∆mχ̃ range. If ∆mχ̃ is, e.g., greater than ∼ 3 − 4 GeV, then the kinematical

properties of the average chargino decay may have difficulty satisfying our energy,

momentum and multiplicity cuts. If the mass splitting is too small (less than ∼ 0.15

GeV), then the chargino will have a long lifetime, as shown in Fig. 60, and will decay

to at most 2 charged tracks and will not pass the above cuts. Furthermore, if the

mass of the chargino is too close to the beam energy (>∼ 225 GeV), then not only

will the cross section be phase space suppressed, but it will be almost impossible for

the signal to pass the required photon pT cut. Depending on exactly how these kine-

matic boundaries are chosen, we find that only ∼ 26 of the 53 AKTW models with

kinematically accessible charginos at
√

s = 500 GeV have these necessary properties.

From this analysis we find that there are only 14 models which are observable in

the radiative channel (for either beam polarization) over the SM background with a

significance S > 5. Note that although the backgrounds are larger in the LH sample

than with RH beams, as is usual, the chargino signal in this case is far larger (by

approximately a factor of 9) in the LH sample. This is because for small ∆mχ̃ the

charginos in these models are mostly wino in content. This is illustrated in Fig. 61

which shows our analysis results for a number of sample representative models with

either beam polarization. Model 38239, which is shown in this Figure, provides a

nice example of a case that is missed by this analysis; this model has ∆mχ̃ = 0.45

GeV while mχ̃+
1

= 239.75 GeV and thus has little remaining phase space to allow for

the emission of a hard photon with pT ≥ 17.5 GeV.
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The benchmark model SPS1a’ also leads to a reasonable signal excess in this

channel as shown in Fig. 62. However, in this case, this is not the result of a small

χ̃±
1 − χ̃0

1 mass difference, which is 86 GeV in this model, but rather the signal in

this channel for is a ‘fake’ induced by χ̃0
2 production. As discussed above for some

of the AKTW models, the observed signal in this case is actually a feed down from

the production of other, perhaps more massive, states in the SUSY spectrum as well

as from radiative associated χ̃0
1χ̃

0
2 production. However, the χ̃±

1 in SPS1a’ is already

clearly observable in the other channels discussed above. We generally find that the

fake contamination in the radiative channel is less than 30% and is quite a bit smaller

in many cases.
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Figure 58: Comparison of the cross section for the pair production of the lightest chargino

with an associated photon as a function of the photon transverse momentum as calculated

by PYTHIA (red, bottom curve) and by CompHEP (blue, top curve) in one of the AKTW

models where m
χ̃+ = 124 GeV.
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Figure 59: Recoil mass of the tagged photon for the SM background to radiative chargino

production after the cuts listed in the text have been applied. This is generated from

250 fb−1 of SM events with 80% right-handed (solid blue line) and 80% left-handed (solid

red line) electron beam polarization and unpolarized positron beam at
√

s = 500 GeV. The

dotted lines show the main processes contributing to the background, e+e− → l−ν̄lνl′ l
′+,

for 80% right-handed (dotted pink line) and 80% left-handed electron polarization (dotted

green line).
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Figure 60: Chargino lifetime as a function of the chargino-neutralino mass splitting, ∆m.
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Figure 61: Recoil mass distribution for chargino pair production in the AKTW mod-

els from the photon tag analysis: number of events/2 GeV bin assuming an integrated

luminosity of 250 fb−1 for both LH (top panel) and RH (bottom panel) electron beam

polarization.
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Figure 62: Recoil mass distribution for chargino pair production in SPS1a’ from the

photon tag analysis: number of events/2 GeV bin assuming an integrated luminosity of

250 fb−1 for both LH (top panel) and RH (bottom panel) electron beam polarization.
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5.3 Very Close Mass Case

As mentioned above, when ∆mχ̃ < mπ the decay length of the chargino is long com-

pared with the detector size, as is shown in Fig. 60. In this case, chargino production

may be detected by searching for two massive, essentially stable, charged particles

that traverse the full detector. Seven of the 53 AKTW models with kinematically

accessible charginos at the 500 GeV ILC fall into this category. To perform this

search we demand:

1. There be only 2 massive charged tracks in the event.

2. There be no tracks, or energy clusters, within 100 mrad of the beam.

3. β = p

E
< 0.93 for both charged tracks. (This value is based on constraints from

LEPII [2].)

4. The energy of the two tracks satisfy
2
∑

i=1

Ei > 0.75
√

s.

The last two cuts remove most of the background from the production of muons.

After these cuts are imposed, the remaining background should be small, aside from

detector fakes and possible tails from muon production due to detector smearing.

We then study the β = p

E
spectrum for both charged tracks and look for excesses in

the region of low β.

In this analysis we search for stable charged tracks in the final state whose energy

can be reconstructed via a dE/dx measurement. β = p/E should be significantly less

than 1, which would allow us to easily distinguish such tracks from those produced

by Standard Model particles. However, in the current public version of org.lcsim [13],

dE/dx is not yet implemented5. We therefore employ a cheat algorithm, and smear,

by a random amount, the energy of all final state tracks which we take from the

PYTHIA input before detector simulation. The width of a random Gaussian fluc-

tuation should mimic the resolution obtainable from a more realistic TOF (Time

Of Flight) or dE/dx measurement. There is not yet full agreement among the ILC

detector experts as to the attainable precision which may be possible in the deter-

mination of β [40], so we perform two analyses, one with a 5% and one with a 10%

assumed resolution on β. (Note that an energy smearing of 5(10)% translates into a

resolution on β of roughly 5(10)%.) We note that both the ATLAS and CMS detec-

tors have excellent β resolutions of 5(3)% [41], respectively, and we anticipate that

any ILC detector should have a comparable precision as demonstrated in Ref. [42].

As shown in Fig. 63, the background is indeed negligible for an energy smearing

of 5%. However, some SM background from Bhabha scattering with missing energy

5Non-fully tested implementations seem to be available in the contrib area, however, since these

are not yet part of the main code and hence are not fully tested and integrated, we refrain from

using them.
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due to initial state radiation and beamstrahlung where the forward photon is not

detected, leaks into the analysis when an energy smearing of 10% is assumed. The

background displayed in Fig. 63 is almost entirely due to this process. Nevertheless,

we expect the ILC to have an energy resolution better than 10%, so this background

source should not be a problem.

Out of the 53 AKTW models with kinematically accessible chargino pairs, only

7 have values of ∆mχ̃ < mπ and have effectively stable charginos as far as col-

lider detector measurements are concerned. As in the previous analysis for radiative

chargino production, the backgrounds are similar for both polarizations, however the

chargino production cross sections for these models are about a factor of 9 larger in

the case of LH polarization than in the RH case. This is because charginos with

small values of ∆mχ̃ are mostly wino in the AKTW models, corresponding to large

values of the µ parameter. Figure 64 shows these 7 models for both values of the

assumed β resolution and we see that in either case all of these models are clearly

visible above background.

Figure 63: β = p/E distribution of the SM background after the kinematic cuts listed

in the text have been imposed. This is generated from 250 fb−1 of SM events generated

with 80% right-handed (solid blue line) and 80% left-handed (solid red line) electron beam

polarization and unpolarized positron beam at
√

s = 500 GeV. In the Figure in the left

panel, we assume an energy resolution of 5%, the Figure on the right is for an energy

resolution of 10%.
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Of course this search will not just find charginos, but will also detect any suf-

ficiently long-lived charged particles in the kinematically accessible mass range. In

fact, out of the 28 AKTW models with kinematically accessible τ̃ ’s, we find 3 models

(labeled as 207, 27285 and 29334) which have staus with very long lifetimes; in one

of these cases (27285) the τ̃ is the NLSP. Such a situation can occur, e.g., in gauge

mediation, where the τ̃ will decay with a very long lifetime by emitting a gravitino

[43]. Of course in such a model χ̃0
1 is not the actual LSP; thus the cosmology is

non-standard, but viable. With the above analysis, these models should also lead to

observable signals in this channel.

These two possible candidate for stable charged particles are easily distinguished

by their angular distributions, i.e., spin-0 vs. spin-1/2, as well as by their response

to the various electron beam polarizations as we will see below.

A similar search can be performed in the case of the three models with long-lived

staus; the results are seen in Fig. 65. Recall that in the case of stau pair production

the cross section is not only controlled by the τ̃ mass but also by the τ̃L,R mixing

angle which governs the stau coupling to the Z boson. Note that the event rates

shown here are significantly lower than those of the long-lived charginos and so the

SM background is potentially more serious. It is clear, however, that in the case of

a 5% resolution on β the staus in these 3 models will be observable; the situation

is more difficult to assess by eye in the case of only a 10% resolution. A detailed

statistical study, however, shows that these 3 stau models will lead to signals at the

level of significance > 5 for both choices of the electron beam polarization and for

either assumed value of the β resolution. We observe that stau production in these

3 special models with both LH and RH beam polarization lead to comparable cross

sections.

We note that there are no long-lived charged particles in the case of SPS1a’.

5.4 Summary of Chargino Analyses

Here, we collect and summarize the results of the various chargino analyses presented

in this section. We remind the reader that the set of AKTW models contain 53 models

with kinematically accessible charginos at the 500 GeV ILC. The critical parameter

that determines the open decay channels for the chargino, and hence governs the

appropriate search analysis, is ∆mχ̃, the mass difference between the lightest chargino

and the χ̃0
1 LSP. Of the 53 models, 7 have values of ∆mχ̃ small enough to render the

lightest chargino essentially stable and it traverses the full detector before it decays.

These models are visible in our stable charged particle search. An additional 7 models

have chargino-LSP mass differences in the range ∆mχ̃ < 1 GeV, and result in final

states with large values of missing energy plus several soft pions. These models are

targeted by our radiative chargino analysis. Thirty-seven of the models have mass

differences in the range 1 < ∆mχ̃ < 6 GeV and the charginos decay into off-shell

W bosons. For this region, we designed a multi-pronged search strategy using 11
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observables in 3 decay channels (missing energy + µµ, 2 jets µ, 4 jets). Lastly, 2 of

the models have ∆mχ̃ > MW and in this case the charginos decay into on-shell W

bosons. We developed only one search analysis here, utilizing the 4-jet mode, and

found this to be a very clean channel for detecting chargino production.

A summary of how many models are visible above the SM background for each

observable in our chargino search analyses is presented in Table 3. Here, we employ,

as always, our visibility criteria that the signal significance S > 5. We see that

the channel with the mixed final state of 2-jets + muon + missing energy and the

missing energy observable in the 4-jet + missing channel yield the highest number of

observable models and thus are the best channels for detecting chargino production

in the randomly generated AKTW models.

Observable Visible with RH Visible with LH

Eon−shell
jj 2 2

Eµµ 12 10

Ejet−pair
− µ 26 35

Ejet−pair
− µ, mχ̃0

1,min = 100 GeV 0 0

Mjet−pair
− µ 23 35

Mjet−pair
− µ, mχ̃0

1,min = 100 GeV 0 0

ME(4jets) 9 30

ME(4jets), mχ̃0
1,min = 100 GeV 4 34

ME(4jets), additional pT cut 3 2

Mjet−pairs
2 4

Mjet−pairs
, mχ̃0

1,min = 100 GeV 2 2

Mjet−pairs
, additional pT cut 3 2

Radiative Production 14 14

Table 3: Number of models that are visible above the SM background with a significance

S > 5 in each observable at
√

s = 500 GeV with 250 fb−1 of integrated luminosity for each

electron beam polarization.

Figure 66 displays the location of each AKTW model with ∆mχ̃ < MW in the

∆mχ̃− chargino mass plane. The color coding of the model marker indicates whether

it is observable in any of our analyses for either beam polarization as labeled in the

Figure caption. The location of the various model points in this plane reveals the

kinematic properties targeted by each search technique. For example, the radiative

production analysis captures the models with low ∆mχ̃ as it was designed to do, and

also detects charginos that are light enough to be produced with a hard photon. Here,

we see that all 7 of the essentially stable charginos are captured by our stable charged

particle search, 3 models are only observable via radiative chargino production, 11

models are visible in both the radiative production channel and at least one of the

– 102 –



off-shell W analyses, while 26 models are detectable in at least one of the off-shell

W analyses but not in radiative production. 4 out of the 53 AKTW models are not

observable in any of our analysis channels. However, each of these 4 models have a

lower cross section due to phase space suppression.
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Figure 64: Velocity (=β = p/E) distribution for long-lived charginos assuming an inte-

grated luminosity of 250 fb−1 and LH electron beam polarization. The top(bottom) panel

corresponds to a resolution of 5(10)% on β.
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Figure 65: Velocity(=β = p/E) distribution for long-lived staus assuming an inte-

grated luminosity of 250 fb−1 and for both electron beam polarizations as labeled. The

top(bottom) panel corresponds to a resolution of 5(10)% on β.
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Figure 66: Distribution of the chargino-LSP mass difference versus the chargino mass for

the AKTW models with ∆mχ̃ < 6 GeV for the χ̃±
1 states that are accessible at

√
s = 500

GeV. The blue crosses represent models that are observable in our suite of analysis channels

based on the χ̃±
1 decay via off-shell W bosons. The green crosses correspond to models that

are only visible in the radiative chargino production analysis channel, while the magenta

ones represent models that yield observable signals in both the radiative and off-shell W

channels. The black crosses are models that are visible in the stable chargino analysis. The

red points are the 4 models where the χ̃±
1 state is not observable in any of our analysis

channels, essentially due to phase space restrictions.
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6. Neutralino Production

The neutralino sector of the MSSM is the most complex as the mass eigenstates

are admixtures between the Bino, neutral Wino, and two neutral Higgsino weak

states. Neutralinos, χ̃0
i , can be pair produced in e+e− collisions via two distinct

mechanisms: s−channel Z boson exchange can make a neutral Wino plus a Higgsino,

while t, u−channel selectron exchange can produce Binos and neutral Winos in all

combinations. These mechanisms ensure that all of the ten possible processes e+e− →
χ̃0

i χ̃
0
j are potentially accessible with rates depending upon the sparticle masses and

the various mixing angle factors. At a
√

s=500 GeV machine, it is likely that only

the first one or two of these states will be kinematically accessible and this is indeed

the case for the wide selection of AKTW models analyzed here as shown in Fig. 8 and

Table 1. If the mass separation between χ̃0
1 and χ̃0

2 is sufficiently large, then the decay

channel χ̃0
2 → Zχ̃0

1 may lead to a clear signal if the Z boson is not too far off-shell.

Unfortunately, in the models examined here, if χ̃0
2 is sufficiently light to be produced

it is very close in mass to χ̃0
1 and we find that such decays are almost impossible to

observe. That being the case, we only consider χ̃0
1 pair production with a radiated

photon, as well as χ̃0
1χ̃

0
2 associated production in the discussion below. Recall that

χ̃0
1 is the only accessible MSSM particle in many of the AKTW models.

It is important to consider the weak eigenstate mixture of the χ̃0
1 in our set of

models; this is shown in Fig. 67, where it is interesting to observe that the lightest

neutralino is mostly a pure weak eigenstate.

6.1 χ̃0
2χ̃

0
1 Associated Production

In order to get a handle on the neutralino sector, it is important to consider the

associated production of neutralinos, i.e., e+e− → χ̃0
2χ̃

0
1, which proceeds by Z boson

exchange in the s-channel via the Wino and Higgsino content of the χ̃0
1,2 and by se-

lectron exchange in the t, u-channels via their corresponding Wino and Bino content.

The cross section for this process is thus sensitive to the mixing in the neutralino

sector as well as to the masses of the exchanged ẽL,R. Note that if the selectrons are

heavy, as is the case in many of the AKTW models, then the s-channel transition

dominates; in this situation the associated production process will be suppressed if

either or both of the χ̃0
2 or χ̃0

1 have a large Bino content, which as we saw above, is

a relatively common occurrence in the models considered here.

At
√

s = 500 GeV, 46/242 of the AKTW models have the final state χ̃0
2χ̃

0
1

kinematically accessible. The state χ̃0
2 can decay in several ways depending on the

mass spectrum details in the gaugino sector. A mode which is always present and

yields a relatively clean signature is χ̃0
2 → χ̃0

1Z/H , with the Z/H being on- or off-

shell depending on the χ̃0
2 − χ̃0

1 mass difference. Certainly, this channel will be easier

to observe in the on-shell case since the invariant mass distribution of the visible

particles in the final state will be peaked at the Z/H mass. In either case, we consider
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the decay modes Z, H → jj, with the jets not flavor tagged, as well as the leptonic

modes Z → µ+µ−, e+e−. In order to access the viability of this channel, we examine

in Fig. 68 the mass splitting between the first two neutralino states for the 46 models

where this production mechanism is kinematically accessible. Here, we see that for

most models the mass splitting is rather small; only 8 of these models have neutralino

mass splittings larger than MZ and 13 have mass differences larger than 20 GeV. It is

unlikely that any of the other remaining models will produce hard enough jets and/or

leptons to pass the analysis cuts or be visible above background. For the models with

the larger mass differences, we stress again that their signal rates will be controlled by

both the selectron masses and the Bino content of the two neutralinos. The dominant

background we contend with arise from, e.g., e+e− → ZZ → jj/ℓ+ℓ−+νν̄, γe → νW

with W → jj, as well as γγ → ℓ+ℓ−.

To reduce the SM background for associated neutralino production, we demand:

1. There be precisely one lepton pair (electrons or muons) or one jet-pair in the

event and no other visible particles.

2. The missing energy satisfy Emiss > 300 GeV. This removes the majority of the

background arising from Z and W boson production.

3. The transverse momentum for each lepton or jet satisfy pT > 0.14
√

s. This cut

removes most of the ubiquitous γγ and eγ initiated backgrounds.

4. The angle between the lepton or the jet pair be < 95 degrees. This further

reduces the background from W boson production.

We then examine the invariant mass spectrum of the electron-, muon-, or jet-pair.

The remaining background after these kinematic cuts are imposed is displayed for

the µµ , jj+ missing energy channels in Figs. 69 and 70; we find that the background

for the e+e− final state is qualitatively similar to those for muons.

The signal should have a clear peak in the invariant mass spectrum that recon-

structs to the Z boson although excesses may also appear elsewhere in the distri-

bution. Note that jet energy resolution is crucial here as some background sources,

for example, e−γ → νedū and e−γ → νesc̄, have an invariant mass peak at the W

boson mass. Thus the W and Z boson mass peaks must be separable in the 2-jet

channel. As is common in many of our analyses, the SM background is far lower

with RH electron beam polarization as this suppresses W boson production. Note

that we may also have to deal with backgrounds arising from other SUSY production

processes that can fake the signals from associated production.

Typical results for these analyses are shown in Fig. 71 for representative AKTW

models. In the case of the dijet analysis, three peaks are observable at the masses

of the W , Z and 120 GeV Higgs boson. Some models lead to small excesses on the

W peak while some have excesses at the Z; others have excesses at both locations.
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Five models are found to show a signal with a significance > 5 in the dijet channel;

all these models have small excesses at the Z peak, corresponding to the associated

production channel under consideration. Similarly, some models also show some

excess at the W peak arising from a different χ̃0
2 decay channel: χ̃0

2 → W±χ̃∓
1 with

W → jj, χ̃∓
1 → χ̃0

1+ very soft jets. This can happen in models with light charginos

which have a small mass splitting with the LSP. Unfortunately, the rest of the AKTW

models are unobservable, being buried in the dijet case by the enormous W → jj

peak. There are two ways to reduce this background: either decrease the jet pair

mass resolution to a value below 30%/
√

E and/or employ positron polarization to

reduce the SM rate for γe → Wν.

In the dimuon channel, the signal region is seen to have very little background,

however there are also very few signal events. A total of ten AKTW models are found

to show an excess over background with a significance > 5. However, only a few of

these excesses can be seen in the Z mass region. Unfortunately, all but 2 of these

models are fakes in the sense that they do not have the χ̃0
2χ̃

0
1 channel kinematically

accessible; they do, however, all have visible smuons. Some of the signal for models

which populate the lower invariant mass region originate from additional sources,

such as χ̃+
1 χ̃−

1 , or even χ̃0
3χ̃

0
1, production. It would appear from these results that

perhaps the cuts employed in this analysis are too strong even though the signal

region is essentially background free. However, we find that relaxing the cuts, even

just slightly, overwhelms the signal region by background. We have not found a set

of cuts that allows more of the signal to be visible over background in this channel. A

similar situation happens for LH electron beam polarization. While some models lead

to observable signals in the dimuon channel, they are all fakes in the case of either

polarization and the apparent signal is due to feed down from other SUSY sources.

In the e+e− channel, 7 models are observable with a significance > 5, however only

one of them is not a fake as illustrated in Fig. 72. We note that there are fewer fake

signals in the dijet channel.

Thus at this level of statistics, these jj, µ+µ−, and e+e− analyses have captured

very few of the AKTW models where χ̃0
2χ̃

0
1 is kinematically accessible.

For the conventional benchmark point SPS1a’, associated neutralino production

at
√

s = 500 GeV can easily proceed as the mass of χ̃0
2 is only 184 GeV. In this

case, the χ̃0
2 − χ̃0

1 mass splitting is ≃ 86 GeV, i.e., < MZ , and thus the signal is

not observable in the dijet channel due to the very large SM W boson background.

However, a reasonable non-resonant signal excess is observable over background in the

substantially cleaner dimuon mode. This is true for either electron beam polarization,

however the signal is more strongly observable for the case of LH polarization, as

can be seen in Fig. 73. Feed down to this final states from the production of heavier

chargino and neutralino states is also present in this model.
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Figure 67: The composition of the lightest neutralino in the 242 AKTW models.
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Figure 69: SM background to associated neutralino production for the Minv(µµ) distri-

bution. This is generated for a 250 fb−1 sample of SM events with 80% RH(solid blue)

or LH(solid red) electron beam polarization at
√

s = 500 GeV. The dotted green line

represents the dominant contribution after the cuts are imposed, γγ → ℓ+ℓ−, which is

independent of the beam polarization.
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Figure 70: SM background to associated neutralino production for the Minv(jj) distri-

bution. This is generated for a 250 fb−1 sample of SM events with 80% RH(solid blue) or

LH(solid red) electron beam polarization at
√

s = 500 GeV. The dominant contribution

after the cuts are imposed arise from γe → νeqq̄ and are shown by the green(pink) dotted

line for LH(RH) beam polarization.
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Figure 71: Invariant mass distribution in the dijet (dimuon) channel in the top (bottom)

panel from the analysis for associated neutralino production for representative AKTW

models: events/2 GeV bin assuming RH polarization and 250 fb−1 of integrated luminosity.

As usual the SM background corresponds to the black histogram.
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Figure 72: Invariant mass distribution for the dielectron channel in the top (bottom)

panel for RH (LH) polarization from the analysis for associated neutralino production

for representative AKTW models: events/2 GeV bin assuming 250 fb−1 of integrated

luminosity. As usual the SM background corresponds to the black histogram.
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Figure 73: Invariant mass distribution in the dijet (dimuon) channel in the top (bottom)

panel from the analysis for associated neutralino production for model SPS1a’: events/2

GeV bin assuming RH polarization and 250 fb−1 of integrated luminosity. As usual the

SM background corresponds to the black histogram.
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6.2 Radiative Neutralino Production

In 91 of the 242 AKTW models the neutralino LSP χ̃0
1 is the only kinematically

accessible SUSY particle at
√

s = 500 GeV. The process e+e− → 2χ̃0
1 is, by itself,

impossible to observe as the final state particles are stable, neutral and weakly inter-

acting. The only way to render χ̃0
1 production observable is to tag it by the emission

of a photon off the initial state electrons or off the intermediate t−channel selectron;

one then looks for an excess of events of the form e+e− → γ + Emiss. The SM back-

ground to such a signature can be quite large and arises mainly from the reaction

e+e− → νν̄γ which occurs through intermediate W and Z boson exchanges. As will

be discussed below, beam polarization can play an important role in reducing this

dominant component of the SM background, as W bosons couple to electrons in a

purely left-handed manner.

As noted above, we employ PYTHIA for the generation of the signal events

However, PYTHIA does not take into account photon emission from the virtual t-

channel selectron in neutralino pair production. Without this contribution to the

cross section for e+e− → χ̃0
1χ̃

0
1γ, the signal would always be invisible beneath the

background provided by e+e− → νν̄γ. Thus an accurate modeling of the radiative

LSP signal at the ILC requires a more sophisticated approach. We therefore use

CompHEP to generate the full matrix element for this process, in a manner analogous

to that described above in Section 5.2.1 for the radiative chargino analysis. The

CompHEP evaluation of the cross section for radiative LSP production uses the

complete matrix element and can be up to a factor of 2 larger than that given by

PYTHIA and also generally yields harder photons.

We tag on a high-pT photon, which is the sole visible final state particle in the

process e+e− → γχ̃0
1χ̃

0
1. Clearly, right-handed electron beam polarization should be

effective in reducing the background contributions from W boson exchange in νν̄γ

production. In fact, after the cuts described below are employed, we find that the

RH SM background event rate is about a factor of 7-8 less than that with LH beam

polarization. (We note that in the case of 100% electron beam polarization, the LH

cross section is almost 50 times larger than that for the RH case.) In contrast, we

find that the signal cross sections for the AKTW models follow either one of two

patterns: (i) the LH and RH polarized cross sections are comparable in magnitude

or (ii) the RH polarized cross section is far larger than that of the LH case. Thus,

for either of these possibilities, RH electron beam polarization is highly favored in

order to increase the signal and reduce the background. We will thus limit ourselves

to this polarization configuration in our analysis below.

We employ the cuts of Ref. [44], and require:

1. There be exactly one photon and no other visible particle in the event.

2. The photon transverse energy satisfy Eγ
T = Eγ sin θγ > 0.03

√
s. Here, θγ is the
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angle of the photon with the electron beam axis.

3. The photon be present in the angular region cos θγ < 0.9

4. The total photon energy satisfy the constraint Eγ < 0.5
√

s − 90 GeV. This

removes radiative return to the Z-pole.

We then examine the photon energy distribution and look for a signal in excess

of the SM background; some typical results are presented in Fig. 74. Unfortunately,

as can be seen from this Figure, S/B is at best ∼ 8− 9% for the models shown here.

This remains true for all 180 AKTW models that have kinematically accessible χ̃0
1

states. In many cases S/B is far below the 1% level. However, we find that 17 of

the models lead to a signal significance S greater than 5. We note that in 4 of these

17 models, the χ̃0
1 is the only kinematically accessible SUSY particle at

√
s = 500

GeV. Of course, a priori, one cannot be certain that the neutralino LSP has been

produced and discovered, as this final state may receive sizable signal contributions

from other SUSY sources such as e+e− → ν̃ν̃∗γ, with ν̃ → νχ̃0
1. In fact, model

36022, shown in the Figure, is an example of one such case. This renders it difficult

to uniquely identify the signal as arising from only the lightest neutralino without

further analysis.

Of course, increased luminosity or an adjustment of the cuts may make the

signal in this channel slightly more visible, but what would be more useful, indepen-

dently of the choice of cuts, would be to include positron polarization [45]. Having

such polarization at the 30(45, 60)% level would reduce the background by roughly

≃ 44(60, 73)% in comparison to that with the canonical 80% electron beam polariza-

tion assumed in our analysis. The corresponding increase in the signal in the most

conservative AKTW model would be 24(36, 48)% and thus significant boosts in S/B

would result; these increases can be somewhat larger depending upon the parameter

values in a particular model.

The observation of radiative neutralino LSP pair production is rather straight-

forward in the case of the familiar benchmark model SPS1a’, where the LSP is rather

light with a mass of only 97.7 GeV. Figure 75 shows that the signal is much larger in

this case than in any of the AKTW models. In fact, an excess in the number of events

over background can be observed for almost the entire range of the photon energy

spectrum. However, some of this excess may be attributed to radiative sneutrino

pair production which is reasonably significant in this model [46].
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Figure 74: Photon energy spectra for several representative AKTW models from the

photon-tagged χ̃0
1 pair production process. Shown is the event rate/2 GeV bin assuming RH

electron beam polarization and an integrated luminosity of 250 fb−1. The black histogram

is the SM background. The top panel shows signal plus background for models with larger

event rates whereas the bottom panel displays more typical cases with signal and the

background now being shown separately.
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Figure 75: Photon energy spectra for the benchmark model SPS1a’ from the photon-

tagged χ̃0
1 pair production process. Shown is the event rate/2 GeV bin assuming RH

electron beam polarization and an integrated luminosity of 250 fb−1. The black histogram

is the SM background.
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7. Model Visibility and Comparisons

As discussed in the Introduction, before addressing the issue of model differentiation

we first need to determine which SUSY particles are visible above the SM background

in each of the models under study. In particular we would like to know how many

models contain a given SUSY particle that is clearly observable with a significance, S,

greater than 5 from our Likelihood analysis discussed in Section 3. This information

can be obtained by combining the individual results found in Sections 4 through

6; the summary of these analyses in terms of SUSY particle discovery is displayed

in Table 4. This Table shows the number of models with a given SUSY particle

that we found to yield a visible signal above background in our analysis relevant

for that particular SUSY state, as compared to the number of models where the

same particle is kinematically accessible. Thus, e.g., the ẽR is observable in 12 of

the 15 models in which it is kinematically accessible. We declare a particle to be

visible for a given model if it is kinematically accessible and a signal with S > 5

is observed in the relevant search channel. We note that it is possible that some of

these observable signatures may be due to fakes, i.e., the production of other SUSY

states; this is certainly true in, e.g., the case of radiative χ̃0
1 production. From this

Table we see that for the set of AKTW models the ILC does an excellent job at

detecting selectrons and smuons as well as charginos, however, staus are somewhat

more problematic, and the neutralino sector appears to be difficult.

We can now combine the results represented in the Table and ask for the total

number of models which contain visible sparticles with a signal significance greater

than 5. Out of the 85 models which have at least one charged SUSY partner kine-

matically accessible, we find that 78 have visible sparticle signatures at the ILC. The

SUSY particles in the other 7 models are not detectable mainly due to phase space

suppression of the SUSY cross sections as discussed in the previous Sections. Of the

96 models which have only stable neutral SUSY partners accessible (χ̃0
1 or ν̃), 4 of

them are observable via the photon tag recoil analysis. Thus, out of all the models

with at least one accessible SUSY partner we find that 82/181 lead to detectable

signals at the ILC. This corresponds to 82 visible models out of the full set of 242

AKTW models (recall 61 of the models have no SUSY partners accessible at 500

GeV). Surveying all of the models, there is a total of 129 charged sparticles which

are kinematically accessible and we find that 111 are visible in our analyses; several

more may appear as ‘fakes’.

Using our ILC analyses, we now pairwise compare the models that were found

to be indistinguishable at the LHC by AKTW. We recall that out of the original 283

model pairs, 121 were removed from our sample due to the PYTHIA feature which

shifted the LSP mass, leaving us with 162 pairs of models to examine. Interestingly,

out of these 162 model pairs, 90 have only neutral sparticles kinematically accessible

in both models.
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In order to compare signals that originate from
Particle Number Visible

ẽL 8/9

ẽR 12/15

µ̃L 9/9

µ̃R 12/15

τ̃1,2 21/28

ν̃e,µ 0/11

ν̃τ 0/18

χ̃±
1 49/53

χ̃0
1 17/180

χ̃0
2 5/46

Table 4: Number of models, at√
s = 500 GeV, which have a given

final state particle visible above

the SM background with a signifi-

cance S > 5 as defined in the text,

divided by the number of models

where the same particle is kine-

matically accessible.

different models for the observables described in

the previous Sections, we perform a χ2 analysis

of the generated histogram distributions for the

model pairs. To begin, recall that we have gener-

ated two complete and statistically independent

background sets, B1 and B2, for all of the in-

dividual analyses. Taking the set of pure signal

distributions for the two models we wish to com-

pare, M1 and M2, we add each signal distribution

to one of the corresponding background distribu-

tions. This forms the combinations R = M1+B1

and S = M2 + B2 for each observable. We then

perform a χ2 analysis of the two distributions for

each model pair, accounting for the fact that the

number of events in each sample can be different:

χ2 =
∑

i

(
√

S
R
Ri −

√

R
S
Si

)2

Ri + Si

, (7.1)

with

R =
∑

i

Ri S =
∑

i

Si . (7.2)

Ri and Si denote the number of events in bin i produced by the two models (plus

background) in each observable that we compare. Note that such a χ2 test is some-

what sensitive to the binning of the data, especially since we compare two sets of

generated “data” instead of comparing a signal to a theoretical prediction. Note

further that the above χ2 prescription relatively normalizes the two distributions so

that we only compare shapes at this point. We then add an additional term to the

χ2 which accounts for the total number of events in both histograms and allows for

an 1% systematic error in the relative normalizations due to luminosity and cross

section normalization uncertainties.

We then compute the χ2 distributions for each of the model pairs, for each the

following observables, taken one at a time, which were obtained after applying the

analysis cuts described in the Sections above:

• Selectron analysis: Ee+ or e− and p
Tvis.

• Smuon analysis: Eµ+ or µ− and p
Tvis .

• Stau analysis: Eτ and p
Tvis. We employ the τ identification procedure de-

scribed in Section 4.1.3, with and without the inclusion of electrons in the final

state in order to remove the background from beam remnants.
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• Sneutrino analysis: missing energy for two channels, 4-jet plus lepton-pair and

6-jets. Each channel is analyzed with two different assumed minimum values

of the LSP mass.

• Chargino non-close mass case: For the case of on-shell W boson production

in chargino decays, we examine the E jetpair spectrum. For the case where the

charginos decay into off-shell W bosons, we examined three decay channels.

Our observable for the fully leptonic channel is Eµ+ or µ− . In the fully hadronic

channel we analyze the missing energy distribution for the 4-jet final state and

the invariant mass spectrum of the two jet-pairs. For these two distributions

we perform analyses with two different assumed values of the χ̃0
1 mass and also

with an additional cut on p
Tvis. In the semi-leptonic channel with the jet-pair

+µ+ missing energy final state, we examine Ejj as well as the invariant mass of

the jet-pair. In this case, we again employ analyses with two different assumed

values of the LSP mass.

• Chargino radiative production: the recoil mass Mrecoil of the tagged hard pho-

ton.

• Chargino very close mass case: β = p

E
of the two massive tracks in the event,

assuming an energy smearing/β resolution of 5% and 10%.

• χ̃0
2χ̃

0
1 associated production analysis: the invariant mass of electron, muon and

jet-pairs.

• Radiative χ̃0
1 analysis: Eγ.

Before examining the results of our χ2 model comparison, we first check our

procedure by comparing the two pure background samples to verify that, though

independent, they are not statistically distinguishable. We do indeed find this to be

the case for every observable in each analysis. Next, we examine each observable

listed above and determine whether the comparison probability (as given by the

value of the χ2 and number of degrees of freedom) shows a difference at the 5(or 3)σ

level for that specific distribution. Note that we perform this comparison separately

for each electron beam polarization since we have distributions for each polarization

configuration. If there is a 5(or 3)σ level difference in at least one distribution

then we claim that the two models are distinguishable at that level of confidence.

In fact, a number of observables are distinguishable at this level in many models.

We can improve this procedure by summing over the various observables in the χ2

computation, taking only one distribution from the different analyses to ensure that

we do not introduce any effects from correlations. Note that in the case where we

employ only a single observable in this comparison there are no issues of statistical

independence in contrast to when several distributions are combined.
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When performing these comparisons, we find that many model pairs are not

distinguishable. This happens, e.g., in all of the 90 cases where we compare models

which have only neutral particles kinematically accessible. The few models where

we observe excess photons in radiative χ̃0
1 production are already differentiated by

other analyses involving charged sparticle production, and thus these cases do not

help with distinguishing pairs of models containing only kinematically accessible

neutral sparticles. This implies that we should concentrate on the 72 potentially

distinguishable model pairs where at least one member of the pair has at least one

kinematically accessible charged sparticle. In this case, we find that a large number

of model pairs are distinguishable at the 5σ level in several different analyses.

Based on the criteria above, using our results from the single observable compar-

ison procedure described above, we find that 55(63)/72 model pairs where at least

one model has kinematically accessible charged sparticles are distinguishable at the

5(3)σ level. These results are based solely on single final state comparisons between

models. Making use of the combined observable comparison procedure described

above, we find instead that 57(63)/72 pair of models are distinguishable, which is

only a slight improvement.

The model pairs that are found to be indistinguishable fall into two broad classes:

(i) those where one model in the pair has only a kinematically accessible neutral

sparticle, e.g., the LSP, which is not visible above background and the other model

contains a sole accessible charged sparticle which is also difficult to observe. There

are 7 model pairs in this category that cannot be differentiated at the 5σ level.

Examples are models with a heavy selectron and smuon which have kinematically

suppressed cross sections and models which only contain τ̃ states that are also difficult

to observe due to small production cross sections. (ii) The second class consists of 8

model pairs where each model in the pair contains a single kinematically accessible

charged sparticle. In 7 of the 8 model pairs, it is the lightest chargino state that is

produced and found to lead to an indistinguishable signature.

8. Conclusions

In this paper, we have performed a systematic and detailed analysis of the capa-

bilities of the 500 GeV ILC (with an integrated luminosity of 500 fb−1 with 80%

electron beam polarization) to explore the nature of a large number, 242, of scenar-

ios within the MSSM. The goal of this project was to determine whether the ILC

could differentiate between 162 pairs of these models, i.e., MSSM parameter space

points, which were found to be impossible to distinguish at the LHC. To do this we

first had to address the issues of kinematic accessibility of the SUSY states, as well

as the experimental observability of the corresponding sparticle production over the

SM background.
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In order to accomplish this task, we employed a complete set of full matrix ele-

ment SM backgrounds for all 2 → 2, 4 and 6 parton final states initiated by e+e−, γe±

and γγ as calculated by T. Barklow using WHIZARD/O’MEGA. We made use of

both PYTHIA and CompHEP for generating the SUSY model signal events and

employed a realistic beamspectrum generated with WHIZARD/GuineaPig. Addi-

tionally, we included the effects of the SiD detector by implementing a version of the

org.lcsim fast simulation. In this analysis we assumed that the integrated luminosity

was equally split between two distinct samples with 80% LH or RH electron beam

polarization. Analyses were performed on many different SUSY channels simultane-

ously in order to probe the charged slepton, sneutrino, lightest chargino, LSP and

χ̃0
2 − χ̃0

1 sectors. A universal set of cuts for all models was developed.

Out of the original 242 models only 85 led to the existence of a kinematically

accessible charged SUSY partner at 500 GeV. The remaining models either had no

SUSY particles kinematically accessible (61) or only the lightest neutralino and/or

sneutrino accessible (96). Using log likelihood techniques, we found that 78/85 mod-

els with a charged SUSY partner as well as 4 additional models which only had

neutral particle states accessible were visible above SM background in our analyses.

Thus, a total of 82/161 models with accessible particles were found to be observable

at the 500 GeV ILC. In performing our analysis, beam polarization was essential

in reducing the SM background and allowed for distinguishing sparticle states in

many cases. Some models contained charged states that were found not to be visible

generally as a result of suppressed cross sections due to phase space availability. Of

the 72 pairs of models where at least one member of the pair contains one or more

accessible charged SUSY partner, our analysis found that 57(63) of the pairs could

be distinguished at the level of 5(3)σ.

From this analysis it is clear that the ILC with the SiD detector does a rea-

sonably good job at observing charged sparticles which are kinematically accessible

and distinguishing models containing such particles. The major weakness, beyond

the restricted kinematic reach, is in the neutral sparticle sector. This problem may

be resolved by employing positron beam polarization as well as more sophisticated

analyses.

For the future we plan to extend this analysis to the case of 1 TeV center-of-

mass energy, and include a study of the influence of positron polarization as well as

a number of detector issues.
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