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Opacity Build-up in Impulsive Relativistic Sources
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ABSTRACT

Opacity effects in relativistic sources of high-energy gamma-rays, such as

gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the out-

flow as well as the distance of the emission site from the source, and thus help

constrain the composition of the outflow (protons, pairs, magnetic field) and the

emission mechanism. Most previous works consider the opacity in steady state.

Here we study the effects of the time dependence of the opacity to pair production

(γγ → e+e−) in an impulsive relativistic source, which may be relevant for the

prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple,

yet rich, semi-analytic model for the time and energy dependence of the optical

depth, τγγ , in which a thin spherical shell expands ultra-relativistically and emits

isotropically in its own rest frame over a finite range of radii, R0 ≤ R ≤ R0+∆R.

This is particularly relevant for GRB internal shocks. We find that in an impul-

sive source (∆R . R0), while the instantaneous spectrum (which is typically

hard to measure due to poor photon statistics) has an exponential cutoff above

the photon energy ε1(T ) where τγγ(ε1) = 1, the time integrated spectrum (which

is easier to measure) has a power-law high-energy tail above the photon energy

ε1∗ ∼ ε1(∆T ) where ∆T is the duration of the emission episode. Furthermore,

photons with energies ε > ε1∗ are expected to arrive mainly near the onset of the

spike in the light curve or flare, which corresponds to the short emission episode.

This arises since in such impulsive sources it takes time to build-up the (target)

photon field, and thus the optical depth τγγ(ε) initially increases with time and

ε1(T ) correspondingly decreases with time, so that photons of energy ε > ε1∗ are

able to escape the source mainly very early on while ε1(T ) > ε. As the source ap-

proaches a quasi-steady state (∆R ≫ R0), the time integrated spectrum develops

an exponential cutoff, while the power-law tail becomes increasingly suppressed.
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1. Introduction and motivation

Astrophysical sources of gamma-rays that are both compact and very luminous may

be optically thick to pair production (γγ → e+e−) within the source. The corresponding

optical depth, τγγ , is usually an increasing function of the photon energy, and therefore

a large optical depth would prevent the escape of high-energy photons from the source,

causing a high-energy cutoff in the observed spectrum. For sufficiently high optical depths,

enough e+e− pairs may be produced, so that the optical depth of all photons (even low energy

photons that are optically thin to pair production) to scattering on these electrons/positrons

would be much larger than unity, in which case the photon energy spectrum would be

thermalized. The size of the gamma-ray emitting region is usually hard to constrain directly

from observations, since the angular resolution of gamma-ray telescopes is much poorer than

their counterparts in lower energy photons (e.g. X-rays, optical, or radio). Nevertheless, the

physical properties of the emitting region can be constrained using compactness arguments,

and the observed properties of the source. In particular, rapid flux variability of the source

is often used in order to set upper limits on the size of the emitting region, making highly

variable sources with significant non-thermal high-energy emission a prime target for such

analysis. One of the best examples for such sources are gamma-ray bursts (GRBs), and

we shall focus on them below, although most of our analysis has a much broader range of

applicability (similar opacity considerations have also been used to constrain the properties

of other sources, such as Blazars, e.g. Sikora, Begelman & Rees 1994).

It has been realized early on that, in GRBs, pair production within the source is expected

to cause a high-energy cutoff in the observed photon energy spectrum (see Piran 2005, and

references therein). Naively, if the source shows significant flux variability on an observed

time scale of ∆T , its size is inferred to be R . c∆T/(1 + z) where z is its cosmological

redshift, and the optical depth to pair production at a dimensionless photon energy ε ≡
Eph/mec

2 is τγγ(ε) ∼ σT L1/ε(1+z)/4πmec
3R & σT L1/ε(1+z)(1 + z)/4πmec

4∆T ∼ 1014(1 +

z)[L1/ǫ(1+z)/(1051 erg s−1)][∆T/(1 ms)]−1, where Lε = Fε/(1+z)4πd2
L(1 + z)−1 and Fε are

the source isotropic equivalent luminosity and observed flux per unit dimensionless photon

energy, and dL is the luminosity distance to the source. For GRBs the (observed part of

the) εFε spectrum typically peaks around ε ∼ 1, and being at cosmological distances their

isotropic equivalent luminosity is typically in the range of 1050 − 1053 erg s−1. Furthermore,

they often show significant variability down to millisecond timescales. This implies huge
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values of τγγ , as high as ∼ 1015, under the above naive assumptions. Such huge optical

depths are clearly inconsistent with the non-thermal GRB spectrum, which has a significant

power law high-energy tail. This is known as the compactness problem (Ruderman 1975).

If the source is moving relativistically toward us with a Lorentz factor Γ ≫ 1, then

in its own rest frame the photons have smaller energies, ε′ ∼ ε(1 + z)/Γ, while in the lab

frame (i.e. the rest frame of the central source) most of the photons propagate at angles

. 1/Γ relative to its direction of motion. The latter implies that in the lab frame the

typical angle between the directions of the interacting photons is θ12 ∼ 1/Γ, which has two

effects. First, it increases the threshold for pair production, (1 + z)2ε1ε2 > 2/(1 − cos θ12),

to (1 + z)2ε1ε2 & Γ2 (compared to ε′1ε
′
2 & 1 for the roughly isotropic distribution of angles

between the directions of the interacting photons in the rest frame of the source, where

θ′12 ∼ 1). This reduces τγγ(ε) by a factor of Γ2(1−α) where Lε ≈ L0ε
1−α at high photon

energies (corresponding to dNph/dε ∝ ε−α, i.e. α is the high-energy photon index), since

L1/ε(1+z) needs to be replaced by LΓ2/ε(1+z) = Γ2(1−α)L1/ε(1+z). Second, the expression for

the optical depth includes a factor of 1 − cos θ12 (that represents the rate at which photons

pass each other and have an opportunity to interact) which for a stationary source is ∼ 1,

but for a relativistic source moving toward us is ∼ Γ−2. Finally, the size of the emitting

region can be as large as R ∼ Γ2c∆T/(1 + z), which reduces τγγ by an additional factor of

Γ−2. altogether, τγγ(ε) is reduced by a factor of ∼ Γ2(α+1), and since typically α ∼ 2− 3 this

usually implies Γ & 102 in order to have τγγ < 1 and overcome the compactness problem.

Using similar arguments, the lack of such a high-energy cutoff due to pair production in the

observed spectrum of the prompt gamma-ray emission in GRBs has been used to place lower

limits on the Lorentz factor of the outflow (Krolik & Pier 1991; Fenimore, Epstein & Ho

1993; Woods & Loeb 1995; Baring & Harding 1997; Lithwick & Sari 2001).

We note, however, that τγγ generally depends both on the radius of emission, R, and

on the bulk Lorentz factor, Γ : τγγ(ε) ∝ Γ−2αR−1L0ε
α−1. Therefore, one needs to assume a

relation between R and Γ in order to obtain a lower limit on the latter. Most works assume

R ∼ Γ2c∆T/(1+z) (e.g., Lithwick & Sari 2001), which gives τγγ(ε) ∝ Γ−2(α+1)(∆T )−1L0ε
α−1,

while the lack of a high-energy cutoff up to some photon energy ε implies τγγ(ε) < 1. This, in

turn, provides a lower limit on Γ since one can directly measure the variability time ∆T , the

photon index α, and L0 ≈ 4πd2
L(1 + z)α−2εα−1Fε. However, the relation R ∼ Γ2c∆T/(1 + z)

does not hold for all models of the prompt GRB emission. For example, this relation does

not hold if the prompt GRB emission is generated by relativistic magnetic reconnection

events, with angular scales ≪ 1/Γ, that create local relativistic motion with Lorentz factor

γrel ∼ 5−10 relative to the average bulk value Γ of the emitting shell (Lyutikov & Blandford

2002, 2003). In this case ∆T/(1 + z) ≪ R/cΓ2 and the inferred value of the Lorentz factor

from standard opacity arguments would be ∼ γrelΓ rather than the bulk Lorentz factor of the
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shell, Γ. This allows the radius of the prompt emission to be as large as R ∼ 1016 − 1017 cm,

close to the deceleration radius where most of the energy of the outflow is transferred to

the swept-up external medium, and is much larger than the prompt emission radius that is

expected in the internal shocks model, R ∼ 1013 − 1014 cm. Therefore, we adopt a more

model-independent approach and do not automatically make this assumption. Instead, we

derive most of our formulas without this assumption, as well as derive expressions for Γ

under this assumption, which could serve in order to test its validity.

The Gamma-ray Large Area Space Telescope (GLAST) mission (Ritz 2007), to be

launched in early 2008, is expected to shed light on the high-energy emission from GRBs

and other impulsive relativistic sources. In particular, opacity effects due to the local pho-

ton field within the source1 are expected to be most relevant in the GLAST Large Area

Telescope (LAT) energy range (20 MeV to more than 300 GeV, see Reimer 2007). Thus, it

represents a powerful tool for probing the physics of these sources. GLAST is likely to detect

the high-energy cutoff due to pair production opacity which would actually determine Γ2αR,

rather than just provide a lower limit for it. Furthermore, in GRBs, the outflow Lorentz

factor Γ may be constrained by the time of the afterglow onset (Panaitescu & Kumar 2002;

Lee, Ramirez-Ruiz & Granot 2005; Molinari et al. 2007), provided that the reverse shock is

not highly relativistic, so that if GLAST detects the high-energy pair production opacity cut-

off, the radius of emission R could be directly constrained, thus helping to test the different

GRB models. In particular, this could directly test whether the relation R ∼ Γ2c∆T/(1+ z)

that is expected in many models indeed holds, since both R and Γ could be determined

separately. This, however, requires a reliable way of identifying the observed signatures of

opacity to pair production. This is one of the main motivations for this work.

The leading model for the prompt emission in GRBs features internal shocks (Rees & Mészáros

1994) due to collisions between shells that are ejected from the source at ultra-relativistic

speeds (Γ & 100). The shells are typically quasi-spherical, i.e. their properties do not vary a

lot over angles . a few Γ−1 around our line of sight. Under the typical physical conditions

that are expected in the shocked shells, all electrons cool on a time scale much shorter than

1In the present work, we will not consider opacity effects due to interaction of high energy photons with

the extra-galactic background light. Such an attenuation, interesting in its own right, can be added to the

“in source” opacity in a straightforward way. Furthermore, it is expected to become significant (i.e. produce

τγγ > 1) only at cosmological redshifts (z & 1) and for very high photon energies (& 56 − 100 GeV at z = 1

and & 18 − 63 GeV at z = 3; Kneiske et al. 2004), and is therefore likely to significantly affect only the

high end of the GLAST energy range, where the photon statistic might be too poor to reliably measure this

effect. This source of opacity will be independent of time (and depends only on the redshift of the source,

and on the photon energy), which would help in disentangling it from the time dependent opacity intrinsic

to the source that we calculate in this work.
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the dynamical time (i.e. the time it takes the shock to cross the shell), and most of the radia-

tion is emitted within a very thin cooling layer just behind the shock front. Thus, our model

which features an emitting spherical thin shell that expands outward ultra-relativistically is

appropriate for the internal shocks model.

As this emitting “shell” expands outward to larger radii, it builds up a photon field that

can pair produce with high-energy photons from the same emission component. This effect

has been studied in the past (see especially Baring 2006, and references therein), but the

temporal and spatial dependences of the photon field have been averaged out, corresponding

either explicitly or implicitly to a quasi-steady state. However, in impulsive relativistic

sources, the time scale for significant variations in the properties of the radiation field within

the source is comparable to the total duration of the emission episode, and therefore the

dependence of the opacity to pair production on space and time cannot be ignored, and may

produce important effects that are suppressed in the steady-state limit. Therefore, in the

present work we consider the full temporal and spatial dependence of the opacity, in order

to capture all the resulting effects.

We develop a simple, yet rich, model to investigate quantitatively the intuitive consid-

eration that in impulsive sources it takes time to build up the (target) photon field, and thus

the optical depth initially increases with time, so that high energy photons might be able to

escape the source mainly at the very early part of the spike in the light curve. This results

in a power law tail for the time-integrated spectrum at high energies, while the instanta-

neous spectrum (which is hard to measure due to poor photon statistics) has an exponential

cutoff. This arises since the photon energy of the exponential cutoff in the instantaneous

spectrum decreases with time, as the opacity increases with time at all energies. Therefore,

at sufficiently high photon energies, most of the photons escape during the short initial time

before the optical depth increases above unity, i.e. before the cutoff energy sweeps past their

energy.

We perform detailed semi-analytic calculations of the optical depth to pair production,

which improve on previous works by first calculating the photon field at each point in space

and time, and then integrating along the trajectory of each photon. The structure of the

paper is as follows. In § 2 we introduce our model and derive a general expression for the

flux that reaches an observer at infinity. This expression includes the optical depth along

the trajectory of each photon that may reach the observer, which is derived in § 3. The

calculation of the optical depth requires the knowledge of the photon field at each point

along the trajectory of each (test) photon. This local photon field is first expressed in terms

of the source emissivity (§ 3.1). Next (§ 3.2) it is conveniently rewritten as the product

of the typical optical depth (that is approached on a dynamical time, and is similar to
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that derived in previous works) and dimensionless order unity expression (containing a few

integrals) which captures the new time dependent effects that are the focus of this work.

In § 4 explicit expressions are derived for the integrands of these dimensionless order unity

integrals. In § 5 we derive the relevant analytic scalings for the resulting optical depths and

observed flux, and in § 6 we present numerical results (i.e. numerically evaluate the semi-

analytic expressions) for the opacity, light curves, and spectra (both the instantaneous and

time-integrated spectra are addressed in §§ 5 and 6). Our conclusions are discussed in § 7.

2. Calculating the Observed Flux

2.1. Model Assumptions

We consider an ultra-relativistic (with Lorentz factor Γ ≫ 1), thin (of width ≪ R/Γ2

in the lab frame) spherical expanding shell, that emits over a finite range of radii, R0 ≤ R ≤
R0 + ∆R (i.e. the emission turns on at R0 and turns off at R0 + ∆R). This model can be

associated with a single pulse or flare in the light curve. In the context of internal shocks

within the outflow, ∆R ∼ R0 is typically expected (Rees & Mészáros 1994; Piran 2005, and

references therein).

The emission is assumed to be isotropic in the co-moving frame of the emitting shell (i.e.

the shell rest frame), and uniform over the spherical shell. In this work primed quantities

are always measured in the co-moving frame, while unprimed quantities are evaluated either

in the lab frame, that is the rest frame of the central source, in which the shell is spherical

(e.g. the Lorentz factor Γ), or in the observer frame (e.g. the observed time and photon

energy which suffer cosmological time dilation and redshift, respectively, relative to the lab

frame which is at the cosmological redshift of the source). The observer is assumed to be

located at a distance from the source that is much larger than the source size (so that the

angle subtended by the source, as seen by the observer, is very small, and the observer can

be considered as being at “infinity”).

For convenience, we will use dimensionless photon energies, ε, in which the observed

photon energy, Eph, is normalized by the electron rest energy: ε ≡ Eph/mec
2. While general

expressions will be provided when possible, we also provide detailed semi-analytical solutions

to the model by assuming that the luminosity in the shell rest frame has a power-law depen-

dence on rest frame photon energy ε′ and radius R, L′
ε′ ∝ (ε′)1−αRb, and that the Lorentz

factor scales as a power law with radius, Γ2 ∝ R−m. The approximation that Γ and L′
ε′ scale

as power laws with radius is usually expected to hold reasonably well. For internal shocks,

the colliding shells are expected to be in the coasting stage near the collision radius (R0),
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which corresponds to m = 0 (see Piran 2005; Mészáros 2006, and references therein). In the

GRB afterglow, both before and after the deceleration radius, where most of the energy is

transferred from the ejecta to the shocked external medium, Γ (Blandford & McKee 1976)

and L′
ε′ (e.g., Sari 1998; Granot 2005) are expected to scale as power laws with radius. For

GRB internal shocks, the scaling of L′
ε′ with radius R generally depends on the details of

the colliding shells.

For uniform colliding shells, where the strength of the shocks going into the shells is

constant with radius, above the peak of the νFν spectrum, ε′peak, one expects −0.5 . b . 0.

This may be understood as follows. In this case the Lorentz factor in the shocked regions

of the colliding shells is constant with radius, while the magnetic field scales as B′ ∝ R−1.

Therefore, since the number of emitting electrons scales linearly with radius, Ne ∝ R, then

L′
ε,max ∝ B′Ne ∝ R0. The typical synchrotron photon energy scales as ǫ′m ∝ B′γ2

m ∝ R−1

since the typical Lorentz factor of the electrons, γm, is constant for a constant shock strength.

The energy of a photon that cools on the dynamical time (the time since the start of the

collision) scales as ǫ′c ∝ R. Therefore, above the peak of the νFν spectrum, at ε′ > ε′peak =

max(ε′c, ε
′
m), we have L′

ε′ = L′
ε,max(ε

′
m/ε′c)

−1/2(ε′/ε′m)−p/2 ∝ R(2−p)/2, where p is the power law

index of the electron distribution, dNe/dγe ∝ γ−p
e for γe > γm. Since p ∼ 2 − 3 is typically

inferred for the GRB prompt emission, this corresponds to −0.5 . b . 0. For fast cooling

(ε′c < ε′m) below ε′peak = ε′m, L′
ε′ = L′

ε,max(ε
′/ε′c)

−1/2 ∝ R1/2. For slow cooling (ε′c > ε′m),

however, below ε′peak = ε′c, L′
ε,max(ε

′/ε′m)(1−p)/2 ∝ R(1−p)/2.

The simplifying assumption of a power law emission spectrum [L′
ε′ ∝ (ε′)1−α], however, is

not always valid (see, e.g., Baring 2006). For example, in GRB internal shocks it breaks down

for photons of energy ε & Γ2/(1+z)2εpeak, i.e. ε mec
2 & 25(1+z)−2(Γ/100)2(εpeakmec

2/100 keV)−1 GeV.

Indeed, photons of such energy interact with photons below the spectral break energy εbreak

which is the peak of the νFν spectrum. A detailed treatment of the case of a more realistic

spectrum for GRB internal shocks will be provided elsewhere. The exact shape of the spec-

trum at high energies is not well constrained. Thus, we use a fiducial value of α = 2, which

corresponds to a flat νFν (i.e. equal energy per decade in photon energy), in our detailed

illustrative solutions, and also explore the effects of varying the value of α.

2.2. The Equal Arrival Time Surface of Photons to the Observer (EATS-I)

The observed normalized flux density, Fε = (mec
2/h)Fν , is calculated as a function of

time and photon energy, closely following the derivation of Granot (2005). For this purpose,

the contributions to the observed flux at any given observed time T are integrated over

the “equal arrival time surface” (EATS-I) – the locus of points from which photons that are
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emitted at the shell reach the observer simultaneously, at the observed time T . In the present

work, the effects of opacity to pair production will be added at the end of this calculation,

as detailed below.

We consider a photon initially emitted by the shell at a lab frame time t0 when the

radius of the shell is Rt,0 ≡ Rsh(t0) and its Lorentz factor is Γt,0, at an angle of θt,0 from our

line of sight to the origin R = 0 (see Fig. 1). Due to the spherical symmetry of our model,

there is no dependence on the azimuthal angle. The arrival time T of the photon to a distant

observer is given by the “equal arrival time” formula:

T

(1 + z)
= t0 −

Rt,0

c
cos θt,0 , (1)

where the lab frame time t is related to the shell radius at that time, Rsh(t), by

t =

∫ Rsh(t)

0

dR

βc
=

Rsh(t)

c
− 1

2c

∫ Rsh(t)

0

dR

Γ2(R)
+ O(Γ−4) . (2)

In Eq. (1), T = 0 is chosen to correspond to a photon that is emitted at the origin at t0 = 0.

Eq. (2) relates t and Rsh(t), so that the locus of points (Rt,0, θt,0) that keep T constant

defines the EATS-I at time T . For a coasting shell (m = 0), it is a well-known result that

the EATS-I is an ellipse2 of semi-major to semi-minor axis ratio Γ (Rees 1966). The flux

density at the rescaled energy ε is obtained by integrating over the luminosity in the shell

rest frame, L′
ε′, along the EATS-I (Granot 2005):

Fε(T ) =
(1 + z)

4πd2
L

∫

δ3dL′
ε′ =

(1 + z)

8πd2
L

∫ ymax

ymin

dy
dµt,0

dy
δ3(y)L′

ε′(y) , (3)

where δ ≡ (1 + z)ε/ε′ is the Doppler factor of the emitted photon (between the co-moving

and lab frames), µt,0 ≡ cos θt,0 is the cosine of its angle of emission, and we defined the

normalized radius y ≡ Rt,0/RL, where RL = RL(T ) is the largest radius on the EATS-I at

time T . The integration is performed along the EATS-I, and the boundaries for y are

ymin(T ) = min

[

1,
R0

RL(T )

]

, ymax = min

[

1,
R0 + ∆R

RL(T )

]

, (4)

since the emission turns on at R0 and turns off at R0 + ∆R. For the times T relevant to

the problem, corresponding to the arrival of photons to the observer, R0/RL(T ) is always

smaller than 1.

2It actually represents an ellipsoid, keeping in mind the symmetry around the line of sight to the center

of the emitting spherical shell, and the lack of dependence on the azimuthal angle.
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In order to evaluate the integral above, we now derive expressions for the integrand.

Defining ΓL ≡ Γ(RL), Γ2 ∝ R−m can be rewritten as Γ2(R)Rm = Γ2
LRm

L = constant, and

thus Γ2 = Γ2
L y−m. Eq. (2) now becomes

t0 =
Rt,0

c
+

RL ym+1

2(m + 1)Γ2
Lc

+ O(Γ−4) . (5)

In the limit of small angles (θt,0 ≪ 1, which is relevant for Γ ≫ 1), Eq. (1) implies t0−Rt,0/c =

T/(1 + z) − Rt,0θ
2
t,0/2c, which together with Eq. (5) yields

T

(1 + z)
=

RL ym+1

2(m + 1)Γ2
Lc

+
Rt,0θ

2
t,0

2c
. (6)

As can be seen in Fig. 1, a photon that is emitted at Rt,0 = RL (corresponding to y =

Rt,0/RL(T ) = 1) remains along the line of sight (θt = θt,0 = 0), so that Eq. (6) yields

RL(T ) = 2(m + 1)Γ2
L[T/(1 + z)]

cT

(1 + z)
= R0

(

T

T0

)1/(m+1)

, T0 =
(1 + z)R0

2(m + 1)cΓ2
0

, (7)

where Γ0 ≡ Γ(R0), and can be rewritten as

θ2
t,0 =

y−1 − ym

(m + 1)Γ2
L

. (8)

We have introduced the time T0 at which the first photons reach the observer (corresponding

to a photon emitted at R0 along the line of sight, θ = 0): RL(T0) ≡ R0. Since µt,0 ≈ 1−θ2
t,0/2,

Eq. (8) implies
dµt,0

dy
=

y−2 + mym−1

2(m + 1)Γ2
L

. (9)

Finally, the Doppler factor of the emitted electron is given by

δ ≡ 1

Γ(1 − β cos θt,0)
≈ 2Γ

1 + (Γθt,0)2
=

2(m + 1)ΓLy−m/2

m + y−m−1
, (10)

and its value at RL (which corresponds to y = 1) is δ(RL) = 2ΓL. Since

L′
ε′ = L′

(1+z)ε/δ(RL)(RL)

[

ε′

ε′(RL)

]1−α(
Rt,0

RL

)b

, (11)

where ε′ = (1 + z)ε/δ, we obtain:

L′
ε′ = L′

(1+z)ε/2ΓL
(RL)

(

δ

2ΓL

)α−1

yb = L′
(1+z)ε/2Γ0

(R0)

(

δ

2ΓL

)α−1

yb

(

RL

R0

)b−m(α−1)/2

. (12)
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The effect of pair production opacity will be treated in this work in a somewhat simpli-

fied manner, by assuming that photons which pair produce do not reach the observer, and

ignoring the additional opacity that is produced by the secondary pairs and the photons

emitted by these pairs. Under these simplifications, the effects of opacity to pair production

can be included by adding a term exp(−τγγ) into the integrand in Eq. (3), where τγγ is a

function of y, ε, ∆R/R0, and T/T0. Thus, by combining eqs. (9− 12) with Eq. (3), we obtain:

Fε(T ) = 2ΓLL′
(1+z)ε/2ΓL

(RL)
(1 + z)

4πd2
L

∫ ymax

ymin

dy

(

m + 1

m + y−m−1

)1+α

yb−1−mα/2 e−τγγ

= 2Γ0L
′
(1+z)ε/2Γ0

(R0)
(1 + z)

4πd2
L

(

T

T0

)(2b−mα)/[2(m+1)]

×
∫ ymax

ymin

dy

(

m + 1

m + y−m−1

)1+α

yb−1−mα/2 e−τγγ , (13)

where Eq. (7) is used to derive the scaling RL(T )/R0 = (T/T0)
1/(m+1), and

τγγ = τγγ

(

y, ε,
∆R

R0
,

T

T0
,

L0

Γ2α
0 R0

)

, (14)

as is shown later on, where Γ0 ≡ Γ(R0), and Lε ≈ L0ε
1−α is the observed isotropic equivalent

luminosity. Unless specified otherwise, the derivations throughout this work are valid for a

general value of m. For a coasting shell (m = 0), which is a case of special interest (as it is

expected, e.g., for internal shocks), Eq. (13) simplifies to

Fε(T ) = 2Γ0L
′
(1+z)ε/2Γ0

(R0)
(1 + z)

4πd2
L

(

T

T0

)b ∫ ymax

ymin

dy yα+b e−τγγ .

We have expressed the observed flux density for our model as a function of the observed

time T , and we now need to derive the expression of the optical depth τγγ . We gather here

the dependence on y of two quantities that will be needed later on:

R̂0 ≡
R0

Rt,0
=

ymin

y
=

R0

∆R

∆R

Rt,0
=

1

y

(

T

T0

)−1/(m+1)

, x ≡ (Γt,0θt,0)
2 =

y−(m+1) − 1

(m + 1)
. (15)

In order to facilitate reading, we include in Table 1 the most common quantities used through-

out this work.

3. Computation of the optical depth

As in the previous section, we consider a “test” photon emitted by the shell at radius

Rt,0 and angle θt,0 with respect to the line of sight (see Fig. 1). All the quantities with a
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subscript ‘t’ will always refer to such a test photon. We wish to calculate its optical depth to

pair production with all the other photons which are emitted by the same source and denoted

by a subscript ‘i’ (for potentially “interacting”). The differential of the optical depth to pair

production is given by (Weaver 1976)

dτγγ = σ⋆[χ(εt, εi, µti)](1 − µti)
dni

dΩidεi
dΩidεids . (16)

In this equation, ds is the differential of the path length along the trajectory of the test

photon; ni, Ωi and Ei ≡ εimec
2 are the number density, solid angle, and photon energy

of the photon field along the path of the test photon with which it might interact. 3 For

convenience, εt and εi denote the values of the corresponding dimensionless photon energies

in the lab frame, rather than in the observer frame (as is the case for ε), i.e. without the

cosmological redshift, so that εt = (1 + z)ε should eventually be used in order to evaluate

the optical depth at an observed value of ε. The Lorentz invariant cross section for pair

production σ⋆(χ) is

σ⋆(χ) =
πr2

e

χ6

[

(2χ4 + 2χ − 1)ln(χ +
√

χ2 − 1) − χ(1 + χ2)
√

χ2 − 1
]

, (17)

χ =

√

εtεi(1 − µti)

2
, (18)

where χ is the center of momentum energy (in units of mec
2, of each particle – each of the

two interacting photons, and the produced electron and positron), and µti = n̂t · n̂i is the

cosine of the angle between the directions of motion of the test photon (n̂t) and a potentially

interacting photon (n̂i). In order to evaluate µti, we need to specify the geometry for our

model: a spherical emitting shell, whose emission depends only on its radius Rsh (i.e. at

any given radius its local emission does not depend on the location within the shell) and

is isotropic in its own rest-frame. Under these assumptions, the radiation field will depend

only on the radius R and the (lab frame) time t, and at any given place and time it will

be symmetric around the radial direction (see Fig. 2). Therefore, at any point along the

trajectory of the test photon, we can use a local coordinate system, Sr, whose z-axis is

aligned with the radial direction (from the center of the shell to that point), ẑr, and such

that the direction of motion of the test photon is in the x-z plane. In this frame the polar

3 We do not add a factor of 1/2 due to double counting (as was done by, e.g., Baring & Harding 1997;

Dermer & Schlickeiser 1994), as it should not appear in the expression for the optical depth. We discuss this

point in more details in annex E.
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angles are denoted by (θr, φr), and

n̂t = x̂r sin θt + ẑr cos θt , (19)

n̂i = x̂r sin θr cos φr + ŷr sin θr sin φr + ẑr cos θr , (20)

µti = n̂i · n̂t = sin θt sin θr cos φr + cos θt cos θr . (21)

Note that θt varies only with s. The integration over the solid angle in the lab frame in

Eq. (16) can conveniently use the frame Sr which is at rest in the lab frame, i.e. dΩi =

dΩr = dφrdµr. The optical depth of the test photon is then given by:

τγγ(εt, θt,0, Rt,0) =

∫

ds

∫

dεi

∫

dΩrσ
⋆[χ(εt, εi, µti)](1 − µti)

dni

dΩrdεi
. (22)

Next, we express the derivative in the integrand of Eq. (22), which represents the photon

field along the trajectory of the test photon, in terms of the source emissivity. In addition,

we make a series of changes of variable in order to simplify the expression for the optical

depth.

3.1. Expressing the photon field in terms of the source emissivity

In § 2.2, we expressed the observed flux as an integral over the EATS-I of photons to the

observer at an observed time T . These photons travel along straight line trajectories that pass

through the photon field. As a result, we integrate the contribution to the optical depth at

each point along the path of each photon, treating it as a test photon. This is the integration

over ds in Eq. (22) which, as we show below, can be replaced by an integration over dRt.

In the other two inner integrations Rt is kept fixed, and the photon field, dni/dΩrdεi, needs

to be evaluated as a function of εi, µr and Rt. For a given test photon that is emitted at

(Rt,0, µt,0), the value of Rt also determines the value of the lab frame time tt. We remind

the reader that Rt and tt are always computed in the lab frame, and that Rt is in general

different than Rsh(tt), i.e. at a general time the position of the test photon does not coincide

with that of the shell. We proceed first to relate the photon field at (tt, Rt) to the emissivity

in the local frame of the emitting shell, which is easier to specify, and simpler. The Doppler

factor of the emitted photon is given by

δ ≡ εi

ε′i
=

1

Γ(1 − βµi)
= Γ(1 + βµ′

i) , (23)

where µi ≡ cos θi = β̂ · n̂i and µ′
i ≡ cos θ′i = β̂ · n̂′

i are the cosines of the angle between the

bulk velocity of the emitting fluid (~β) and the direction of the interacting photon in the lab
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frame (n̂i) and in the comoving frame of the emitting fluid (n̂′
i), respectively. Furthermore,

µ′
i =

µi − β

1 − βµi
=⇒ dΩ′

i

dΩr
=

dΩ′
i

dΩi
=

dµ′

dµ
= δ2 , (24)

since dΩi = dφidµi and φ′
i = φi. We are interested in the differential density of photons of

energy εi and direction of motion in the solid angle dΩr around the direction n̂i, which is at

an angle θr from the radial direction, at a radius Rt and time tt. This density is related to

the specific intensity of the photon field by:

Iεi
(n̂i) ≡

dE

dSdtdεidΩi
= εimec

3 dni

dεidΩr
(n̂i) , (25)

where the (normalized) specific intensity Iεi
is the energy (dE) per unit normal area (dS

where d~S/dS = n̂), per unit time (dt), per unit (normalized) photon energy (dεi), per solid

angle (dΩi = dΩr) around some direction n̂i of the (potentially interacting) photons.

The differential (normalized) specific luminosity (in our case, from a small part of the

emitting shell) is defined as dLε = dE/dεidt, while the isotropic equivalent (normalized)

specific luminosity is defined by:

dLεi,iso ≡ 4π
dLεi

dΩr

. (26)

The contribution of an emitting element with dLεi,iso to the (normalized) flux density dFεi
≡

dE/dSdtdεi and to the (normalized) specific intensity Iεi
at a point located at a distance r

from it is

dFεi
=

dLεi,iso

4πr2
= Iεi

(n̂)dΩr , (27)

and is along the direction n̂ from the emitting element to that point (i.e. here dS is the

differential of the area normal to n̂, dS = n̂·d~S). Finally, we can conveniently express dLεi,iso

in the comoving frame (i.e. the local rest frame of the emitting shell),

dLεi,iso = 4π
dLεi

dΩr

= 4π
dE

dεidtdΩi

= δ34π
dE ′

dε′dt′dΩ′
i

= δ3dL′
ε′ , (28)

where the last equality follows from the assumption that the emission is isotropic in the

comoving frame. Because the emission is assumed to be uniform throughout the shell, dL′
ε′

depends only on the radius of emission of the potentially interacting photon, Re, and not on

the location within the shell. Apart from the emission radius, Re, the position of an emitting

point on the shell is also specified by the polar angle, θe, which for convenience is measured

with respect to the direction from the center of the sphere to the location of the test photon

(at a radius Rt) where the flux (or some other property of the photon field) is calculated
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(see Fig. 2). As a result, we can write dL′
ε′ = L′

ε′(Re)dµe/2, where µe = cos θe and L′
ε′(Re)

has been defined and discussed in § 2. We finally combine eqs. (25), (27) and (28) to obtain

the expressions for the normalized specific intensity,

Iε =
L′

ε′(Re)

4π

δ3

4πr2

∣

∣

∣

∣

dµe

dµr

∣

∣

∣

∣

, (29)

and the expression for the photon field which appears in the integrand in Eq. (22),

dni

dεidΩr
=

L′
ε′(Re)

(4π)2εmec3

δ3

r2

∣

∣

∣

∣

dµe

dµr

∣

∣

∣

∣

. (30)

The derivative in the last term to the right of these equations must be computed along the

equal arrival time surface (EATS-II) of photons to Rt at tt, where Iε or dni/dεidΩr are to

be calculated. We can now rewrite Eq. (22) as:

τγγ(εt, θt,0, Rt,0) =
σT

(4π)2mec3

∫

ds

∫

dεi

∫

dΩr
σ⋆[χ(εt, εi, µti)]

σT
(1 − µti)

L′
ε′i
(Re)

εi

δ3

r2

∣

∣

∣

∣

dµe

dµr

∣

∣

∣

∣

.

(31)

We have thus replaced the photon field by the specific emissivity in the expression for the

optical depth. The boundaries of integration will be specified explicitly later on. We now

want to simplify this triple integration in order to make it easier to evaluate.

3.2. Analytical reduction

In the remainder of this work, we will make use of various dimensionless radii, which

are gathered in Table 1 and greatly simplify the analysis. Furthermore, it is much more

convenient to work with such quantities of order unity inside the integrand. We thus rescale

Re and Rt by introducing R̃e ≡ Re/Rt and R̂t ≡ Rt/Rt,0. Furthermore, the notations

R̃ ≡ R/Rt and R̂ ≡ R/Rt,0 will be used for other rescaled dimensionless radii as well. While

clearly 1 ≤ R̂t < ∞, the range of R̃e is much more complex and will be extensively discussed

in § 4. For now, we want to simplify Eq. (31) by changing integration variables. We give

here the main results and leave the details of the derivations for Annex A.

As has been mentioned above, the integration over ds can be replaced by an integration

over R̂t. Under the approximation of large Lorentz factors (Γ ≫ 1), and thus small emission

angles (θt,0 ≪ 1), one obtains ds = Rt,0dR̂t (see the discussion following Eq. [A2] for more

details). Besides, since we integrate over dΩr = dφrdµr and the integrand contains |dµe/dµr|
we can conveniently change the integration over µr to an integration over R̃e. We show in
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the Annex A that
∣

∣

∣

∣

dµe

dµr

∣

∣

∣

∣

dµr =
dµe

dR̃e

dR̃e ,

since dµe/dR̃e > 0, where the limit of integration over R̃e should be in increasing order (i.e.

the integration should be from small to large values of R̃e). The optical depth now reads:

τγγ(εt, θt,0, Rt,0) ≈
σT

(4π)2mec3Rt,0

∫ ∞

1

dR̂t

R̂2
t

∫ ∞

2/εt

dεi

∫ 2π

0

dφr

∫

R0/Rt

dR̃e

× σ⋆[χ(εt, εi, µti)]

σT

(1 − µti)
L′

ε′i
(Re)

εi

δ3

r̃2

dµe

dR̃e

.

(32)

Next, we can follow the hind-sights of Stepney & Guilbert (1983) and Baring (1994) in

order to cast the integrations over (dφr, dεi) into a much more practical form. In order to

perform this change of variables, it is necessary to specialize the specific luminosity to the

dependence discussed in § 2: L′
ε′i
(Re) = L′

0 h(Re/R0)(εi
′)1−α ≡ Γ−α

0 L0(εi
′)1−α × h(R̃eR̂t/R̂0),

where h is a general function of Re/R0 that satisfies h(1) = 1 (for details see Appendix A.3)

and L′
0 ≡ L′

ε′=1(R0). Note that L0 ≡ Γα
0L′

0 is approximately the observed isotropic equivalent

luminosity at a photon energy of mec
2 ≈ 511 keV, near the peak of the spike in the light

curve which corresponds to the emission episode that we model for ∆R ∼ R0.

For convenience, we rescale all the quantities in the integrand of Eq. (32) which are

not of order unity by the relevant power of the Lorentz factor at radius Rt, Γt = Γ(Rt), so

that the rescaled quantities (which are denoted by a bar) will be of order unity. We rescale

δ̄ ≡ δ/Γt and dµ̄e ≡ Γ2
t dµe, but do not rescale r̃ which is already of order unity. Thus,

δ2+α

r̃2
· dµe

dR̃e

= Γα
0

(

R̂t

R̂0

)−mα/2
δ̄ 2+α

r̃ 2
· dµ̄e

dR̃e

, (33)

and the expression for the optical depth becomes:

τγγ(εt, θt,0, Rt,0) = τ⋆ε
α−1
t R̂

1−mα/2
0

∫ ∞

1

dR̂t

R̂
2−mα/2
t

∫

dR̃e
δ̄ 2+α

r̃ 2

dµ̄e

dR̃e

h

(

R̃e
R̂t

R̂0

)

ζ̄ α
−Hα(ζ) , (34)

where

τ⋆

(

Γ2α
0 R0, α, L0

)

=
7σT

48π3mec3

Γ−2α
0 L0

α5/3R0
= 0.402

(α

2

)−5/3

104(2−α) L0,52

(Γ0,2)2αR0,13
, (35)

and L0,52 = L0/(1052 erg s−1), R0,13 = R0/(1013 cm), Γ0,2 = Γ0/100, ζ = (ζ+ − ζ−)/ζ−,

ζ+ = [1 − cos (θr + θt)] /2, ζ− = [1 − cos (θr − θt)] /2, and Hα(z) is a function discussed in
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Annex A.3. In Eq. (35), τ⋆, the only quantity requiring astrophysical input, is a constant of

the order of the optical depth to pair production at a photon energy of mec
2 at R0 in quasi-

steady state (near the peak of the spike in the light curve for ∆R ∼ R0). Note that since

both the photon index α and L0 (roughly the isotropic equivalent luminosity) are observable

quantities (the latter requiring knowledge of the source redshift), the observation of a high-

energy spectral cutoff due to pair production opacity can enable the determination of Γ2α
0 R0.

In the limit of small angles that is appropriate for large Lorentz factors, ζ− is of order Γ−2,

so we define ζ̄− ≡ Γ2
t ζ−, where Γt = Γ(Rt) = Γ0R̂

−m/2
t . Thus,

ζα
− = Γ−2α

0

(

R̂t

R̂0

)mα
(

ζ̄−
)α

. (36)

Under the assumption that h is also a power-law of index b, h(Re) = (Re/R0)
b =

(R̃eR̂t/R̂0)
b, the expression for the optical depth in our model simplifies to:

τγγ(εt, θt,0, Rt,0) = τ0(εt, Rt,0)F(x) , (37)

τ0(εt, Rt,0) = τ⋆ εα−1
t R̂

1−b−mα/2
0 , (38)

F(x) =

∫ ∞

1

dR̂t R̂
b−2+mα/2
t

∫

dR̃e
δ̄ 2+α

r̃ 2
· dµ̄e

dR̃e

R̃b
e ζ̄ α

−Hα(ζ) . (39)

In order to proceed further, we need to obtain an explicit expression for the innermost

integrand of F , by a detailed examination of the geometry of the photon field. The next

section will be devoted to this analysis, which constitutes the main novelty of this work. We

will evaluate the optical depth (Eq. [37]), taking into account that the photon field is not

homogeneous along the test photon trajectory, but the contribution to the photon field is

actually built up in time.

4. Calculating the Photon Field

4.1. Equal Arrival Time Surface of Photons to the Test Photon (EATS-II)

In this section we calculate the photon field at a general radius Rt and time tt, along the

trajectory of a test photon. For this purpose we need to consider the contribution from all

photons that arrive at the instantaneous location of the test photon, (Rt, tt), simultaneously.

The locus of points where all such photons are emitted, taking into account that the emission

occurs only in the shell, forms a two dimensional surface referred to as the equal arrival time

surface (EATS-II) of photons to the instantaneous location of the test photon. The local
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photon field at (Rt, tt) is calculated by integrating the contributions over this surface. We

stress that this surface (EATS-II), is different from the equal arrival time surface of photons

to the observer at infinity (EATS-I).

Fig. 1 shows the basic configuration for our calculations and illustrates the relation

between the two different equal arrival time surfaces (EATS) of photons: 1. to the observer at

infinity (EATS-I), 2. to the instantaneous location of a test photon (EATS-II). It can be seen

that the EATS-II grows with the lab frame time t, and therefore also with the radius of the

test photon Rt. Furthermore, each EATS-II encompasses all other EATS-II corresponding

to smaller times, and is encompassed within all the EATS-II which correspond to larger

times. In particular, all EATS-II are within the EATS-I, which corresponds to the limit of

the EATS-II for an infinite time (when the test photon reaches the observer at infinity). All

of the EATS-II and EATS-I pass through the emission point of the test photon, and for case

2 and 3, also through the place where the photon crosses the shell (i.e. its location in case

2). These are general properties of the EATS-II.

We now proceed to calculate the EATS-II and the expressions for relevant quantities

along this surface, which are needed in order to calculate the local radiation field. From the

geometry of our problem (see Fig. 2), we can immediately derive the two following equations:

r̃2 = 1 + R̃2
e − 2R̃eµe = (1 − R̃e)

2 + 2R̃e(1 − µe) , (40)

R̃2
e = 1 + r̃2 − 2r̃µr , (41)

where R̃e ≡ Re/Rt and r̃ ≡ r/Rt. The equal arrival time surface (EATS-II) of photons to

(Rt, tt) is determined by the condition that r = c(tt− te) = c[tt− tsh(Re)], where the photons

are emitted at a previous time te when the shell is at a radius Re = Rsh(te). The EATS-II

equation is thus given by

r̃ =
c

Rt
[tt − tsh(Re)] =

√

(1 − R̃e)2 + 2R̃e(1 − µe) , (42)

which relates the radius (Re) and angle (θe = arccos µe) of emission along this surface.

The expression for tsh(Re) depends on our assumption about the expansion of the shell.

If the latter occurs at constant speed, then tsh(Re) = Re/βc and in the limit of Rt → ∞
Eq. (42) reduces to β(ctt −Rt) = Re(1−βµe), which is the usual polar equation of an ellipse

(setting cT = ctt −Rt). In this simple case, using the short notation R̃sh = R̃sh(tt), we have

r̃ = (R̃sh − R̃e)/β, and the EATS-II is given by

µe = 1 − 1

2β2R̃e

[

(

R̃sh − R̃e

)2

− β2
(

1 − R̃e

)2
]

, (43)
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while the lower and upper limits for the range of R̃e values along the EATS-II, which corre-

spond to µe = −1 and µe = 1, respectively, are given by

R̃e,min =
R̃sh − β

1 + β
, R̃e,max =







(R̃sh + β)/(1 + β) R̃sh ≥ 1 ,

(R̃sh − β)/(1 − β) R̃sh ≤ 1 .

(44)

Note that we have not assumed Γ = (1 − β2)−1/2 ≫ 1, so these results are valid for an

arbitrary velocity, as long as it is constant with radius.

Combining eqs. (40) and (41) we also obtain

µr =
1 − R̃eµe

√

(1 − R̃e)2 + 2R̃e(1 − µe)
=

Rt

c

[

1 − R̃eµe

tt − tsh(Re)

]

, (45)

where in the last equality we have also used Eq. (42), so that it is valid only along the

EATS-II (while the first equality is valid more generally, as it is derived directly from the

geometrical setup).

4.2. Radial Dependence of Relevant Angles, µe(R̃e) and µr(R̃e), along EATS-II

Specifying for 1 ≪ Γ2 = Γ2
t R̃

−m, we can rewrite Eq. (5) as

tsh(R) =
Rt

c

[

R̃ +
R̃m+1

2(m + 1)Γ2
t

]

+ O
(

Γ−4
t

)

. (46)

Thus, Eq. (42) implies

r̃ = R̃sh − R̃e +

(

R̃m+1
sh − R̃m+1

e

)

2(m + 1)Γ2
t

+ O
(

Γ−4
t

)

, (47)

r̃2 =
(

R̃sh − R̃e

)2

+

(

R̃sh − R̃e

)(

R̃m+1
sh − R̃m+1

e

)

(m + 1)Γ2
t

+ O
(

Γ−4
t

)

. (48)

Note that R̃e ≤ R̃sh, because te ≤ tt (due to causality) and Rsh(t) is an increasing function

of t. The equality only holds when Rt = Rsh(tt), i.e. when R̃sh = 1 (case 2 below). Thus,

eqs. (40) and (48) give (to the order of Γ−2
t ),

2Γ2
t (1 − µe) = (Γtθe)

2

=
1

R̃e







Γ2
t

[

(

R̃sh − R̃e

)2

−
(

1 − R̃e

)2
]

+

(

R̃sh − R̃e

)(

R̃m+1
sh − R̃m+1

e

)

(m + 1)







.

(49)
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The two terms on the right hand side of the equation are typically of the same order since

|R̃sh − 1| . a few Γ−2
t , i.e. R̃sh

∼= 1 ⇔ Rsh(tt) ∼= Rt. This immediately implies

dµe

dR̃e

=
1

2Γ2
t R̃

2
e

[

Γ2
t

(

R̃2
sh − 1

)

+
R̃sh

m + 1

(

R̃m+1
sh + mR̃m+1

e

)

− R̃m+2
e

]

. (50)

Now we turn to µr. From eqs. (41) and (48) we obtain

µr =

(

R̃sh − R̃e

)2

+
(

1 − R̃2
e

)

2
(

R̃sh − R̃e

) +

(

R̃m+1
sh − R̃m+1

e

)

4(m + 1)Γ2
t






1 − 1 − R̃2

e
(

R̃sh − R̃e

)2






+ O

(

Γ−4
t

)

,

(51)

dµr

dR̃e

= − dr̃

dR̃e

[

1 − R̃2
e − r̃2

2r̃2

]

− R̃e

r̃

=
1 − R̃2

sh

2
(

R̃sh − R̃e

)2 +
R̃m

e

4Γ2
t







1 − R̃2
e

(

R̃sh − R̃e

)2 − 1







+

(

R̃m+1
sh − R̃m+1

e

)(

R̃shR̃e − 1
)

2(m + 1)Γ2
t

(

R̃sh − R̃e

)3 + O
(

Γ−4
t

)

, (52)

where

− dr̃

dR̃e

= 1 +
R̃m

e

2Γ2
t

= 1 +
1

2Γ2(R̃e)
=

1

β(R̃e)
. (53)

This can easily be understood since r = c(tt − te) along the equal arrival time surface, so

that dr = −cdte and dr̃/dR̃e = dr/dRe = −cdte/dRe = −c/(dRe/dte) = −1/β(R̃e).

The maximal radius of emission, Re,max, from which a photon reaches a point at radius

Rt at the time tt is determined by the photon that is emitted at θe = 0 (i.e. µe = 1), along

the line connecting that point to the center of the sphere. Thus,

r̃min =
∣

∣

∣
1 − R̃e,max

∣

∣

∣
=

c

Rt

[

tt − tsh(R̃e,max)
]

(54)

= R̃sh − R̃e,max +

(

R̃m+1
sh − R̃m+1

e,max

)

2(m + 1)Γ2
t

+ O
(

Γ−4
t

)

, (55)

and the problem naturally divides into three cases.



– 20 –

4.3. Properties of EATS-II According to Relative Location of Test Photon

and Shell

The properties of the EATS-II qualitatively change according to the location of the test

photon relative to the shell at the same lab frame time, tt. Thus the problem naturally

divides into three cases, as illustrated in Figs. 1 and 3. If the photon is emitted at an angle4

θt,0 > 1/Γt,0, i.e. x ≡ (Γt,0θt,0)
2 > 1, it initially lags behind the shell (case 1), since due

to the aberration of light (also referred to as relativistic beaming) this corresponds to an

angle greater than 90◦ from the radial direction in the co-moving frame of the shell. The

photon eventually catches-up with the shell and crosses it (case 2), since the latter is moving

at a velocity slight smaller than the speed of light. After it crosses the shell, it remains

ahead of the shell (case 3). A photon that is emitted at θt,0 ≤ 1/Γt,0, corresponding to

x ≤ 1, immediately gets ahead of the shell (case 3). All photons are always emitted at the

shell, so the point of emission is considered case 2. Like the later shell crossing for photons

with x > 1, case 2 corresponds to a single point along that trajectory of the test photon,

unlike cases 1 corresponds to a finite path along the trajectory, and case 3 corresponds to a

(practically) semi-infinite interval (as far as the observer is considered to be at “infinity”; the

contribution to the opacity at large distances from the source, however, becomes negligible).

The three different cases are discussed in detail below, and the relevant expressions for each

case are derived. We start by defining some useful quantities for this purpose, which will be

very helpful later on.

In the limit of small angles, Eq. (A1) yields

(Γtθt)
2 ≈ xR̂−m−2

t , (56)

where x ≡ (Γt,0θt,0)
2 is the square of the normalized emission angle of the test photon.

Evaluating Eq. (46) at R̃sh = R̃sh(tt) gives

ctt
Rt

= R̃sh +
R̃m+1

sh

2(m + 1)Γ2
t

+ O
(

Γ−4
t

)

, (57)

which can be rewritten in terms of the quantity

fm ≡ 2(m + 1)Γ2
t

(

ctt
Rt

− 1

)

= 2(m + 1)Γ2
t (R̃sh − 1) + R̃m+1

sh + O
(

Γ−2
t

)

, (58)

that plays a major role in the following derivations.

4More generally, the condition is cos θt,0 < β, but for Γt,0 ≫ 1 and θt,0 ≪ 1 this reduces to θt,0 > 1/Γt,0.
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For an emission episode starting at R0 = 0, the inequality ctt > Rt is required in order

to have a non-vanishing radiation field at the point (Rt, tt). If the emission turns on at a

non-zero radius R0, this condition generalizes to

ctt
Rt

− 1 ≥ R̃0

2(m + 1)Γ2(R0)
=

R̃m+1
0

2(m + 1)Γ2
t

. (59)

This implies that fm > 0 (for m > −1, which is assumed in this work, and is typically the

case for the astrophysical sources of interest).

We note that fm < 1 for R̃sh < 1 (when the test photon is traveling in front of the shell),

fm > 1 for R̃sh > 1 (when the test photon is traveling behind the shell), and fm = 1 for

R̃sh = 1 (when the test photon is at the shell). It is convenient to express fm as a function

of our primary variables. Using

R2
t = R2

⊥ + z2 = R2
t,0 sin2 θt,0 + [Rt,0 cos θt,0 + c(tt − t0)]

2 , (60)

where R⊥ is the distance between the line of sight to the origin and the trajectory of the

test photon (see Fig. 1 and Eq. [A1]) and solving this second order equation, one obtains

c (tt − t0)

Rt,0

=
(

R̂t − 1
)

(

1 +
θ2

t,0

2R̂t

)

+ O(θ4
t,0) . (61)

Recalling that ct0/Rt,0 = 1 + 1/2(m + 1)Γ2
t,0 + O(Γ−4

t,0 ), we finally obtain:

fm(R̂t) ≡ 2(m + 1)Γ2
t

(

ctt
Rt

− 1

)

=
1 + x(m + 1)

(

1 − R̂−1
t

)

R̂m+1
t

+ O
(

Γ−4
)

. (62)

Fig. 4 shows the dependence of fm(R̂t) on the parameter x ≡ (Γt,0θt,0)
2. For R̂t = 1 we

always have fm = 1 since the test photon is emitted at the shell. For x > 1 the photon

initially lags behind the shell (case 1), and the equation fm = 1 that can be expressed as

R̂m+2
t − [1 + (m + 1)x] R̂t + (m + 1)x = 0 has an additional non-trivial solution, R̂2, which

corresponds the the point where the photon crosses the shell. For m = 0 and m = 1, it is

given by R̂2 = x and R̂2 = (
√

1 + 8x − 1)/2, respectively.

4.3.1. Case 1: Test Photon Behind the Shell, Rt < Rsh(tt)

In this case

Rt < Re,max < Rsh(tt) . Rt

(

1 +
a few

Γ2
t

)

⇔ 1 < R̃e,max < R̃sh(tt) . 1 +
a few

Γ2
t

, (63)
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where the last approximate inequality holds for emission angles (Γtθe)
2 . a few, from which

most of the contribution to the observed flux arises, and are therefore the ones of relevance.

An expression for R̃sh(tt) may readily be obtained through (see Eq. [46])

R̃sh(tt) =
ctt
Rt







1 −

[

R̃sh(tt)
]m

2(m + 1)Γ2
t







+ O
(

Γ−4
t

)

=
ctt
Rt

− 1

2(m + 1)Γ2
t

+ O
(

Γ−4
t

)

, (64)

while R̃e,max is obtained by equating the two expressions for r̃, from Eq. (47) and Eq. (40)

for µe = 1,

r̃min = R̃e,max − 1 = R̃sh − R̃e,max +

(

R̃m+1
sh − R̃m+1

e,max

)

2(m + 1)Γ2
t

+O
(

Γ−4
t

)

= R̃sh − R̃e,max +O
(

Γ−4
t

)

,

(65)

which implies

2
(

R̃e,max − 1
)

≈
(

R̃sh − 1
)

≈
(

ctt
Rt

− 1

)

− 1

2(m + 1)Γ2
t

, (66)

⇒ R̃e,max =
1

2

(

ctt
Rt

+ 1

)

− 1

4(m + 1)Γ2
t

+ O
(

Γ−4
t

)

≈ R̃sh + 1

2
. (67)

While θe is always small, (Γtθe)
2

. a few, in the case studied in this subsection θr can

range from zero to π and it is not obvious a priori whether it can be taken to be either

large, (Γtθr)
2 ≫ 1, or small, (Γtθr)

2
. a few. We argue that when θr is large, the photons

must be emitted at a large angle relative to the direction of motion of the emitting shell

(θi = θr + θe), and are therefore significantly suppressed by relativistic beaming. This effect

wins over the increase in the reaction rate due to the larger angle between the test photon

and the interacting photons, that is manifested by the factor of (1 − µti) in the integrand

for the optical depth. Therefore, the dominant contribution to the optical depth occur from

small θr values, and we can therefore make the approximations that are appropriate for

(Γtθr)
2

. a few. We express these considerations more quantitatively in Annex B. Thus, we
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obtain:

(Γtθe)
2 = 2Γ2

t (1 − µe) =

(

R̃e,max − R̃e

)

(m + 1)R̃e

[

R̃m+1
e,max − R̃m+1

e + 4(m + 1)Γ2
t

(

R̃e,max − 1
)]

+ O
(

Γ−2
t

)

=

(

1 − R̃e

)

(m + 1)R̃e

[

fm(R̂t) − R̃m+1
e

]

+ O
(

Γ−2
t

)

, (68)

(Γtθr)
2 = 2Γ2

t (1 − µr) =
R̃e

[

R̃m+1
sh − R̃m+1

e + 2(m + 1)Γ2
t

(

R̃sh − 1
)]

(m + 1)
(

R̃sh − R̃e

) + O
(

Γ−2
t

)

=
R̃e

[

fm(R̂t) − R̃m+1
e

]

(m + 1)
(

1 − R̃e

) + O
(

Γ−2
t

)

, (69)

dµe

dR̃e

=
1

2(m + 1)Γ2
t

{

R̃e,max

R̃2
e

[

R̃m+1
e,max − R̃m+1

e + 4(m + 1)Γ2
t

(

R̃e,max − 1
)]

+(m + 1)R̃m−1
e

(

R̃e,max − R̃e

)}

=

[

fm(R̂t) − R̃m+1
e + (m + 1)R̃m+1

e

(

1 − R̃e

)]

2(m + 1)Γ2
t R̃

2
e

, (70)

dµr

dR̃e

=
(m + 1)R̃m+1

e

(

R̃sh − R̃e

)

− R̃sh

[

R̃m+1
sh − R̃m+1

e + 2(m + 1)Γ2
t

(

R̃sh − 1
)]

2(m + 1)Γ2
t

(

R̃sh − R̃e

)2

≈

[

(m + 1)R̃m+1
e

(

1 − R̃e

)

− fm(R̂t) + R̃m+1
e

]

2(m + 1)Γ2
t

(

1 − R̃e

)2 . (71)

We note that, as expected, µe(R̃e,max) = 1, since
(

1 − R̃e

)

=
(

R̃e,max − R̃e

)

+O
(

Γ−2
t

)

while

dµe/dR̃e > 0. The Doppler factor is given by

δ ≈ 2Γ

1 + Γ2(θe + θr)2
=

2(m + 1)ΓtR̃
(m+2)/2
e

(

1 − R̃e

)

(m + 1)R̃m+1
e

(

1 − R̃e

)

+ fm(R̂t) − R̃m+1
e

, (72)

where we have used eqs. (68) and (69) as well as Γ2 = Γ2
t R̃

−m
e ≫ 1 and θe + θr ≪ 1. Finally,
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r̃ ≈ 1 − R̃e, and thus

δα+2

r̃2
e

· dµe

dR̃e

= Γα
t

δ̄α+2

r̃2
e

· dµ̄e

dR̃e

≈ 2(2Γt)
α(m + 1)1+αR̃

α+ m
2

(2+α)
e (1 − R̃e)

α

[

(m + 1)R̃m+1
e

(

1 − R̃e

)

+ fm(R̂t) − R̃m+1
e

]1+α . (73)

4.3.2. Case 2: Test photon at the shell, Rt = Rsh(tt)

This is a limiting case between case 1 and case 3, when the test photon is located on

the shell: tt = tsh(R̃e,max), r̃min = 0, and R̃e,max = 1, i.e.

Re,max = Rsh(tt) = Rt , R̃e,max = R̃sh(tt) = 1 . (74)

This means that the last emitted photons that still reach the point (Rt, tt) are emitted at

that same point in space and time, i.e. the equal arrival time surface ends at that point.

Therefore,

(Γtθe)
2 = 2Γ2

t (1 − µe) =

(

1 − R̃e

)(

1 − R̃m+1
e

)

(m + 1)R̃e

, (75)

(Γtθr)
2 = 2Γ2

t (1 − µr) =
R̃e

(

1 − R̃m+1
e

)

(m + 1)
(

1 − R̃e

) , (76)

dµe

dR̃e

=
mR̃m+1

e

(

1 − R̃e

)

+
(

1 − R̃m+2
e

)

2(m + 1)Γ2
t R̃

2
e

, (77)

dµr

dR̃e

= −

(

1 − R̃m+2
e

)

− (m + 2)R̃m+1
e

(

1 − R̃e

)

2(m + 1)Γ2
t

(

1 − R̃e

)2 . (78)

In the limit where R̃e ≈ 1 (i.e. 1 − R̃e ≪ 1) we have:

(Γtθe)
2 ≈

(

1 − R̃e

)2

, (Γtθr)
2 ≈ 1 − m + 2

2

(

1 − R̃e

)

,
dµe

dR̃
≈ 1 − R̃e

Γ2
t

≈ θe

Γt
,

dµr

dR̃
≈ −(m + 2)

4Γ2
t

,

(79)

In this limit r̃ ≈ 1 − R̃e, which implies [see Eq. (30)] that Iε ∝ |dµe/dµr|/r̃2 ∝ (1 − R̃e)
−1,

i.e. the specific intensity diverges at the angle θr = θr,max = 1/Γt, and vanishes above this
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angle. This can be understood as follows. In this limit r̃ ≪ 1, i.e. r ≪ Rt = Rsh(tt) and the

curvature of the shock front becomes unimportant, so that in order for a photon to reach the

point (Rt, tt) together with the shock front it must propagate along the shock front, which

corresponds locally to an angle of 1/Γ (or more generally cos θ = β) from the normal to the

shock front, i.e. the radial direction in our case.

4.3.3. Case 3: Test Photon Ahead of the Shell, Rt > Rsh(tt)

With the causality condition Re,max < Rsh(tt) and Eq. (59), we now have:

R0 ≤ Re,max < Rsh(tt) < Rt < ctt −
RtR̃

m+1
0

2(m + 1)Γ2
t

, (80)

⇐⇒R̃0 ≤ R̃e,max < R̃sh < 1 ≤ ctt
Rt

− R̃m+1
0

2(m + 1)Γ2
t

. (81)

As a result, Eq. (55) yields:

1 − R̃e,max = R̃sh − R̃e,max +

(

R̃m+1
sh − R̃m+1

e,max

)

2(m + 1)Γ2
t

+ O
(

Γ−4
)

, (82)

⇐⇒ 1 − R̃sh =
R̃m+1

sh − R̃m+1
e,max

2(m + 1)Γ2
t

≤ R̃m+1
sh − R̃m+1

0

2(m + 1)Γ2
t

<
R̃m+1

sh

2(m + 1)Γ2
t

<
1

2(m + 1)Γ2
t

, (83)

and R̃e,max = R̃sh

[

1 − 2(m + 1)Γ2
t

R̃m+1
sh

(1 − R̃sh)

]1/(m+1)

=

[

2(m + 1)Γ2
t

(

ctt
Rt

− 1

)]1/(m+1)

=
[

fm(R̂t)
]1/(m+1)

. (84)

Taking these results into account, we now derive the relevant expressions from eqs. (49− 52).

The leading terms for 1 − µe, 1 − µr, and their derivatives with respect to R̃e are all of the

order of O
(

Γ−2
t

)

. Thus, we obtain:
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(Γtθe)
2 = 2Γ2

t (1 − µe) =

(

1 − R̃e

)(

R̃m+1
e,max − R̃m+1

e

)

(m + 1)R̃e

+ O
(

Γ−2
t

)

=

(

1 − R̃e

) [

fm(R̂t) − R̃m+1
e

]

(m + 1)R̃e

+ O
(

Γ−2
t

)

, (85)

(Γtθr)
2 = 2Γ2

t (1 − µr) =
R̃e

(

R̃m+1
e,max − R̃m+1

e

)

(m + 1)
(

1 − R̃e

) + O
(

Γ−2
t

)

=
R̃e

[

fm(R̂t) − R̃m+1
e

]

(m + 1)
(

1 − R̃e

) + O
(

Γ−2
t

)

, (86)

and for the derivatives

dµe

dR̃e

=
(m + 1)R̃m+1

e

(

1 − R̃e

)

+
[

fm(R̂t) − R̃m+1
e

]

2(m + 1)Γ2
t R̃

2
e

+ O
(

Γ−4
t

)

, (87)

dµr

dR̃e

=
(m + 1)R̃m+1

e

(

1 − R̃e

)

−
[

fm(R̂t) − R̃m+1
e

]

2(m + 1)Γ2
t

(

1 − R̃e

)2 + O
(

Γ−4
t

)

. (88)

The Doppler factor is given by

δ ≈ 2Γ

1 + Γ2(θe + θr)2
=

2(m + 1)ΓtR̃
(m+2)/2
e

(

1 − R̃e

)

(m + 1)R̃m+1
e

(

1 − R̃e

)

+
[

fm(R̂t) − R̃m+1
e

] , (89)

where we have used eqs. (85) and (86) as well as Γ2 = Γ2
t R̃

−m
e ≫ 1 and θe + θr ≪ 1. Finally,

r̃ ≈ 1 − R̃e, and thus

δα+2

r̃2
e

· dµe

dR̃e

= Γα
t

δ̄α+2

r̃2
e

· dµ̄e

dR̃e

≈ 2(2Γt)
α

(1 − R̃e)R̃
1+mα/2
e

[

1 +
fm(R̂t) − R̃m+1

e

(m + 1)R̃m+1
e (1 − R̃e)

]−(1+α)

≈ 2(2Γt)
α(m + 1)1+αR̃

α+m(2+α)/2
e (1 − R̃e)

α

[

(m + 1)R̃m+1
e

(

1 − R̃e

)

+ fm(R̂t) − R̃m+1
e

]1+α . (90)
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We note that the expressions above for case 3 are identical to those for case 1 – Eq. (73).

While dni/dεidΩr diverges as |R̃e − R̃e(θr,max)|−1 ∝ |θr − θr,max|−1/2 at θr,max, dni/dεi =
∫

dΩr(dni/dεidΩr) ≈ 2π
∫

θrdθr(dni/dεidΩr) remains finite (i.e. both the energy density and

the energy flux of the radiation field remain finite). This has been noticed in the context of

the diverging surface brightness of the afterglow image at its outer edge, when the emission

comes from an infinitely thin shell (Sari 1998; Granot & Loeb 2001). In that context, it has

also been shown (Waxman 1997; Granot, Piran & Sari 1999a,b; Granot & Loeb 2001) that

when the emission comes from a shell of finite width, the surface brightness (i.e. the specific

intensity Iε) does not diverge.

4.4. Putting it all together

Analytical expressions for our model have now been fully derived, and are reported for

convenience here. The scaled spectral flux density, Eq. (13) is rewritten as:

Fε(T )

Fε,0

=

(

T

T0

)
2b−mα
2(m+1)

∫ ymax

ymin

dy

(

m + 1

m + y−m−1

)1+α

yb−1−mα/2 exp

[

−τγγ

(

y, εt,
∆R

R0

,
T

T0

)]

,

(91)

where εt = (1 + z)ε, ymin = min[1, R0/RL(T )] and ymax = min[1, (R0 + ∆R)/RL(T )], while

the flux normalization is given by

Fε,0 = 2Γ0L
′
(1+z)ε/2Γ0

(R0)
(1 + z)

4πd2
L

=
2αL0ε

1−α(1 + z)2−α

4πd2
L

, (92)

F0 ≡ εα−1Fε,0 = (εFε,0)|ε=1 =
L0

πd2
L

(

1 + z

2

)2−α

(93)

= 7.6 × 10−6

(

1 + z

2

)2−α

L0,52d
−2
L,28 erg cm−2 s−1 ,

where dL = 1028dL,28 cm, and may be used in order to infer the value of L0 from the observed

flux level. The optical depth in the integrand above is:

τγγ(εt, θt,0, Rt,0) = τ⋆ εα−1
t R̂

1−b−mα/2
0 F(x) , (94)

where R̂0 = y−1(T/T0)
−1/(m+1) and x = (y−(m+1) − 1)/(m + 1). The function F is the

following double integral:

F(x) =

∫ R̂2

1

dR̂t

∫ R̃e,2

R̂0/R̂t

dR̃e I(R̂t, R̃e) +

∫ ∞

R̂2

dR̂t

∫ R̃e,3

R̂0/R̂t

dR̃e I(R̂t, R̃e) . (95)
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The two integrals above correspond to cases 1 and 3 respectively, as discussed in § 4.3.

When x > 1, the test photon lags behind the shell and fm(R̂t) > 1, with fm(R̂t) ≡ [1 +

x(m + 1)(1 − R̂−1
t )]/R̂m+1

t ; R̂2 is then defined by the implicit equation fm(R̂2) ≡ 1, and

R̃e,2 ≡ min[(R̂0 + ∆R̂)/R̂t, 1]. For m = 0, R̂2 = max(1, x), while for m = 1, R̂2 =

max[1, (
√

1 + 8x − 1)/2]. The test photon eventually overtakes the shell at radius R2, and

will travel ahead of the shell ever after, which corresponds to the second integral, where

R̃e,3 ≡ min[(R̂0+∆R̂)/R̂t, fm(R̂t)
1/(m+1)]. When x ≤ 1, only the second integral contributes,

as the photon is emitted on the shell and immediately travels ahead of it. Thus, R̂2 = 1 so

that the first integral vanishes. Note that, for all practical purposes, Eq. (95) can be cast

into a single integral:

F(x) =

∫ ∞

1

dR̂t

∫ R̃e,M

R̂0/R̂t

dR̃e I(R̂t, R̃e) , (96)

where R̃e,M = R̃e,2 when x > 1 and fm(R̂t) > 1, and R̃e,M = R̃e,3 in all other cases, i.e.

R̃e,M = min[(R̂0 + ∆R̂)/R̂t, fm(R̂t)
1/(m+1), 1]. Finally, the integrand is equal to:

I(R̂t, R̃e) =
1

R̂2
t

(

δ3

r̃2
· dµe

dR̃e

)

×
∫ ζ+

ζ−

ζdζ
√

(ζ+ − ζ)(ζ − ζ−)

∫ +∞

1

dχ

χ

σ⋆(χ)

σT
L′

χ2/εtζδ(R̃e) . (97)

Specializing to L′
ε′i
(R) = L′εi

′1−α × (R̃eR̂t/R̂0)
b, Eq. (96) becomes:

F(x) =

∫ ∞

1

dR̂t R̂
b−2+mα/2
t

∫ R̃e,M

R̂0/R̂t

dR̃e
δ̄ 2+α

r̃ 2
· dµ̄e

dR̃e

R̃b
e ζ̄ α

−Hα(ζ) , (98)

where the integrands are further expressed as:

δ̄2+α

r̃2
· dµ̄e

dR̃e

R̃b
e ≈

[2(m + 1)]1+αR̃
b+α+ m

2
(2+α)

e (1 − R̃e)
α

[

(m + 1)R̃m+1
e

(

1 − R̃e

)

+ fm(R̂t) − R̃m+1
e

]1+α ,

ζ̄− =
(Γtθr − Γtθt)

2

4
, ζ =

4(Γtθr)(Γtθt)

(Γtθr − Γtθt)2
, Hα(ζ) = 2F1(−α, 0.5; 1;−ζ) , (99)

(Γtθr)
2 =

R̃e

[

fm(R̂t) − R̃m+1
e

]

(m + 1)(1 − R̃e)
, (Γtθt)

2 =
x

R̂m+2
t

. (100)
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This concludes the set of general equations that have been obtained. For reference, the

hypergeometric expressions for α = 1, 2, 3 respectively read

ζ̄1
−H1(ζ) = ζ̄−

(

1 +
ζ

2

)

=
1

4

[

(Γtθr)
2 + (Γtθt)

2
]

, (101)

ζ̄2
−H2(ζ) = ζ̄2

−

(

1 + ζ +
3

8
ζ2

)

=
(Γtθt)

4 + (Γtθr)
4

16
+

(Γtθt)
2(Γtθr)

2

4
, (102)

ζ̄3
−H3(ζ) = ζ̄3

−

(

1 +
3

2
ζ +

9

8
ζ2 +

5

16
ζ3

)

=
1

64

[

(Γtθr)
6 + 9(Γtθr)

4(Γtθt)
2 + 9(Γtθr)

2(Γtθt)
4 + (Γtθt)

6
]

. (103)

For our fiducial case, α = 2, we also explicitly write the relevant expressions :

τ0(εt, Rt,0) = τ⋆ εt R̂−m−b+1
0 , τ⋆ = 0.402

(

Γ0

100

)−4
L0,52

R0,13

, (104)

F(x) =

∫ ∞

1

R̂b+m−2
t dR̂t

∫

dR̃e
δ̄4

r̃2

dµ̄e

dR̃e

R̃b
e ζ̄2

−H2(ζ) , (105)

δ̄4

r̃2

dµ̄e

dR̃e

=
[2(m + 1)]3R̃2+2m

e (1 − R̃e)
2

[

(m + 1)R̃m+1
e

(

1 − R̃e

)

+ fm(R̂t) − R̃m+1
e

]3 , (106)

ζ̄2
−H2(ζ) =

x2

16R̂
2(m+2)
t

+
x

4R̂m+2
t

R̃e

[

fm(R̂t) − R̃m+1
e

]

(m + 1)(1 − R̃e)
+

1

16

R̃2
e

[

fm(R̂t) − R̃m+1
e

]2

(m + 1)2(1 − R̃e)2
. (107)

5. Analytic Scalings of the Flux and Optical Depth

Before showing our results for the lightcurves and spectra, it is useful to first analyti-

cally derive some of the relevant scaling laws (from the equations obtained in the preceding

sections), and discuss the qualitative behavior of the system in different regimes. It is con-

venient to define a normalized time T̄ ≡ (T/T0) − 1, which is zero when the first photon

from Rt,0 = R0 and θt,0 = 0 reaches the observer, and is ∼ 1 about a dynamical time later,

when the system starts to approach a quasi-steady state. It is also useful to define the time

Tf = T0(1 + ∆R/R0)
m+1, where RL(Tf) ≡ R0 + ∆R, when the lack of emission from outside

the outer edge of the emitting region (R > R0 + ∆R) starts being noticed by the observer,

and the corresponding normalized time

T̄f =
Tf

T0
− 1 =

(

1 +
∆R

R0

)m+1

− 1 ≈







(m + 1)∆R/R0 ≪ 1 (∆R ≪ R0) ,

(∆R/R0)
m+1 ≫ 1 (∆R ≫ R0) .

(108)
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Note that at T ≤ Tf the outer boundary of the emission region does not affect either

the emission, since the outer edge of the EATS-I is still fully within the emission region,

or the opacity of the emitted photons, since the maximal radius of the EATS-II (Re,max)

at all points along the trajectory of any photon is always smaller than that of the EATS-I

[RL(T )]: Re,max(T, y, Rt) < RL(T ). As shown in Fig. 1, the two radii become nearly equal for

Rt ≫ RL(T ). In fact, for Rt ≫ RL(T ), not only does Re,max(T, y, Rt) approach RL(T ), but

the EATS-II approaches the EATS-I (the two must become identical when the test photon

reaches the observer, which corresponds to Rt → ∞ for a distant observer, at “infinity”).

This immediately implies that for T ≤ Tf the observed flux and the opacity along the

trajectory of all photons (which reach the observer at time T ) are independent of ∆R. Thus,

in order to calculate the light curves for a family of model parameters that differ only in their

∆R values, it is sufficient to calculate the observed flux and opacity for ∆R → ∞ and use

them for T ≤ Tf , and do the full calculation for each specific value of ∆R only for T > Tf .

The temporal scaling of the unattenuated flux, at sufficiently low photon energies ε,

can be understood as follows. For 1 ≫ T̄ < T̄f , ymin = R0/RL(T ) = (T/T0)
−1/(m+1) = (1 +

T̄ )−1/(m+1) and ymax = 1, so that ∆y = ymax−ymin ≈ T̄ /(m+1) while y ≈ 1 and the integrand

in Eq. (13) is also ≈ 1, implying that Fε ∝ T̄ . For T̄f < T̄ ≪ 1 the emission is from R ≈ R0

from angles θ which satisfy (Γ0θ)
2 ≈ T̄ /(m+1) ≪ 1, while the Doppler factor at this stage is

almost constant, δ ≈ 2Γ0/[1+ (Γ0θ)
2] ≈ 2Γ0/[1+ T̄ /(m+1)] ≈ 2Γ0, and therefore the flux is

approximately constant in time, Fε ∝ δ−1−α ∝ T̄ 0. For T̄f ≪ 1 ≪ T , δ ≈ 2Γ0/(Γ0θ)
2 ∝ T̄−1

and Fε ∝ T̄−1−α. For 1 ≪ T̄ < T̄f , ymin = R0/RL(T ) = (1+ T̄ )−1/(m+1) ≈ T̄−1/(m+1) ≪ 1 and

ymax = 1, so that the integral over y in Eq. (13) approaches a constant (corresponding to its

value for
∫ 1

0
dy), and Fǫ ∝ T̄ (2b−mα)/[2(m+1)]. Finally, for T̄ ≫ T̄f , the emission is dominated

by R ∼ R0 + ∆R and angles θt,0 ≫ 1/Γt,0 (i.e. x ≫ 1) and we obtain the familiar result for

“high latitude” emission (Kumar & Panaitescu 2000), Fǫ ∝ T̄−1−α. Altogether,

Fε<ε1(T̄ ) ∝











































T̄ (1 ≫ T̄ < T̄f ) ,

T̄ 0 (T̄f < T̄ ≪ 1) ,

T̄ (2b−mα)/[2(m+1)] (1 ≪ T̄ < T̄f ) ,

T̄−1−α (T̄ ≫ max[1, T̄f ]) .

(109)

Now we move on to discuss the opacity effects in some detail. As can be seen in Fig. 5,

at a given emission radius the optical depth is smallest for small emission angles (i.e. small

values of x). There is a local maximum near x = γt,0θt,0 ≈ 1 since for such emission angles the

photon is emitted almost parallel to the shell in the comoving frame, and a relatively large



– 31 –

part of its trajectory (also in the lab frame) is close to the emitting shell, which enhances the

optical depth. For a given normalized emission angle, x1/2 = γt,0θt,0, the normalized optical

depth increases with emission radius, as can be seen in Fig. 6, where the increase is largest

for small emission angles. The optical depth generally increases with ∆R/R0 when all other

model parameters are held fixed, due to the larger range of emission radii which enhances the

photon field that can potentially interact with test photons. However, as pointed out above,

for T ≤ Tf the optical depth in this case is independent of ∆R/R0. This is demonstrated in

the lower panel of Fig. 6, where it can be seen that in practice a noticeable increase in the

optical depth due to the increase in ∆R/R0 does not occur immediately after Tf but takes

some time to come into effect. This is since for 0 < T − Tf ≪ Tf the added contribution

to the opacity from R > R0 + ∆R for the smaller ∆R is very small, since the additional

photons can interact with the test photon only at very large radii (Rt ≫ RL(Tf ) = R0 +∆R)

where the intensity of the photon field is very small, and at very small angles between the

directions of the photons which are very unfavorable for interaction.

One would also like to define ε1 as the photon energy at which the optical depth becomes

unity: τγγ(ε1) ≡ 1. However, this definition gives a different value along the trajectories of

different (test) photons, making it hard to define a unique value for ε1(T̄ ), since its value

varies along the EATS-I (see Fig. 7). For 1 ≪ T̄ < T̄f , F(x) becomes independent of T̄ and

depends only on x (see upper panel of Fig. 7). Most of the contributions to the observed

flux come from x . 1, since for x ≫ 1 the radiation is strongly beamed away from the

observer. The upper panel of Fig. 7 shows that F(x . 1) varies over a factor of ∼ 50

for 1 ≪ T̄ < T̄f , and therefore in this regime it still makes some sense to define a single

typical value of ε1(T̄ ), and derive its scaling. It is good to keep in mind, however, both the

spectral transitions around ǫ1(T̄ ) in the instantaneous spectrum and around ǫ1(T̄f) in the

time integrated spectrum, as well as the transition in the light curve when ε1(T̄ ) sweeps past

the observed photon energy ε, are all expected to be somewhat smoothed due to this relatively

large range of opacity values across the (unresolved) observed image of the GRB projected

in the sky. According to Eq. (38), τγγ ∝ τ0 ∝ εt
α−1R̂

1−b−mα/2
0 ∝ εt

α−1T̄−(1−b−mα/2)/(m+1),

and therefore ǫ1(1 ≪ T̄ < T̄f ) ∝ T̄ (1−b−mα/2)/[(m+1)(α−1)] .

The lower panel of Fig. 7 shows F(x) as a function of Y ≡ (y − ymin)/(ymax − ymin) ≈
(xmax − x)/xmax for several values of 1 ≫ T̄ < T̄f , along the equal arrival time surface of

photons to the observer (EATS-I). In this limit Rt,0 ≈ R0, y ≈ 1−x and xmax ≈ T̄ /(m+1) ≈
[Γ0R⊥,max(T̄ )/R0]

2 where R⊥,max(T̄ ) is the radius of the GRB observed image, projected in

the sky, at a normalized observed time T̄ . As is shown analytically in Appendix D and is

apparent in the lower panel of Fig. 7, in this limit

F(x = 0, 1 ≫ T̄ < T̄f ) ∝ T̄ . (110)
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The lower panel of Fig. 7 also shows that

F(x, 1 ≫ T̄ < T̄f ) ≈ F(x = 0, 1 ≫ T̄ < T̄f ) ×







Y Y > Y∗(T̄ ) ,

Y∗(T̄ ) Y < Y∗(T̄ ) ,

(111)

where Y∗ ≈ (xmax −x∗)/xmax ∝ T̄ α is the value of Y where the scaling of F(x) changes from

∝ Y 0 to ∝ Y 1. The corresponding value of x is x∗, and F(x∗) ≈ F(xmax) ∝ T̄ α+1 ∝ Y
(α+1)/α
∗ .

The scaling of F(x) with Y for 1 ≫ T̄ < T̄f can be understood as follows. For a given

emission radius Rt,0, the dependence of the optical depth and F(x) on the emission angle

θt,0 is very weak for x = (Γt,0θt,0)
2 ≪ 1, and becomes significant only for x & 1 (see Fig. 5).

Therefore, as x starts increasing from x = 0 at the line of sight, along the EATS-I, F(x)

initially varies following its dominant radial dependence. The latter may be derived from

that along the line of sight where F(x) ∝ T̄ ∝ (Rt,0/R0)−1, where for a general value of x <

xmax ≪ 1 we have (Rt,0/R0) − 1 ≈ xmax − x ∝ Y and therefore F(x) ∝ Y . As x approaches

xmax, Y approaches zero, until eventually the optical depth becomes dominated by the small

angular dependence on θt,0 at a fixed emission radius Rt,0, and F(x) approaches a constant

value of F(xmax) which corresponds to Rt,0 = R0 and x = (Γ0θt,0)
2 = xmax = T̄ /(m + 1).

We find numerically that F(xmax) ∝ T̄ α+1 ∝ xα+1
max = (Γ0θt,0)

2(α+1). This may be understood

as follows, starting from the expression for the optical depth in Eq. (31). In this regime

R̃e,max = f
1/(m+1)
m and for Rt,0 = R0 we have

R̃e,max

R0
− 1 =

[

1 + x(m + 1)(1 − R̂−1
t )
]1/(m−1)

− 1 ≈ x
(

1 − R̂−1
t

)

≪ 1 . (112)

This means that the contribution to the local photon field at each point along the trajectory

of the test photon is always from a very narrow range of radii near R0. This implies that

r−2|dµr/dµr| which appears in Eq. (31) remains approximately constant, since the geometry

of the problem implies R0θe ≈ rθr so that r−2|dµr/dµr| ≈ R−2
0 = const. At any given

point along the test photon trajectory θr ≤ θt ≤ θt,0, simply because in this regime θr,max

is obtained where EATS-II is truncated at R0, which must correspond to θr = θt for a

test photons that is emitted at Rt,0 = R0 (the test photon is always on its own EATS-I

and EATS-II, by definition). This implies that δ ≈ 2Γ0 = const since Γ(θe + θr) ≤ 2Γ0θt ≤
2Γ0θt,0 = 2x1/2 ≪ 1. Furthermore, L′

ε′i
(R̃e) is approximately constant since R̃e ≈ R0 = const.

Since θt/θt,0 ≈ Rt,0/Rt = R̂t, the effective solid angle that contributes to interaction at Rt is

∼ θ2
t ∝ R−2

t and there is also a factor of 1−µti ∼ θ2
t ∝ R−2

t in the integrand of Eq. (31), most

of the contribution to the total optical depth is from Rt ∼ Rt,0 (i.e. R̂t . 2). Therefore, the

integration over the solid angle effectively introduces a factor of ∼ θ2
t,0, while the factor of

1 − µti in the integrand introduces a similar factor, together giving a factor of ∼ θ4
t,0. The
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integration over energy εi together with the threshold εtεi > 2/(1− µti) for pair production

give L′
ε′i

∝ ε1−α
i ∝ εα−1

t (1 − µti)
α−1 ∝ θ

2(α−1)
t,0 . Altogether, with the previous factor of θ4

t,0,

the optical depth in this regime scales as θ
2(α+1)
t,0 .

Thus, for fixed values of τ⋆ and ε, τγγ first becomes larger than unity at the center of

the image (x ≪ 1 and Y ≈ 1) at T̄1i ∼ α 22α−1/τ⋆ǫ
α−1. From this time on the central part of

the image is opaque, at x < x1 which corresponds to Y1 ≈ T̄1i/T̄ , so that photons of energy

ε can escape mainly from a thin ring in the outer part of the image, that corresponds to

x1 < x < xmax and occupies a fraction Y1 ≈ T̄1i/T̄ ∝ T̄−1 of the image area (since that area

is linear in x). Thus, the observed flux is suppressed by a similar factor and turns from ∝ T̄

at T̄ < T̄1i to ∝ T̄ 0 at T̄ > T̄1i. Eventually, at a later time T̄1f ∼ T̄
1/(α+1)
1i ∝ ε−(α−1)/(α+1)

when x1 = x∗, the whole image becomes opaque, i.e. τγγ > 1 for all 0 ≤ x ≤ xmax, and

the observed flux starts to drop exponentially with time. This behavior can be seen e.g. in

Fig. 8. In summary,

Fε≫ε1∗(T̄ ≪ 1) ∼ Fε<ε1∗(T̄ = 1)×



























T̄ T̄ < T̄1i(ε) ,

T̄1i T̄1i(ε) < T̄ < T̄1f (ε) ,

T̄ α+1 exp[−(T̄ /T̄1f)
α+1] T̄ > T̄1f (ε) .

(113)

Similarly, for 1 ≫ T̄ < T̄f it is natural to define ε1i(T̄ ) and ε1f (T̄ ) as the two photon

energies above which the center and outer edge of the observed image, respectively, become

optically thick to pair production: by definition, T̄1i,f [ε1i,f(T̄ )] ≡ T̄ . This implies that

ε1i ∼ (α 22α−1/τ⋆T̄ )1/(α−1) ∝ T̄−1/(α−1), and since T̄1f ∼ T̄
1/(α+1)
1i , we have ε1i/ε1f ∼ T̄ α/(α−1)

and ε1f ∝ T̄−(α+1)/(α−1). Eq. (113) determines the instantaneous spectrum in this regime,

Fε≫ε1∗(T̄ ≪ 1) ∼ T̄Fε=1<ε1∗(T̄ = 1)×



























ε−(α−1) ε < ε1i(T̄ ) ,

εα−1
1i ε−2(α−1) ε1i(T̄ ) < ε < ε1f(T̄ ) ,

εα−1
1i ε

−2(α−1)
1f exp[−(ε/ε1f)

α−1] ε > ε1f(T̄ ) .
(114)

At T̄ ∼ 1 the opacity becomes more uniform across the image, T̄1i ∼ T̄1f ∼ 1, and ε1i ∼
ε1f ∼ ε1(T̄ = 1) ∼ ε1∗.

For ε ≫ ε1(T̄ = 1), the time integrated flux fε =
∫

dTFε(T ) is approximately given by

∼ T0Fε<ε1(T̄ = 1)T̄1iT̄1f where T̄1iT̄1f ∝ T̄
(α+2)/(α+1)
1i ∝ ε−(α−1)(α+2)/(α+1) , since T̄1i ∝ ε1−α.

Therefore, the spectral slope of the time integrated spectrum, fε, for impulsive sources

(∆R . R0 and T̄f . 1) where the total time integrated flux is comparable to that from the
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rising phase, steepens by ∆α = (α − 1)(α + 2)/(α + 1) above ǫ1(T̄f),

fε(∆R ∼ R0) ∝







ε−(α−1) [ε ≪ ε1(T̄f)] ,

ε−(α−1)(2α+3)/(α+1) [ε ≫ ε1(T̄f)] .

(115)

This can be seen in Fig. 12. For a quasi-steady source (∆R ≫ R0 and T̄f ≫ 1), a similar

time integrated spectrum is obtained only if the flux at 1 < T̄ < T̄f decays faster than T̄−1,

i.e. if m(α − 2) > 2(b + 1) [see Eq. (109)], so that fε is dominated by contributions near

T̄ ∼ 1. For a slower decay or a rising flux at 1 < T̄ < T̄f , fε is dominated by contributions

from T̄ ∼ T̄f and there is an exponential cutoff above ε1(T̄f ), while the power law high

energy tail from the rising phase is encountered only after a significant (exponential in ε)

flux drop. For extremely impulsive sources, where T̄f ≪ 1 (i.e. ∆R ≪ R0), there is also an

intermediate power law segment in the time integrated spectrum:

fε(∆R ≪ R0) ∝



























ε−(α−1) [ε < ε1i(T̄f )] ,

ε−2(α−1) [ε1i(T̄f ) < ε < ε1f(T̄f)] ,

ε−(α−1)(2α+3)/(α+1) [ε > ε1f (T̄f)] .

(116)

6. Results: Semi-Analytic Light Curves and Spectra

Figures 8 – 11 show light curves and spectra for the semi-analytic model developed in

the preceding sections. We use fiducial parameter values of m = b = 0, ∆R/R0 = τ⋆ = 1,

and α = 2, which are relevant for the prompt gamma-ray emission in GRBs, and vary one

parameter at a time in order to see the effect of each model parameter more clearly. When

varying m and b (Figs. 9 and 10, respectively) we use ∆R/R0 = 100 in order to have a

large enough range of emission radii so that the radial dependence of the Lorentz factor and

of the co-moving spectral emissivity would have a significant effect on the light curves (for

∆R/R0 ≪ 1 the values of m and b hardly affect the light curves). Figure 12 shows the time

integrated spectra for several values of ∆R/R0, where each panel is for a different set of

values for the three parameters (α, m, b). In order to ease the reading, Table 2 summarizes

the various sets of parameters and the corresponding figures.

Figure 8 shows the light curves for fixed values m = b = 0, τ⋆ = 1, and α = 2, while

the various panels correspond to different values of ∆R/R0 (of 0.01, 1, and 100, from top

to bottom). At the lowest photon energies, well below ε1∗ (which for the parameter values

used here is ∼ 102), opacity to pair production never becomes very significant, and the light
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curves follow the behavior described in Eq. (109) which is discussed in the preceding section.

In this regime the lightcurves are self similar in the sense that εα−1Fε is independent of ε

below ε1(T ). The different behavior for T̄f ≪ 1 and T̄f ≫ 1 (where T̄f = ∆R/R0 for m = 0)

that appears in Eq. (109) can clearly be seen by comparing the upper and lower panels of

Fig. 8. For ε ≫ ε1∗, on the other hand, opacity to pair production has a major effect on the

light curves. In this regime the light curves at T̄ ≪ 1 follow Eq. (113), showing a pronounced

constant flux plateau between T̄1i ∝ ε1−α, when the center of the image becomes optically

thick to pair production, and T̄1f ∼ T̄
1/(α+1)
1i , when the entire image becomes opaque, followed

by an exponential flux decay. At 1 . T̄ < T̄f the opacity does not vary drastically across the

image and may be described by a single value of ǫ1(1 ≪ T̄ < T̄f ) ∝ T̄ (1−b−mα/2)/[(m+1)(α−1)] .

For the parameter values used in Fig. 8, ε1 increases (linearly) with T̄ in this range, and

therefore the opacity at a given ε decreases with time, causing the observed flux to increase

with time until ε1 sweeps across ε or until T̄f is reached (whichever comes first). At T̄ > T̄f

the situation is reversed, as the observed emission comes from large angles relative to the

line of sight (“high-latitude” emission) and ε1 decreases with time.

We now turn to the photon energy spectrum. The instantaneous spectra at T̄ ≪ 1 follow

the behavior described in Eq. (114). At very early times the exponential part starts only

at very high photon energies, making it very hard to detect. When T̄ ∼ 1 the intermediate

power-law segment disappears as ε1i and ε1f become nearly equal (note that the low energy

part of the curves appears flat in the figures since we show εα−1Fε which is independent of ε

below ε1). The time integrated spectrum varies with the value of ∆R/R0. For ∆R/R0 ≪ 1

it consists of three power-law segments, as described in Eq. (116). As ∆R/R0 increases, the

central power-law segment, at ε1i(T̄f) < ε < ε1f (T̄f), shrinks as ε1i(T̄f) and ε1f(T̄f ) approach

each other, until it disappears for ∆R/R0 ∼ 1 where T̄f ∼ 1 and ε1i(T̄f ) ∼ ε1f(T̄f) ∼ ε1∗.

For ∆R/R0 ∼ 1 the time integrated spectrum is described by Eq. (115), and consists of

two power-law segments. As ∆R/R0 increases above unity the time integrated spectrum

develops an exponential high-energy cutoff, while the power-law tail at high energies becomes

increasingly suppressed. This occurs since if the flux at 1 < T̄ < T̄f does not drop faster than

T̄−1, which corresponds to m(α − 2) < 2(b + 1) (see Eq. [109]) as is indeed the case for the

parameter values used in Fig. 8, then the time integrated flux is dominated by contributions

from T̄ ∼ T̄f ≫ 1 and reflects the exponential cutoff of the instantaneous spectrum at

that time, which dominates over the high-energy power-law component that arises from the

superposition of the instantaneous spectra from T̄ . 1.

Figures 9 and 10 demonstrate the effects of the two parameters m and b. As discussed

above, a large value for ∆R/R (100) was chosen so that the radial dependence of the Lorentz

factor (Γ2 ∝ R−m) and of the co-moving spectral luminosity [L′
ε′ ∝ Rb(ε′)1−α] would have

a large effect on the light curves. For ∆R/R0 ≪ 1 the values of m and b hardly affect the
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light curves (since the emission takes place over a very small range of radii in which both Γ

and L′
ε′ hardly vary). Figure 9 also demonstrates the dependence of T̄f on m, where in the

limit of ∆R/R0 ≫ 1, T̄f ≈ (∆R/R0)
m+1 (see Eq. [108]).

As can be seen in Fig. 9, the power-law component of the time integrated spectrum

is largely independent of m, since it originates from the superposition of the instantaneous

spectra at T̄ . 1, which are sampling a small range of emission radii. The lower energy

component, however, from the contribution of the emission at times 1 < T̄ . T̄f , is sensitive

to the value of m, since it sample a large range of emission radii. For m = 0, Fε(1 < T̄ < T̄f)

is constant in time (for the values of the other parameters that are used in Fig. 9), while

ε1(1 < T̄ < T̄f) ∝ T̄ , and both effects combine to produce a very pronounced high-energy

exponential cutoff. For m = 1, Fε(1 < T̄ < T̄f) ∝ T̄−1/2 while ε1(1 < T̄ < T̄f) is constant

in time, which results in a somewhat less pronounced, though still fairly large high-energy

exponential cutoff in the time integrated spectrum. For m = 2, Fε(1 < T̄ < T̄f ) ∝ T̄−2/3

while ε1(1 < T̄ < T̄f ) ∝ T̄−1/3, so that the time integrated spectrum in the range ε1(T̄f) <

ε < ε1(T̄ = 1) ∼ ε1∗ is dominated by the contributions near the time T1(ε) when ε1(T̄1) = ε.

This results in a spectral slope of εfε ∝ ε−1 in the lower panel of Fig. 9.

More generally, Fε<ε1(T̄ )(1 < T̄ < T̄f) ∼ ε1−αT̄ (2b−mα)/[2(m+1)] while ε1(1 < T̄ < T̄f) ∼
ε1∗T̄

(1−b−mα/2)/[(m+1)(α−1)] , so that when the flux is dominated by the contribution from

T̄ ∼ T̄1(ε), then the spectral slope of the time integrated spectrum is given by

d log εα−1fε

d log ε
=

(α − 1) [m(2 − α) + 2(b + 1)]

2(1 − b) − mα
. (117)

This may be relevant if ε1(1 < T̄ < T̄f ) decreases with T̄ , in which case this spectral slope

is valid in the range ε1(T̄f) < ε < ε1∗. It may also be relevant if ε1(1 < T̄ < T̄f) decreases

with T̄ , as discussed below.

In Fig. 10, the upper panel is identical to the upper panel of Fig. 9 and the lower panel

of Fig. 8. In the middle panel Fε(1 < T̄ < T̄f ) ∝ T̄−1 and ε1(1 < T̄ < T̄f ) ∝ T̄ 2, while

in the bottom panel Fε(1 < T̄ < T̄f) ∝ T̄−2 and ε1(1 < T̄ < T̄f ) ∝ T̄ 3. Both cases result

in a very pronounced exponential cutoff at very high photon energies (which may be hard

to detect), but show a shallow spectral slope up to this exponential cutoff (which may be

easier to detect). This again results in the spectral slope given by Eq. (117). However, in

this case ε1(1 < T̄ < T̄f) increases with T̄ , and therefore this spectral slope occurs in the

range ε1∗ < ε < ε1(T̄f). This is valid, however, only if indeed the time integrated flux in

this spectral range is dominated by the contribution from near T1(ε). This is not valid in

the upper panel of Fig. 10 (where it is dominated by the contribution from T̄ ∼ T̄f), and is

only marginally valid in the middle panel (where the contributions from all the times in the

range T1(ε) . T̄ . T̄f are comparable). In the lower panel of Fig. 10 the flux in this spectral
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range is indeed dominated by the contribution from T̄ ∼ T̄1(ε), which results in a spectral

slope of εfε ∝ ε−1/3 in this range.

In Fig. 11, which shows the effect of varying α, the top panel corresponds to α = 1, for

which both the flux and the optical depth become independent of ε. As a result, we present

for this case light curves for different values of τ∗, and the corresponding integrated spectra

(which all have a flat fε and vary only in their normalization). For α = 2 (middle panel) and

α = 3 (bottom panel), one can verify that the power laws on the middle and bottom right

panels have an index of approximately 4/3 and 5/2 respectively, as expected from Eq. (115)

after rescaling by εα−1.

Finally, Fig. 12 illustrates the behavior of the time integrated spectra, as discussed at

the end of § 5. All the curves show a high energy power law tail with an index of about

4/3, as expected from Eq. (115). Moreover, given the rescaling by T0(m = 0) (which is

independent of m) in Fig. 12, it is easier to see that the time integrated spectra become

independent of b and m for ∆R/R0 ≪ 1 (since in that limit, the same holds for the light

curves and instantaneous spectra). As discussed in the paragraph following Eq. (115), the

exponential cutoff is suppressed when m(α−2) > 2(b+1), as is the case on the middle panel

only. In such a case, the time integrated spectra are dominated by contributions near T̄ ∼ 1,

and the effect of ∆R/R0 becomes negligible for ∆R/R0 ≫ 1, which explains the asymptotic

behavior of the spectra with increasing ∆R/R0. Finally, for very impulsive sources, the

intermediate power law segment in Eq. (116) can be discerned, albeit with difficulty.

7. Discussion

We have explored in great detail a model for the temporal and spatial dependence of

the opacity to pair production (γγ → e+e−) in impulsive relativistic sources. Our simple,

yet rich, model features a thin spherical shell expanding ultra-relativistically and emitting

isotropically in its own rest frame within a finite range of radii. Our two main results are the

follwoing. First, while the instantaneous spectrum (which is typically very hard to measure

due to poor photon statistics) has an exponential cutoff at high photon energies, the time

integrated spectrum over the duration of a flare or spike in the light curve (which is easier

to measure) has a power-law high-energy tail. Second, photons above this spectral break in

the time integrated spectrum arrive mainly near the onset of the flare or spike in the light

curve.

These two features provide a unique detectable signature of opacity to pair production,

making it easier to identify observationally. Furthermore, these features are expected to
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be fairly robust, even if the exact details (such as the exact change in the spectral slope

across the break, ∆α, or the exact shape of the light curve at high photon energies above

the spectral break) may depend on the details of the model (such as the exact geometry,

which is assumed to be spherical in our model5). The reason behind these features is that

in impulsive sources the photon field starts from zero (or more realistically a non-zero value,

which is still much lower than that near the peak of the flare or spike in the light curve) and

builds-up with time, so that the optical depth to pair production, τγγ , increases with time,

and high energy photons can escape mainly at early times while τγγ is still below unity.

A source is considered impulsive for our purposes if the photon field in the source and

its vicinity changes considerably within the source light crossing time. In this limit the time

dependence of the photon field and the resulting opacity to pair production is important.

This can naturally occur in relativistic sources, but is hard to produce in non-relativistic

sources (since it requires a relativistic signal in order to turn the emission on or off on

a time scale of the order of the light crossing time of the source). In the opposite limit,

where the photon field hardly varies within the source light crossing time, the photon field

may be approximated as constant in time along the trajectory of the photons, and can

be evaluated at the time of emission (this is considered a “quasi-steady” state). In our

model, the photon field approaches a quasi-steady state6 within a few light crossing times

of the emitting region (T̄f > T̄ & a few). If the source is active for much longer times

(T̄f ≫ 1 ⇔ ∆R/R0 ≫ 1), the time integrated spectrum will usually be dominated by this

late time quasi-steady emission, and an exponential high-energy cutoff develops, while the

high-energy power-law tail becomes increasingly suppressed. For this reason, in order for

the source to be impulsive, the duration of the emission should be at most comparable to

the light crossing time of the source (T̄f . 1 ⇔ ∆R/R0 . 1).

We have considered a single, isolated emission episode which corresponds to a single flare

or spike in the observed light curve. Furthermore, we have assumed no background photon

field at the time when the emission turns on. These are obviously idealized assumptions

and it is worth considering, at least qualitatively at this stage, the modifications that may

occur when these ideal conditions are not satisfied. For the prompt emission or X-ray flares in

GRBs the background quasi-steady photon field is expected to be very low and not contribute

significantly to τγγ . This is probably also true for Blazars of BL Lac type. In other types of

Blazars (quasar hosted Blazars), however, the external photon field, mainly due to emission

5In AGN, e.g., a cylindrical geometry may be more appropriate. We intend to study such a cylindrical

geometry in a future work.

6Here, by quasi-steady state, we mean that neglecting the time dependence of the photon field would at

most change the results by a factor of order unity, but not qualitatively.
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from the accretion disk and its scattered photons from the clouds in the broad line region,

is expected to provide the dominant contribution to τγγ in the source, even during flares

(Sikora, Begelman & Rees 1994). In this case, our model would not be applicable, since the

external radiation field would prevent the escape of high-energy photons near the onset of

the spike, resulting in τγγ that is largely independent of time.

Regarding the assumption that the flare/spike is isolated, in many cases there are series

of flares, so that except for the first flare in the series for which our assumption should hold

very well, for consecutive flares the high energy photons could in principle pair produce

with photons emitted in previous flares. This will be highly suppressed if the time from

the end of the previous flare is much larger than its duration. Even if these two times

are comparable, pair production is still significantly suppressed since the relevant photons

can meet only further away from the source, where the photon density is smaller and the

angle between the directions of the photons (in the lab frame) is smaller. Such a proximity

in time to a previous flare/spike will still increase τγγ to some degree, but this will affect

mainly the highest energy photons, with energies well above the spectral break in the time

integrated spectrum over the duration of the flare/spike, which are relatively hard to detect

due to the smaller number of photons at such high energies. Therefore, in practical terms,

the differences from our idealized model are not expected to be very large. This may even

make it meaningful to integrate the spectrum over many spikes/flares in order to increase

the photon statistics, in cases where the number of photons detected in individual spikes is

not large enough to enable a good spectral analysis.

Other sources of opacity, such as scattering of photons on the pairs that are produced,

are also possible. The latter, however, is expected to build-up in time on a comparable

time scale to that of the opacity to pair production that we study here. Therefore, it is

not expected to have a significant impact on our main conclusions. Opacity for scattering

on the electrons associated with the baryons or with preexisting pairs within the outflow

is also possible. However, it will not greatly vary within a single dynamical time, and

should also affect lower energy photons (where the larger number of photons enables a

better spectral analysis). Furthermore, it is suppressed at high photon energies due to the

reduction in the cross section in the Klein-Nishina regime. Moreover, we find a rather unique

combined spectral and temporal signature for the opacity to pair production, which could

help distinguish between it and other sources of opacity.

In GRB afterglows the opacity to pair production is typically very low and therefore

not expected to be detectable in the GLAST energy range. During the afterglow, after

about one day, L0,52 ∼ 10−8 − 10−7, R ∼ 1017 cm corresponding to R0,13 ∼ 104, and

Γ ∼ 10 corresponding to Γ0,2 ∼ 0.1. According to Eq. (121), this implies a huge value of
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ε1∗ (ε1∗mec
2 ∼ 1015 − 1016 eV for α ≈ 2). In practice the opacity would be even lower than

this, since the typical energy of the photons that would pair produce with such high energy

photons would be ∼ Γ2/ε1∗ corresponding to ν ∼ 1012 Hz, which is well below the assumed

power law segment of the spectrum (so that the number density of these low energy photons

would in practice be much lower than the default value according to our assumption of a

simple single power law spectrum). A possible exception to the very low τγγ during the

afterglow may be the very early afterglow in a stellar wind environment, near Tdec which

is of the order of seconds in this case. Typical parameters values there are R0,13 ∼ 100,

Γ0,2 ∼ 1, and L0,52 ∼ 0.1, which might give ε1∗mec
2 as low as ∼ 100 GeV. Such values could

be detected by GLAST, albeit with difficulty.

For the internal shocks model, the GRB prompt emission occurs at a much smaller

radius compared to the afterglow, RGRB ≪ Rdec. Furthermore, the luminosity of the prompt

GRB emission is much larger than that of the afterglow, and the Lorentz factor is higher.

Therefore, despite the higher Lorentz factor during the prompt GRB, τγγ is still much larger

than during the afterglow. In models where the prompt emission occurs near the deceleration

radius, RGRB ∼ Rdec, the values of τγγ in the very early afterglow and in the prompt emission

are comparable (perhaps somewhat smaller in the early afterglow due to a smaller radiative

efficiency), but τγγ is typically very low for both emission components (i.e. the effects of

opacity to pair production are not expected in the GLAST energy range).

Once the spectral break in the time integrated spectrum over the duration of a flare

or spike in the light curve is observed in the data, it can be used to constrain the values of

the physical parameters of the source, namely Γ2α
0 R0. A fit of our model predictions to the

data can in principle determine the values of all the model parameters: α, m, b, ∆R/R0,

τ⋆ and F0, which in turn determine L0 (from F0, Eq. [93]) and Γ2α
0 R0 (from τ⋆, Eq. [35]).

In practice, however, the limited photon statistics may render such a direct fit with such a

large number of free parameters impractical. One way to overcome this problem is to fix the

values of some of the model parameters, e.g. m = b = 0 and even ∆R/R0 = 1, if necessary.

A less accurate but less computationally demanding alternative is to fit the time in-

tegrated spectrum (over a flare or spike in the light curve) to a parameterized function

featuring a smooth transition between two power laws,

fε = f0

[

(

ε

ε1∗

)−n(1−α)

+

(

ε

ε1∗

)−n(1−α−∆α)
]−1/n

, (118)

where n and f0 determine the sharpness of the spectral break at ε1∗ and its flux normalization,

respectively, while fε≪ε1∗ ∝ ε1−α and fε≫ε1∗ ∝ ε1−α−∆α. Such a fit can determine both the

photon index, α, and the photon energy ε1∗ ≈ ε1(T̄ = 1) of the spectral break in the
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time integrated spectrum, as well as F0. For ∆R/R0 . 1 and defining ∆T as the observed

variability time (in seconds), e.g. the observed FWHM of the flare or spike in the light curve,

we have f0/∆T ≈ T̄fF0ε
1−α
1∗ ∼ F0ε

1−α
1∗ ∆R/R0, which can be used in Eq. (93) to determine

L0 :

L0 ≈ πd2
L

f0

∆T

R0

∆R

(

1 + z

2

)α−2

εα−1
1∗ = 1.3 × 1051 R0

∆R

(

1 + z

2

)α−2

d2
L,z1

f0,−6

∆T
εα−1
1∗ erg s−1 ,

(119)

where f0 = 10−6f0,−6 erg cm−2, and dL,z1 is dL in units of dL(z = 1) ≈ 2.05 × 1028 cm (for

standard cosmological parameters). It is hard to determine ∆R/R0 without a detailed fit

to the model spectra (see Fig. 12 for the dependence of the time integrated spectrum on

∆R/R0), and this is a price for the simplicity of this method and the use of simple analytic

formulas rather than numerically evaluating the set of nested integrals in order to calculate

our model predictions. One can either assume ∆R/R0 ≈ 1 or try to estimate its values by

eye, guided by Fig. 12, if one wishes to avoid a direct fit to the model predictions.

The quantities α, L0, and ε1∗ may in turn be used to determine Γ2α
0 R0. In order to do

this in practice, we need to use Eq. (35) and the relation

(1 + z)ε1∗ ≡ (τ⋆/Cα)−1/(α−1) =
[

249C2(α/2)5/3104(α−2)L−1
0,52(Γ0,2)

2αR0,13

]1/(α−1)
, (120)

ε1∗mec
2 =

127 MeV

(1 + z)

[

C2 (40.2)α−2
(α

2

)5/3 (Γ0,2)
2αR0,13

L0,52

]1/(α−1)

, (121)

where Cα = 100C2 is a coefficient whose value is determined numerically. The dependence

of ε1∗ on Γ0, R0, and α is demonstrated in Fig. 13. Since a test photon of dimensionless

energy ε1∗ pair produces primarily with photons of energy ∼ Γ2/(1 + z)2ε1∗, and we fix the

value of L0 [i.e. the photon number density near (1 + z)ε = 1], the values of ε1∗ becomes

almost independent of α near Γ0 ∼
√

(1 + z)ε1∗ (which is roughly where the lines for the

three values of α for the same value of ε1∗ almost meet).

Eq. (121) can be inverted in order to obtain

(Γ0,2)
2αR0,13 = C−1

2 40.22−α(α/2)−5/3L0,52

[

(1 + z)ε1∗mec
2

127 MeV

]α−1

. (122)

If one makes the additional assumption that R0 ∼ Γ2
0c∆T/(1 + z), which is valid for a large

class of models, then Eq. (122) provides the following estimate for Γ0:

Γ0 ≈ 100 (1 + z)α/(2α+2)

[

1.34

C2

(α

2

)−5/3 L0,52

∆T

]1/(2α+2) (
ε1∗mec

2

5.1 GeV

)(α−1)/(2α+2)

. (123)
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For GRBs, one may perform a consistency check for the assumption that R0 ∼ Γ2
0c∆T/(1 +

z) by comparing the value of Γ0 under this assumption from opacity to pair production

(Eq. [123]) to the estimate for Γ0 from the time, Tdec, of the onset of the afterglow emission,7

Γ0(Tdec) ≈
[

(3 − k)Eiso

πA(2c)5−kT 3−k
dec

]1/2(4−k)

=











128 E
1/8
iso,53n

−1/8
0 T

−3/8
dec,2 (k = 0) ,

131 E
1/4
iso,53A

−1/4
⋆ T

−1/4
dec,0 (k = 2) ,

(124)

where Tdec = Tdec,0 s = 100Tdec,2 s, Eiso = 1053Eiso,53 erg is the isotropic equivalent kinetic

energy in the outflow, ρext = AR−k is the external density, and is assumed to be a power law

with radius, which is ρext = nmp for a uniform external medium (k = 0) of number density

n = n0 cm−3, while A = 5 × 1011A⋆ g cm−1 for a stellar wind environment (k = 2).
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A. Changes of variables in section 3.2

A.1. Change of variable from (s, µr) to (Re, Rt)

Since we integrate over dΩr = dφrdµr and the integrand contains |dµe/dµr|, we can

conveniently change variables from µr to R̃e. It is straightforward to verify that, irrespective

of the position of Rt with respect to the upper bound of Re, |dµe/dµr| dµr = (dµe/dR̃e) dR̃e,

with the integration over R̃e being performed from the smaller to the larger bound, and

dµe/dR̃e > 0 always. Furthermore, the perpendicular distance from the line of sight from

the center of the emitting sphere to the observer at infinity,

R⊥ ≡ Rt,0 sin θt,0 = Rt sin θt , (A1)

is constant along the trajectory of the test photon (see Fig. 2). Thus

s = Rt cos θt−Rt,0 cos θt,0 , ds = −R⊥dθt

sin2 θt

=
R⊥dµt

(1 − µ2
t )

3/2
=

RtdRt
√

R2
t − R2

⊥

≈ Rt,0dR̂t , (A2)

7This estimate is for the Lorentz factor of the outflow after the passage of the reverse shock, so it is close

to that of the original outflow before it was decelerated by the reverse shock only as long as the reverse

shock is at most mildly relativistic. For a highly relativistic reverse shock, the original Lorentz factor of the

outflow can be much larger than this value.
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where the last approximation holds since R⊥ ≤ R⊥,max ≈ R(R⊥,max)/Γ(R⊥,max) = O(Rt/Γ) ≪
Rt and the contribution from Rt ≪ R(R⊥,max) is negligible for Γ ≫ 1.

A.2. Integration over dφr and dεi

The local photon field derived above is symmetric around the radial direction (i.e. does

not depend on φr). As a consequence, φr appears only in the function σ⋆ [χ(εt, εi, µti)] (1 −
µti), where µti is a function of cos φr (see Eq. [21]). Thus, we can write

∫ 2π

0
dφr = 2

∫ π

0
dφr.

Next, we follow the insights of (Stepney & Guilbert 1983) and (Baring 1994) by performing

the change of variables (εi, φr) → (χ, u), with χ2 = εtεiu defined in Eq. (18). Defining

ζ+ = [1 − cos (θr + θt)] /2 and ζ− = [1 − cos (θr − θt)] /2, where ζ+ > ζ− for (θt, θr) ∈ [0, π],

Eq. (21) yields
∫ π

0
dφr = 2

∫ ζ+
ζ−

du [(ζ+ − ζ−) sin φr]
−1 = 2

∫ ζ+
ζ−

du [(ζ+ − u)(u − ζ−)]−1/2. Like-

wise
∫∞

2/εt
dεi = 2

∫∞

1
χdχ(εtu)−1. Eq. (32) now reads:

τγγ(εt, θt,0, Rt,0) =
8σT

(4π)2mec3Rt,0

∫ ∞

1

dR̂t

R̂2
t

∫

dR̃e
δ3

r̃2
· dµe

dR̃e

×
∫ ζ+

ζ−

udu
√

(ζ+ − u)(u − ζ−)

∫ ∞

1

dχ

χ

σ⋆(χ)

σT
L′

χ2/εtζδ(R̃e) .

(A3)

A.3. L′
ε′i
(Re) = L′

0(ε
′
i)

1−α × h(Re/R0).

The specific luminosity in the co-moving frame is conveniently parameterized as L′
ε′ =

L′
0(ε

′)1−αh(Re/R0) where h(1) = 1 is normalized at Re/R0 = R̃eR̂t/R̂0 = 1. Similarly, we

want to parameterize the specific luminosity in the lab frame at R0 as Lε(R0) ≈ L0ε
1−α, even

though the luminosity at a given radius is not really well defined, since the Doppler factor

also depends on the angle θt,0 from the line of sight. The normalization coefficients in the lab

frame (L0) and in the co-moving frame (L′
0), are the specific luminosity at R0 corresponding

to a photon energy of mec
2 ≈ 511 keV in the respective frames. Since the typical value of

the Doppler factor is δ = ε/ε′ ∼ Γ, and specifically δ(R0) ∼ Γ(R0) ≡ Γ0, these coefficients

are related by L0ε
1−α ∼ Γ0L

′
0(ε

′)1−α and L0 ∼ Γα
0L′

0. Thus motivated, we use this relation

as the definition of L0, L0 ≡ Γα
0L′

0. Therefore, L′
ε′i
(Re) = Γ−α

0 L0(εi
′)1−α × h(R̃eR̂t/R̂0). It

is convenient to express the optical depth τγγ in terms of L0 which is approximately the

observed isotropic equivalent luminosity at an observed photon energy of 511(1 + z)−1 keV

near T̄ ∼ 1 for ∆R & R0. For ∆R/R0 ≈ T̄f/(1 + m) ≪ 1 (see Eq. [108]), the peak isotropic

equivalent luminosity at 511(1 + z)−1 keV is ∼ T̄fL0 and the corresponding optical depth
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near the peak of the spike in the light curve at the same photon energy is ∼ T̄fτ0. Therefore,

L0 is practically an observable quantity, making it convenient to work with.

Eq. (A3) now becomes:

τγγ(εt, θt,0, Rt,0) =
2Γ−α

0 L0ε
α−1
t σT

(4π)2mec3Rt,0

∫ ∞

1

dR̂t

R̂2
t

∫

dR̃e

(

δ2+α

r̃2
· dµe

dR̃e

)

h

(

R̃e
R̂t

R̂0

)

×
∫ ζ+

ζ−

uαdu
√

(ζ+ − u)(u − ζ−)
× 4

σT

∫ +∞

1

dχχ−(2α−1)σ⋆(χ) , (A4)

From Eq. (8) of (Baring 1994) we can write, to a very good approximation:

4

σT

∫ +∞

1

dχχ−(2α−1)σ⋆(χ) ∼ 7

6α5/3
(A5)

Making the change of variable u → t = (u − ζ−)/(ζ+ − ζ−), we also have (see Eq. 15.3.1 in

Abramowitz & Stegun 1980):

∫ ζ+

ζ−

uαdu
√

(ζ+ − u)(u − ζ−)
= ζα

−

∫ 1

0

(1 + ζt)α

√

t(1 − t)
dt ≡ ζα

−

π
2F1(−α, 0.5; 1;−ζ) (A6)

where 2F1 is a hypergeometric function and ζ = (ζ+ − ζ−)/ζ− > 0. We define Hα(ζ) ≡
2F1(−α, 0.5; 1;−ζ), and notice that it is regularized by the factor ζα

− when ζ− → 0. Note

that ζ is of order unity and Hα(ζ) is a simple polynomial when α is an integer (see Eq. 15.4.1

in Abramowitz & Stegun 1980, and our eqs. (101)-(103) for α=1,2, and 3.).

B. Justification for the Approximations in Case 1

When calculating the photon field at the instantaneous location of the test photon

on case 1, where the test photons lags behind the shell, Rt < Rsh(tt), we have used an

approximation for the value of θr, namely Eq. (69), which is valid for θr ≪ 1 and break

down for θr ∼ 1 which corresponds to 1 − R̃e = O(Γ−2
t ). This is despite the fact that in

this case θr can assume any value between zero and π. The justification for this convenient

approximation is that the contributions to the optical depth τγγ from θr ∼ 1, where our

approximation breaks, is negligible compared to the contribution from θr ≪ 1, where our

approximation is valid. In order to show this more explicitly, we examine the dependence of

the integrand in the integration over dR̃e on the value of θr in the range

1

Γt

≪ θr ≪ 1 ⇐⇒ 1

Γ2
t

≪ R̃sh − R̃e ≈ 1 − R̃e ≪ 1 , (B1)
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which gives us a handle (up to factors of order unity) on its dependence throughout the

entire range of possible θr values. In this intermediate range of θr values, R̃sh − R̃e ≈ 1− R̃e

since for case 1 Γ2
t (R̃sh − 1) . a few, and thus

r̃2 =
(

R̃sh − R̃e

)2

+

(

R̃sh − R̃e

)(

R̃m+1
sh − R̃m+1

e

)

(m + 1)Γ2
t

+O
(

Γ−4
t

)

≈ (R̃sh−R̃e)
2 ≈ (1−R̃e)

2 . (B2)

Likewise, Eq. (50) yields

dµe

dR̃e

≈ 1

2Γ2
t R̃

2
e

[

Γ2
t

(

R̃2
sh − 1

)

+
1

m + 1

(

1 + mR̃m+1
e

)

− R̃m+2
e

]

(B3)

≈ fm − R̃m+1
e

2(m + 1)Γ2
t R̃

2
e

≈ fm − 1

2(m + 1)Γ2
t

, (B4)

Thus we see that in this intermediate range of θr values dµe/dR̃e is approximately constant,

and is of order Γ−2
t . Besides, Hα is of order unity, ζ− ∼ θ2

r , and δ ∼ Γ−1θ−2
r , so that

δα+2

r̃2

dµe

dR̃e

ζα
−Hα(ζ) ∼ 1

Γ4+α
t (1 − R̃e)2θ4

r

∝ 1

(1 − R̃e)2θ4
r

. (B5)

Moreover, Eq. (69), which is valid for case 1 in the limit θr ≪ 1 that applies in our inter-

mediate regime, implies that (1− R̃e)θ
2
r is approximately constant in this range of θr values

given by Eq. (B1). Therefore, from Eq. (B5) we conclude that the integrand in the inte-

gration over dR̃e is approximately constant over this range in R̃e, which is of interest here.

Furthermore, the integrand must still have a similar value, up to a factor of order unity,

even for θr ∼ 1, since the approximation of θr ≪ 1 breaks only marginally, rather than very

severely (since θr cannot have values ≫ 1). As the region where our approximation breaks,

θr ∼ 1, corresponds to 1 − R̃e = O(Γ−2
t ), i.e. a range of the order of Γ−2

t in R̃e, which is

much smaller than the range over which our approximation is valid, and is also much smaller

than the range in Eq. (B1), we conclude that the contribution to the integral from θr ∼ 1

can safely be neglected.

C. Properties of the Photon Field in Case 3

By changing the integration variable from µr to R̃e we eliminated the need to express

R̃e as a function of µr, and to calculate the minimal value νr which corresponds to θr,max.

Nevertheless, this is still interesting in terms of the properties of the local photon field, so

it is given in this appendix. Each value of µr may correspond to two different values of R̃e,
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one at the front and one at the back of the equal arrival time surface of photons to the point

(Rt, tt). Eq. (86) can be re-written as

R̃m+2
e −

[

R̃m+1
e,max + 2(m + 1)Γ2

t (1 − µr)
]

R̃e + 2(m + 1)Γ2
t (1 − µr) =

R̃m+2
e − 2(m + 1)Γ2

t

(

ctt
Rt

− µr

)

R̃e + 2(m + 1)Γ2
t (1 − µr) = 0 . (C1)

For m = 0 this becomes a second order equation with the solutions

R̃e = Γ2
t

(

ctt
Rt

− 1

)

[

1 ±
√

1 − 2Γ2
t (1 − µr)

Γ4
t (ctt/Rt − 1)

]

=
R̃e,max + (Γtθr)

2

2















1 ±

√

√

√

√

√

1 − 4 (Γtθr)
2

[

R̃e,max + (Γtθr)
2
]2















, (C2)

where θr,max may be obtained by the condition of a single solution, i.e. that the expression

in the square root vanishes. This implies

(Γtθr,max)
2 =

(

2 − R̃e,max

)






1 −

√

√

√

√1 −
(

R̃e,max

2 − R̃e,max

)2





, (C3)

where we chose the root of the equation which corresponds to the familiar result of Γtθr,max ≈
R̃e,max/2 for R̃e,max ≪ 1.

More generally, µr,min = cos θr,max may be found by the condition that dµr/dR̃e = 0.

Using Eq. (88) this results in

(m + 1)R̃m+2
e − (m + 2)R̃m+1

e + R̃m+1
e,max = 0 , (Γtθr,max)

2 =
[

R̃e(θr,max)
]m+2

. (C4)

Alternatively, one can use the latter relation, which is obtained by substituting dµr/dR̃e = 0

from Eq. (88) into Eq. (86), to obtain an explicit equation for θr,max,

(m + 1) (Γtθr,max)
2 − (m + 2) (Γtθr,max)

2(m+1)/(m+2) + R̃m+1
e,max = 0 . (C5)

D. The Scaling of τγγ with T̄

It is instructive to explicitly derive the scaling of τγγ = τ0(εt, R̂t)F(x) with T̄ , in the

three regimes 1 ≫ T̄ < T̄f , 1 ≪ T̄ < T̄f , and T̄ ≫ T̄f . The only time dependence of τ0 on T̄

is through R̂0 = y−1(T/T0)
−1/(m+1) (see Eq. [38]), so that τ0 ∝ (1 + T̄ )[b−1+αm/2]/(m+1).
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D.1. 1 ≫ T̄ < T̄f

For 1 ≫ T̄ < T̄f , τ0 is thus approximately constant and the time dependence of τγγ is

dominated by the the time dependence of F(x), which we now consider in more detail. First,

the maximal value of the emission angle θt,0 and correspondingly of x = (γt,0θt,0)
2 along the

EATS-I is given by

T − T0 =
R0θ

2
t,0

2c
= T0(m + 1)xmax ⇐⇒ xmax(T̄ ) =

T̄

(m + 1)
. (D1)

This result holds in general, and can be readily obtained by noticing the xmax always cor-

responds to ymin = (T/T0)
−1/(m+1), and substituting the latter in Eq. (15). Therefore,

x ≤ xmax ≪ 1 for T̄ ≪ 1 and we are always in case 3. Second, it is straightforward to show

that

fm(R̂t)

(

R̂0 + ∆R̂

R̂t

)−(m+1)

=

(

1 + T̄

1 + T̄f

)

1 + x(m + 1)(1 − R̂−1
t )

1 + x(m + 1)
<

1 + T̄

1 + T̄f

, (D2)

so that for T̄ ≤ T̄f we always have

R̃e,max = R̃e,3 = fm(R̂t)
1/(m+1) = R̂−1

t

[

1 + x(m + 1)
(

1 − R̂−1
t

)]1/(m+1)

, (D3)

and

F(x) =

∫ ∞

1

dR̂t

∫ R̃e,3

R̂0/R̂t

dR̃e I(R̂t, R̃e, x) , (D4)

where I(R̂t, R̃e, x) is given in Eq. (97), and

R̃e,min =
R̂0

R̂t

= R̂−1
t

[

1 + (m + 1)x

1 + T̄

]1/(m+1)

. (D5)

Keeping terms to first order in T̄ (and x), the range of R̃e value that is being integrated over

in Eq. (D4) is

∆R̃e = R̃e,max − R̃e,min ≈ T̄

(m + 1)R̂t

− x

R̂2
t

= O(T̄ ) ≪ 1 . (D6)

The integrand includes in several places the expression

fm(R̂t) − R̃m+1
e = R̃m+1

e,max − R̃m+1
e ≈

R̃m
e,max

(m + 1)

(

R̃e,max − R̃e

)

≪ 1 , (D7)
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which is either comparable to or much smaller than 1 − R̃e, which also appears in the

integrand, thus defining different regimes. The relevant ratio to compare to unity is

max

(

R̃e,max − R̃e

1 − R̃e

)

=
∆R̃e

1 − R̃e,min

=
1 − R̃e,min

1 − R̃e,max

− 1 ≈
(

R̂t − 1
)−1

(

T̄

m + 1
− x

R̂t

)

, (D8)

which measures both the fractional change in 1 − R̃e and the minimal value of its ratio to

R̃e,max − R̃e.

For x = xmax = T̄ /(m+1) this ratio is xmax/R̂t ≤ T̄ /(m+1) ≪ 1 so that 1− R̃e is both

approximately constant and much larger than R̃e,max − R̃e ∼ fm(R̂t)− R̃m+1
e . Therefore, the

only term that varies significantly with R̃e in the inner integrand is ζ̄ α
−Hα(ζ). For ζ ≫ 1,

Hα(ζ) ∼ ζα so that ζ̄ α
−Hα(ζ) ∼ (ζ̄−ζ)α ∝ T̄ α/2(R̃e,max − R̃e)

α/2 where the integration over

(R̃e,max − R̃e)
α/2 results in a factor of T̄ 1+α/2 so that altogether the inner integral is ∝ T̄ α+1.

The outer integral is of the form
∫∞

1
dR̂tg(R̂t) = const. For ζ . 1, Hα(ζ) ∼ 1 and ζ̄ α

−Hα(ζ) ∼
ζ̄ α
− ∼ (Γtθr − Γtθt)

2α which consists of a sum of terms of the form T̄ a(R̃e,max − R̃e)
α−a that

upon integration are ∝ T̄ α+1. Thus,

F(xmax) ∝ T̄ α+1 . (D9)

Note that in this case most of the contribution to the optical depth comes from R̂t . 2 or

∆R̂t ∼ 1.

For x = 0, θt = ζ = 0 so that Hα(ζ) = 1. Furthermore, the ratio in Eq. (D8) becomes

larger than unity for R̂t−1 < T̄/(m+1), and in this regime fm(R̂t)− R̃m+1
e ∼ R̃e,max− R̃e ∼

1 − R̃e so that ζ̄− is roughly constant and the inner integrand scales as (1 − R̃e)
−1, which

upon integration scales linearly with T̄ ,

∫ 1+xmax

1

dR̂t g(R̂t)

∫ 1/R̂t

(1−xmax)/R̂t

dR̃e

(1 − R̃e)
≈ g(1)

∫ xmax

0

d(R̂t − 1) ln

[

(R̂t − 1) + xmax

(R̂t − 1)

]

= g(1)(2 ln 2)xmax ∝ T̄ . (D10)

For R̂t − 1 ≫ xmax = T̄ /(m + 1), the approximation discussed in the previous paragraph

apply, and this part of the integration over R̂t does not contribute significantly to the total

optical depth, so that

F(x = 0) ∝ T̄ . (D11)

Physically, the lack of significant contribution to the optical depth from R̂t − 1 ≫ xmax =

T̄ /(m+1) may be understood since the maximal value of θr (which corresponds to Re = R0)
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starts to decrease significantly,

max[(Γ0θr)
2] ≈ T̄

(m + 1)
R̂−2

t

[

R̂t − 1 +
T̄

(m + 1)

]−1

≈











1 R̂t − 1 ≪ T̄
(m+1)

,

T̄
(m+1)(R̂t−1)R̂2

t

≪ 1 R̂t − 1 ≫ T̄
(m+1)

,

(D12)

which suppresses the opacity to pair production.

D.2. 1 ≪ T̄ < T̄f

For 1 ≪ T̄ < T̄f , we have Rt,0 ≫ R0, so that R̂0/R̂t ≪ 1 and may effectively be taken

as zero. Furthermore, Re,max < RL(T̄ ) < RL(T̄f) = R0 +∆R (since T̄ < T̄f) so that R̃e,2 = 1

and R̃e,3 = fm(x, R̂t)
1/(m+1) is given by Eq. (D3), and Eq. (95) now reads

F(x) =

∫ R̂2(x)

1

dR̂t

∫ 1

0

dR̃e I(R̂t, R̃e) +

∫ ∞

R̂2(x)

dR̂t

∫ fm(x,R̂t)1/(m+1)

0

dR̃e I(R̂t, R̃e) . (D13)

In this regime neither the boundaries of integration nor the integrand, I, depend on T̄ . As

a consequence, the dependence of τγγ in this regime is only through τ0, and we have

τγγ(1 ≪ T̄ < T̄f) ≈ τ0(T̄ )F(x) ∝ T̄ [b−1+αm/2]/(m+1) . (D14)

E. On the definition of the optical depth

We start with the explicitly Lorentz invariant expression for the differential interaction

rate of two particles, denoted ’1’ and ’2’, colliding with respective momenta ~p1 and ~p2, as

given in Eq. (24a) of Weaver (1976) :

R12(~p1, ~p2) ≡
n1(~p1)n2(~p2)(1 − ~β1 · ~β2) [(p1 · p2)

2 − m2
1m

2
2c

4]
1/2

p1 · p2

cσ , (E1)

where p1, p2 are the four-momenta of particles ’1’ and ’2’, respectively, m1 and m2 are

their masses, n1(~p1) and n2(~p2) their phase-space density and σ is the generalized Lorentz-

invariant cross-section, usually computed in the center of momentum frame. In Eq. (E1), we

have explicitly written the dependence of R12 on the momenta, which is missing in Weaver

(1976), in order to distinguish it with the total interaction rate < R12 >. The latter results
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from an integration over the phase spaces of both particles (see eqs. (2),(27) in (Weaver

1976)) :

< R12 >=
1

1 + δ12

∫ ∫

R12(~p1, ~p2)d
3~p1d

3~p2 . (E2)

In Eq. (E2), the Kronecker symbol δ12 is 1 if the two particles are identical and 0 otherwise.

It accounts for the fact that, for identical particles, the double intergration counts twice each

pair of interacting particles.

Now, we define R12(~p1) as the interaction rate of a given particle ’1’ of momentum p1. It

writes R12(~p1) =
∫

R12(~p1, ~p2)d
3~p2, without a Kronecker symbol because there cannot be any

double counting when there is no double integration. Specializing now to γγ-interactions, the

interaction rate Rγγ(~p1) is equal to the decrease in n1 per unit time : dn1(~p1)/dt = −Rγγ(~p1).

Defining the optical depth of a particle of type 1 and momentum ~p1 as the corresponding

attenuation per unit length : dn1/n1 ≡ −τ(~p1)ds, where ds is an element of trajectory of

particle 1, we obtain :

τγγ(~p1) ≡ Rγγ(~p1)/cn1 =

∫

n2(~p2)(1 − ~β1 · ~β2)σd3~p2 , (E3)

where in the last equality we made use of m1 = m2 = 0 in Eq. (E1). We thus re-derived

Eq. (16) (in integral form), and showed that there is no factor 1/2 involved because the

computation of the optical depth does not warrant a double integration over the phase space

of both particles. Because they compute the total reaction rates and not the optical depth,

Weaver (1976) and Stepney & Guilbert (1983) do have this factor.

Another source of confusion arises from the fact that in their seminal paper, Gould & Schreder

(1967) specialized to an isotropic distribution for particles 2, which brings up a factor 1/2

due only to the normalization of the integration over cos θ. In other words, introducing

dn ≡ n2(~p2)d
3~p2 = (1/2)n(ǫ)dǫ sin θdθ in Eq. (E3) immediately yields their Eq. (7).
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notation definition Eq./§
ε ≡ Eph/mec

2 observed photon energy normalized by the electron rest energy § 2.1

t, R, θ spherical coordinates (time, radius from the source, polar angle) —

R0, ∆R onset radius and range of the emission episode § 2.1

Rsh(t), Γ, Γ0 ≡ Γ(R0) radius and bulk Lorentz factor of the emitting shell (2)

m ≡ 2 d log Γ
d log R

power law index of Γ2 with radius R § 2.1

L0 ≡ Γα
0 L′

0 roughly: observed isotropic equivalent luminosity at R0 & ε = 1 (14)

α ≡ −d log Nph

d log Eph
photon index at large photon energies § 2.1

b ≡ d log L′

ε′

d log R
power law index of co-moving spectral luminosity with radius § 2.1

tt, Rt, θt, Γt ≡ Γ(Rt) test photon spherical coordinates and shell Lorentz factor at Rt § 3

t0, Rt,0, θt,0, Γt,0 initial test photon spherical coordinates and Lorentz factor (1),(8)

Re, θe emission radius and polar angle of interacting photon § 3

T0, T arrival times of first and subsequent photons at the observer (7),(1)

RL(T ), Re,max maximal radius of emission along the EATS-I and EATS-II (7)

ε1 dimensionless photon energy at which τγγ(ε1) = 1 § 5

s path length along the test photon trajectory (16)

R⊥ distance of test photon from the line of sight to the origin (A1)

θti angle between directions of test photon and interacting photon (18)

εt, εi dimentionless test/interacting photon energies in the lab frame (16)

µ ≡ cos θ cosine of angle θ —

χ ≡
√

εtεi(1−µti)
2

dimentionless photon energy in the center of momentum frame (18)

ζ ≡ (1 − µti)/2 convenient integration variable § A.2

r interacting photon emission to test photon intersection distance § 3

θr angle of an interacting photon relative to the radial direction § 3

δ ≡ (1 + z)ε/ε′ Doppler factor between the co-moving and lab frames (10)

fm useful quantity (62)

τ∗ typical optical depth at ε = 1 on a dynamical time (T̄f > T̄ ∼ 1) (35)

τ0,F(x) explicit analytic and integral parts of the optical depth (38)

x ≡ (Γt,0θt,0)
2 rescaled emission angle squared (15)

y ≡ Rt,0/RL(T ) emission radius rescaled to the maximum radius on an EATS-I (3)

R̂ ≡ R/Rt,0 radius rescaled to a given test photon emission radius § 3.2

R̃ ≡ R/Rt radius rescaled to the instantaneous test photon radius § 3.2

T̄ ≡ T/T0 − 1 arrival time of photons rescaled to the earliest arrival time § 5

δ̄ ≡ δ/Γt, µ̄e ≡ Γ2
tµe rescaled Lorentz factor and cosine of the emission angle (33)

ζ̄− ≡ Γ2
t ζ− rescaled integration variable (36)

Y ≡ y−ymin

ymax−ymin
, Y∗ rescaled variable y, and value at which F changes its behavior (111)

Table 1: Notation and definition of some quantities used throughout this work.



– 54 –

α m b log10(∆R/R0) Figures

2 0 0 −2,−1, 0, 1, 2 8, 12

2 0 1 −2,−1, 0, 1, 2 12

2 3 -2 −2,−1, 0, 1, 2, 4 12

2 0, 1, 2 0 2 9

2 0 −2,−1, 0 2 10

2, 3, 4 0 0 0 11

Table 2: The different sets of parameters for which results are shown in this work.
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EATS−I RL(T)
Rt,0

test  photon  trajectory

line of sight
to the origin

R⊥

Fig. 1.— An illustration of the two different equal arrival time surfaces (EATS) of photons:

1. to the observer at infinity (EATS-I, in blue), and 2. to the instantaneous location of a

test photon (EATS-II, in different colors). The overall geometry as well as relevant radii and

angles are shown in the upper panel, along with an illustration of the three different cases

that are discussed in the text, in which the test photon either lags behind the shell (case

1), coincides with the shell (case 2), or is in front of the shell (case 3). The lower panel

shows the sequence of EATS-II, whose size increases with time, nested within the EATS-II

which correspond to a larger time, and in particular within EATS-I which corresponds to

an infinite time (i.e. an infinite radius for the test photon, when it reaches the observer at

infinity).
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O
θe

x̂r

ẑr

Rt

θr

Rt,0

Re

r

θi

θt,0
θt

test photon trajectory

interacting photon trajectory

Fig. 2.— Geometry of the interaction between two photons, for a spherically symmetric

shell. A test photon emitted at Rt,0 reaches Rt > Rt,0 at tt > t0 and can interact with a

photon emitted at Re that reaches the location Rt at the exact same time tt as the test

photon. Note that O, Rt,0 and Rt are coplanar (and in the plane of the figure), whereas Re

is not in the same plane, nor is the interacting photon trajectory that goes from Re to Rt.

The observer is to the right, at infinity. The other symbols are defined in the text.
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Fig. 3.— The equal arrival time surface (EATS-II) of photons to (Rt, tt), which represents

a general point along the trajectory of a test photon, is shown by the thick blue line. It

naturally divides into three cases: 1. the test photon is behind the shell (Rt < Rsh(tt) –

upper panel), 2. the test photon coincides with the shell (Rt = Rsh(tt) – middle panel), and

3. the test photon is ahead of the shell (Rt > Rsh(tt) – lower panel). There are qualitative

difference in the properties of the EATS-II between these different cases, that are discussed

in the text.
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Fig. 4.— fm(R̂t), defined in Eq. (62), as a function of R̂t, for m = 0 and m = 1. The test

photon is necessarily on the shell at the time of its emission, so that all the curves meet at

fm(1) = 1.
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Fig. 5.— The normalized optical depth F(x) = τγγ/τ0, as a function of the renormalized

emission angle, x1/2 = γt,0θt,0, for several different emission radii Rt,0. The upper panel is for

∆R/R0 = 1000 while the lower panel shows the results for ∆R/R0 = 1 (solid lines) and for

∆R/R0 = 1000 (dashed lines) overlaid on each other. The small vertical lines in the lower

panel indicate the angle that corresponds to T̄ = T̄f , outside of which the contributions to the

opacity from R > R0+∆R for ∆R/R0 = 1 start being missed (this effect becomes significant

only at somewhat larger angles; see discussion in the text). For Rt,0 = 2R0 = R0 + ∆R, this

corresponds to x1/2 = γt,0θt,0 = 0, which is outside the range shown in the figure. In both

panels the photon index is α = 2 while the Lorentz factor and the total luminosity in the

comoving frame are independent of radius (m = b = 0).
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Fig. 6.— The normalized optical depth F(x) = τγγ/τ0, as a function of the renormalized

emission radius, (Rt,0/R0) − 1, for different values of the normalized emission angle x1/2 =

γt,0θt,0. The upper panel is for ∆R/R0 = 1000. The lower panel is for ∆R/R0 = 1 but also

shows the corresponding result for ∆R/R0 = 1000 in dashed lines, where the x-symbols show

the value of the emission radius corresponding to an observed time of T = Tf (for γt,0θt,0 = 1

this corresponds to (Rt,0/R0) − 1 = 0 which is outside the range shown in the figure). Note

the deviation near (Rt,0/R0) − 1 ∼ 1 and see the text for discussion of its origin.
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Fig. 7.— The normalized optical depth F(x) = τγγ/τ0, along the equal arrival time surface

of photons to the observer (EATS-I), for several different values of the normalized time

T̄ = (T/T0)−1: the upper panel shows F(x) as a function of the normalized emission radius

y = Rt,0/RL(T ) for several values of 1 ≥ T̄ < T̄f , while the lower panel shows F(x) as a

function of Y ≡ (y−ymin)/(ymax−ymin) ≈ (xmax −x)/xmax for several values of 1 ≪ T̄ < T̄f .
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Fig. 8.— Lightcurves (left panels), instantaneous (thin lines) and time integrated (thick

line) spectra (right panels), calculated using our semi-analytic model, for a constant Lorentz

factor (m = 0) and a comoving emissivity independent of radius (b = 0) with equal energy

per decade of photon energy (corresponding to a photon index of α = 2). We show results

for three different radial extents of the emission region, ∆R/R0 = 0.01, 1, and 100, from top

to bottom. We also use τ⋆ = 1 (see Eq. [35]).
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Fig. 9.— Similar to Fig. 8, with b = 0, α = 2, τ⋆ = 1, but for a fixed ∆R/R0 = 100 and

varying m where Γ2 ∝ R−m.
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Fig. 10.— Similar to Fig. 8, with m = 0, α = 2, τ⋆ = 1, but for a fixed ∆R/R0 = 100

and varying b where the the spectral luminosity in the comoving frame of the shell scales as

L′
ε′ ∝ Rb(ε′)1−α.
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Fig. 11.— Similar to Fig. 8, with b = m = 0, τ⋆ = 1, ∆R/R0 = 1 and varying α, where the

the spectral luminosity in the comoving frame of the shell scales as L′
ε′ ∝ Rb(ε′)1−α. The

middle panel and bottom panel are for α = 2 and 3, respectively. The top panel is for α = 1,

for which τγγ becomes independent of the photon energy ε and therefore the spectrum is

always a pure power law, Fε ∝ ε0 and the flux depends only on time but not on the photon

energy. For this reason we show light curve (left panel) and time integrated spectra (right

panel) for different values of τ⋆ (see Eq. [35]).
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Fig. 12.— The time integrated spectra for different values of ∆R/R0, while fixing the values

of the other parameters. In the top panel m = b = 0, in the middle panel m = 3 and b = −2,

while in the bottom panel m = 0 and b = 1. The values of the other model parameters in all

the panels are α = 2 and τ⋆ = 1.
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