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Abstract
It is usually assumed that the space charge effects in relativistic beams scale with the energy of

the beam as γ−2, where γ is the relativistic factor. We show that for a beam accelerated in the
longitudinal direction there is an additional space charge effect in free space that scales as E/γ,
where E is the accelerating field. This field has the same origin as the “electromagnetic mass of
the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic
energy of the beam and the energy of the electromagnetic field of the beam. We then consider the
effect of this field on a beam generated in an RF gun and calculate the energy spread produced by
this field in the beam.
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I. INTRODUCTION

Modern light sources such as free electron lasers and energy recovery linacs require high-
peak current, small-emittance beams. One of the important characteristics of such a beam
is its energy spread. It determines the limits of a possible bunch compression, the stability
against microbunching, and properties of the beam as a radiator of photons. There are
several mechanisms that contribute to the energy spread in radio frequency electron guns
with the dominant one, for nanocoulomb bunches, being the space charge effect.

Traditionally in accelerator physics the space charge effect is computed as a self field of
a beam moving with constant velocity along a straight line. The longitudinal field in such
a beam causes the energy exchange between the particles; it scales with the beam energy
as γ−2 [1, p. 128], where γ is the relativistic factor, and usually becomes small for highly
relativistic beams. In a broader sense, the space charge effect might be understood as a self
field of the beam, even when it moves with acceleration. With this understanding, acceler-
ation adds to the beam self field. One such contribution, that attracted a lot of attention
lately, is due to the coherent radiation of the beam and is called the coherent synchrotron
radiation wake (or CSR wake) [2–4]. The CSR wake is the radiation reaction force that
keeps balance between the electromagnetic energy that is carried away by the radiation and
the kinetic energy of the beam particles. It occurs when the beam is being accelerated in
the direction perpendicular to the beam velocity in bending magnets or undulators.

Another type of radiation reaction force has been considered in recent papers [5, 6]—a self
field that arises inside the beam during a violent longitudinal acceleration in the direction
of the beam velocity. This field is due to the radiation of the beam, however, it differs from
CSR where the acceleration is perpendicular to the velocity. Such a field can play a role
in plasma acceleration experiments, where the pace of acceleration is much larger than in a
conventional RF cavities.

In this paper we point out to a new component of the space charge field that arises
during a longitudinal acceleration of the beam. We assume that the acceleration is not
strong enough to cause a noticeable radiation. During acceleration, however, the beam
electromagnetic energy, which depends on the beam velocity, changes with time. To keep the
balance between the beam and the field energy, one should expect an additional component
of the self field. The effect of this field, being proportional to the acceleration, on average is
equivalent to a renormalization of the mass; it is discussed in textbooks on electrodynamics
in connection with a so called electromagnetic “mass” of a point charge [7, 8]. In this paper
we are interested in the spatial distribution of the field and, more specifically, the energy
spread in the beam induced by the acceleration field.

The model that we consider in this paper assumes that the beam does not change its
shape during the acceleration.

II. ENERGY OF ELECTROMAGNETIC FIELD OF A MOVING GAUSSIAN
BUNCH

Consider a Gaussian bunch of charged particles moving with velocity v in the z direction
with the particle distribution function given by

n(x, y, ζ) =
N

(2π)3/2σzσ2
⊥

exp
(
− r2

2σ2
⊥
− ζ2

2σ2
z

)
, (1)
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where N is the number of particles in the bunch, r =
√

x2 + y2, ζ = z − vt, σx = σy = σ⊥
is the rms bunch size in the transverse direction, and σz is the rms bunch length in the
longitudinal direction. The electromagnetic field of such a bunch can be calculated using
the Lorentz transformation from the beam frame, where the electrostatic potential is given
by the following equation (see, e.g., [9])

φ(x′, y′, z′) =

√
2
π

Q

σ2
⊥σz

∫ ∞

0

e
− (x′2+y′2)λ2

2(λ2σ2
⊥+1)

− z′2λ2

2(λ2σ̃2
z+1) dλ

(λ2 + σ−2
⊥ )

√
λ2 + σ̃−2

z

, (2)

to the laboratory frame (we use the notation Q = Ne for the total charge of the bunch). In
this equation x′, y′, z′ and σ̃z = γσz are the coordinates and the bunch length in the beam
frame. For illustration, we plotted in Fig. 1 the energy density u(r, ζ) = (E2+H2)/8π of the
electromagnetic field for a spherical Gaussian beam (σz = σ⊥ = σ) at rest (γ = 1) and the
same beam moving with relativistic factor γ = 2. One can see that the energy density of the

FIG. 1: Electromagnetic energy density u in units Q2/8πσ4 for a spherical Gaussian bunch with
a) γ = 1 and b) γ = 2. Note the difference in the vertical scales.

relativistically moving beam has a different spatial distribution and an increased magnitude.
Correspondingly, the integrated electromagnetic energy over the whole space

W =
∫

udV , (3)

grows with γ, as shown in Fig. 2. Note that this energy tends to infinity when γ →∞. As
a detailed analysis shows, at γ À 1 the asymptotic expression for W is

W =
Q2

√
πσz

log γ , γ À 1 . (4)

Imagine now that the beam is being accelerated from rest to velocity v corresponding to
some value of γ. The increased electromagnetic energy is taken from the kinetic energy of
the beam via a longitudinal electric field Ez induced by the acceleration. Such a field is
known from the theory of the radiation reaction force [8, p. 386], where it is responsible
for the electromagnetic field contribution to the mass of a charged particle. This force is
linear in acceleration, and changes sign when the acceleration is reversed. It is not related
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FIG. 2: Integrated electromagnetic energy density in units Q2/σ for a spherical Gaussian bunch as
a function of γ.

to the radiation; in addition to transferring energy from the beam to the electromagnetic
field during acceleration (and transferring it in the opposite direction during deceleration)
it introduced an energy spread in the beam. In the next section we derive an expression for
Ez using the retarded potentials.

III. SPACE CHARGE AND ACCELERATION FIELDS

Consider a beam moving along the z axis with velocity v(t) that varies with time and is
the same for all particles of the beam. If n(x, y, z) is the particle density at initial time,
then at time t the charge density ρ and the current density jz are: ρ = en(x, y, z − z0(t)),
jz = ev(t)n(x, y, z − z0(t)), with v = dz0/dt, and e the elementary charge. The scalar and
vector potentials of the beam are given by the following equations [7]

φ(r, t) =
∫

ρ(r′, t− τ)
|r − r′| d3r′ , A(r′, t) =

1
c

∫
j(r′, t− τ)
|r − r′| d3r′ , (5)

where the retarded time t−τ is defined by cτ = |r−r′| . We will assume that the acceleration
a(t) = dv/dt is small and expand the potentials in Taylor series keeping only linear terms
in acceleration. We have approximately

z0(t− τ) ≈ z0(t)− v(t)τ +
1
2
a(t)τ2 , v(t− τ) ≈ v(t)− a(t)τ . (6)

This gives for the scalar potential

φ(r, t) = e

∫
n

(
x′, y′, z′ − z0(t) + v(t)τ − 1

2a(t)τ2
)

|r − r′| d3r′ . (7)

We now expand the function n to obtain

φ ≈ φsc + φ̃ , (8)
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where φsc is the space charge potential that does not depend on acceleration, and φ̃ is a
part of the potential proportional to the acceleration:

φsc(r, t) = e

∫
n (x′, y′, z′ − z0(t) + v(t)τ)

|r − r′| d3r′ ,

φ̃(r, t) = −e

2
a(t)

∫
τ2

|r − r′|∂zn (x′, y′, z′ − z0(t) + v(t)τ) d3r′ , (9)

with ∂zn = ∂n(x, y, z)/∂z. Similarly, we expand the vector potential A which has the z
component only,

Az(r, t) =
e

c

∫
(v(t)− a(t)τ)n

(
x′, y′, z′ − z0(t) + v(t)τ − 1

2a(t)τ2
)

|r − r′| d3r′ , (10)

to obtain

A ≈ Asc + Ã , (11)

with

Az,sc(r, t) =
e

c

∫
v(t)n (x′, y′, z′ − z0(t) + v(t)τ)

|r − r′| d3r′

Ãz,(r, t) = − e

2c3
a(t)v(t)

∫
|r − r′|∂zn (x′, y′, z′ − z0(t) + v(t)τ) d3r′

− ea(t)
c2

∫
n (x′, y′, z′ − z0(t) + v(t)τ)d3r′ . (12)

One can formulate conditions of applicability of the approximations used above by requiring
that the terms discarded in the Taylor expansions are small compared to those left. There
are two such conditions

a ¿ c2

l
,

∣∣∣∣
ȧ

a

∣∣∣∣ ¿
c

l
, (13)

where l is the characteristic size of the bunch. These conditions mean that the acceleration
is not large and does not change fast.

The electric field of the beam is a sum of the space charge field and a component that
vanishes in the limit when a = 0:

E ≈ Esc + Ẽ , (14)

where Esc = −∇φsc − c−1∂Asc/∂t and Ẽ = −∇φ̃− c−1∂Ã/∂t. The electric field Esc (and
related to it the magnetic field B = v × Esc/c) is traditionally associated in accelerator
physics with the the space charge effect. The energy density and the total energy of this
field is plotted in Figs. 1 and 2, respectively.

In this paper, we are interested in the electric field Ẽ, and more specifically in the longi-
tudinal component Ẽz

Ẽz = −∂φ̃

∂z
− 1

c

∂Ãz

∂t
, (15)
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that changes the kinetic energy of the beam particles. Using Eqs. (9) and (10) for calculation
of Ẽz we find that in addition to terms proportional to a it also contains terms that involve
ȧ and a2. We discard the latter as being small because of the conditions (13). This gives
the following expression for Ẽz,

Ẽz = − e

c2
a

∫
n (x′, y′, z′ + vτ)

|r − r′| d3r′

− e

2c2
aβ

∫
(β|r − r′| − (z − z′)) ∂zzn (x′, y′, z′ + vτ) d3r′

+
e

2c2
a

∫ (
z − z′

|r − r′| − 4β

)
∂zn (x′, y′, z′ + vτ) d3r′ . (16)

In this equation we set t = z0 = 0 (which means that the density distribution of the beam
at the observation time is now n(x, y, z)), and suppressed the argument t in a and v. In
what follows, for brevity, we call Ẽz the acceleration field.

In the nonrelativistic case β → 0 and γ → 1 Eq. (16) reduces to1

Ẽz ≈ − e

c2
a

∫
n (x′, y′, z′)
|r − r′| d3r′ +

e

2c2
a

∫
z − z′

|r − r′|∂zn(x′, y′, z′)d3r′

= − e

2c2
a

∫ [
1

|r − r′| +
(z − z′)2

|r − r′|3
]

n(x′, y′, z′)d3r′ . (17)

IV. ACCELERATION FIELD FOR A GAUSSIAN BUNCH

For a Gaussian bunch with the charge distribution function given by Eq. (1) the calculation
of the acceleration field can be reduced to a one dimensional integral. The expression for
this field is derived in Appendix A and is given by Eqs. (A12), (A13) and (A14).

Using the relation between the acceleration and the rate of change of the gamma factor,
a = (c/γ3β)dγ/dt, we can write the energy change of a particle in the beam due to the
acceleration field as

∆E(r, z) =
∫

veẼzdt = − I0

IA
mc2

∫ γf

γi

dγ

γ3
G , (18)

where I0 = Nec/
√

2πσz is the peak current in the bunch, IA = mc3/e is the Alfvén current,
γi and γf are the initial and final values of the gamma factor, and the function G is given
by Eq. (A13).

In the ultrarelativistic limit γ À 1, one can find from Eqs. (A13) and (A14) that G ≈
2γ2e−z2/2σ2

z . The longitudinal acceleration field in this limit does not depend on radius.
Taking into account that in the external field Eext the acceleration of a relativistic particle

1 Comparing this expression with the terms proportional to acceleration in Eq. (21-51) of Ref. [8], one finds
that Eq. (17) has an extra term in the integrand. This seeming discrepancy is explained by the fact that
the density n in Eq. (17) is taken at a given observation time t, while the field in Eq. (21-51) should be
integrated with the density taken at the retarded time t− |r − r′|/c.
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FIG. 3: Energy loss induced by the acceleration field for four different slices in the bunch (z/σz =
0, 1, 2, and 3; this number is indicated near the curves) as a function of electron radial position.

is a = eEext/mγ3 we arrive at the following expression for Ẽz

Ẽz =−
√

2
π

reN

σzγ
Eexte

−z2/2σ2
z , γ À 1 , (19)

with re = e2/mc2. We see that the acceleration field is directed against the external field
Eext and scales as Eext/γ. This contrasts to the usual scaling ∝ γ−2 of the longitudinal space
charge forces. Note that due to the scaling G ∝ γ2 the integral (18) diverges logarithmically
when γf → ∞. This is related to the fact that the electromagnetic energy of the bunch
logarithmically tends to infinity when γ →∞, as indicated by Eq. (4).

In reality, the beam is being accelerated inside a vacuum chamber that has a characteristic
transverse size b. The presence of the metallic boundaries of the chamber changes the
electromagnetic field of the beam: in addition to the free space field calculated above, there
will be a field generated by image charges and currents in the wall. Calculation of the
latter constitutes a much more difficult problem, which we do not intend in this paper.
We note, however, two important properties of the field of the image charges in practically
important case, when the size of the chamber is much larger than the dimensions of the
beam, b À σz, σ⊥. First, since these charges are located relatively far from the beam,
variation of their field at the location of the beam over the distance ∼ σ is relatively small.
This means that, with a good accuracy, calculation of the energy spread in the beam can
be carried out using only the free space field. Second, the electromagnetic energy of a
relativistic beam propagating in a pipe of radius b does not change with γ when γ & b/σz.
To take into account this shielding effect of the metallic pipe, for a rough estimates, we will
assume that

γf =
b

σz
. (20)

Note that γf À 1 for b/σz À 1, and because our result has only a logarithmic dependence
on γ, it is rather insensitive to the exact value of γf .

Taking into account the above considerations, for a numerical example, we consider now
parameters of the LCLS rf-gun beam. Because our model assumes Gaussian distribution
and the LCLS beam has a flat longitudinal profile, we choose the model parameters in such
a way that σx and σz are equal to the corresponding rms values for the LCLS beam. We
have σz = 0.86 mm, σx = 0.6 mm, and Q = 0.72 nC (corresponding to the peak current of
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FIG. 4: Energy loss induced by the acceleration field (averaged over transverse dimensions) as a
function of electron longitudinal position, curve 1. For comparison, we also show the energy loss
introduced by the space charge effect, curve 2.
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FIG. 5: RMS energy spread induced by the acceleration field as a function of electron longitudinal
position, curve 1. For comparison, we also show the energy spread introduced by the space charge
effect, curve 2.

I0 = 100 A). We also choose γi = 1 and γf = 20, corresponding to the beam pipe radius
of about 1.2 cm. Using Eq. (18) we calculated the energy loss of each particle in the beam.
The plot of the radial dependence of the function ∆E(r, z) for several values of z is shown in
Fig. 3. The energy loss for the same beam averaged over the transverse coordinate is shown
in Fig. 4 as a function of the position z. Finally, Fig. 5 shows the rms energy spread in slices
as a function of z. In Figs. 3 and 4 we also show the energy loss and the rms energy spread
introduced by the space charge forces (due to the longitudinal component of the field Esc).
The space charge effects were calculated using the theory of Ref. [10].

V. DISCUSSION

As was mentioned in the introduction, the acceleration field keeps balance between the
electromagnetic energy of the beam and the kinetic energy of the particles. Mathematically,
this property is formulated as the equality between the rate of change of the electromagnetic
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energy W and the work of the field Ẽz on the moving particles

dW

dt
= −e

∫
Ẽzvnd3r . (21)

We present a proof of this statement in a nonrelativistic case β ¿ 1 in Appendix B. Due
to mathematical complexities, we were not able to prove it for an arbitrary, relativistic
β, however, there is no doubt that it also holds in a general case. Within the formalism
developed in this paper, this can be easily demonstrated by numerically calculating the left
and the right hand side of Eq. (21). For illustration, we carried out such calculation for the
parameters of the beam specified in the previous Section. More specifically, we calculated
the electromagnetic energy difference for the beam at the final state with γf = 20 and the
initial state with γi = 1, which gave us ∆W = 22.5 µJ. When we integrated the right side
of Eq. (21) over time from the initial to the final state, we found that the work of the
acceleration was numerically equal to ∆W , in perfect agreement with the energy balance
equation.

The model that we considered in this paper assumed that the beam does not change its
shape during the acceleration. Such a model neglects a component of the self field that is
associated with the converging (or diverging) beams (see [11] and references therein). The
field in this case is due to the fact that a converging beam changes its transverse dimensions
with a corresponding change in the electromagnetic energy of the field that the beam carries
with it.

Computation of beam self-fields is a critical aspect in numerical simulations of
high-brightness electron beam generation. Many simulation codes (ASTRA, IMPACT,
PARMELA) employ the quasi-static approximation and compute only the space charge
fields. There exist a few codes that calculate the beam fields from the exact solutions of
Maxwell’s equations (i.e., the retarded potentials). A review of different computational
approaches can be found in Ref. [12]. In this paper, starting with the retarded potentials
and separating explicitly the self-fields into space charge and acceleration ones, we give an
analytical expression for the longitudinal component of the acceleration field. Using a Gaus-
sian bunch model and typical (LCLS) RF gun parameters, we calculate the energy spread
introduced by the acceleration field and show that it gives rise to a small correction of the
energy spread introduced by the space charge field. These results may be useful in guiding
the simulation studies of high-brightness beams.

APPENDIX A: ACCELERATION FIELD FOR A GAUSSIAN BUNCH

To eliminate the retarded argument z′+vτ from the integrands in Eqs. (16) it is convenient
to introduce the following variables

ζ ′ = γ(z′ + β|r − r′|) , ζ = γz ,

R = (x, y, ζ) , R′ = (x′, y′, ζ ′) . (A1)

Using the relations

∂ζ ′

∂z′
= γ

(
1− β

z − z′

|r − r′|
)

= γ
|R−R′|
|r − r′|

|r − r′| = γ
(|R−R′|+ β(ζ − ζ ′)

)

z − z′ = γ
(
ζ − ζ ′ + β|R−R′|) , (A2)
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it is easy to show that
∫

n(x′, y′, z′ + vτ)
d3r′

|r − r′| =
∫

n(x′, y′, γ−1ζ ′)
d3R′

|R−R′| . (A3)

In this equation the longitudinal coordinate in function n is now relativistically scaled with
the factor γ because of the Lorentz contraction, and the coordinate z is equal to the ζ/γ.
For a beam moving with a constant velocity our change of variables is equivalent to making
calculations in the beam frame and transforming the result back into the laboratory frame.

Using Eqs. (A2) and (A3), the field of Eq. (16) can be rewritten as

Ẽz = Ẽz1 + Ẽz2 + Ẽz3 , (A4)

where

Ẽz1 = − e

c2
a

∫
n

(
x′, y′, γ−1ζ ′

)

|R−R′| d3R′ ,

Ẽz2 =
e

2c2

aβ

γ

∫
(ζ − ζ ′)∂zzn

(
x′, y′, γ−1ζ ′

) |r − r′|
|R−R′|d

3R′ ,

Ẽz3 =
e

2c2
a

∫
γ(ζ − ζ ′ + β|R−R′| − 4β|r − r′|)

|R−R′| ∂zn
(
x′, y′, γ−1ζ ′

)
d3R′

=
e

2c2
a

∫ [
γ(1− 4β2)(ζ − ζ ′)

|R−R′| − 3γβ

]
∂zn

(
x′, y′, γ−1ζ ′

)
d3R′ . (A5)

We remind the reader that ∂zn (∂zzn) means first (second) derivative with respect to the
third argument z = γ−1ζ of the density function. Note also that the last term in Ẽz3

integrates to zero because ∂zn = γ∂n/∂ζ ′.
Using Eq. (A2) and integrating by parts, we can simplify Ẽz2 as

Ẽz2 =
e

2c2
aβγ

∫ [
(ζ − ζ ′)

γ
+

β(ζ − ζ ′)2

γ|R−R′|

]
nzz

(
x′, y′, γ−1ζ ′

)
d3R′

=
e

2c2
aβγ

∫ [
1− ∂

∂(γ−1ζ ′)
β(ζ − ζ ′)2

γ|R−R′|

]
nz

(
x′, y′, γ−1ζ ′

)
d3R′

=− e

2c2
aβ2γ

∫ [
(ζ − ζ ′)3

|R−R′|3 −
2(ζ − ζ ′)
|R−R′|

]
nz

(
x′, y′, γ−1ζ ′

)
d3R′ . (A6)

Thus, we have

Ẽz2 + Ẽz3 = − e

2c2
aγ

∫ [
β2(ζ − ζ ′)3

|R−R′|3 +
(2β2 − 1)(ζ − ζ ′)

|R−R′|

]
nz

(
x′, y′, γ−1ζ ′

)
d3R′ . (A7)

Now we take a 3D Gaussian bunch distribution of Eq. (1) to obtain

Ẽz2 + Ẽz3 =
Nea

2(2π)3/2c2σ2
⊥σ3

z

∫
dx′dy′ exp

[
− (x′)2 + (y′)2

2σ2
⊥

]

×
∫

dζ ′ζ ′ exp
[
− (ζ ′)2

2(γσz)2

] [
β2(ζ − ζ ′)3

|R−R′|3 +
(2β2 − 1)(ζ − ζ ′)

|R−R′|

]
. (A8)
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Using the relations
√

2
π

∫ ∞

0

exp
(
−λ2r2

2

)
dλ =

1
r

,

√
2
π

∫ ∞

0

λ2 exp
(
−λ2r2

2

)
dλ =

1
r3

, (A9)

we replace the factors |R − R′|−1 and |R − R′|−3 in Eq. (A8) by integrals involving the
integration over variable λ

Ẽz2 + Ẽz3 =
Nea

4π2c2σ2
⊥σ3

z

∫
dx′dy′ exp

[
− (x′)2 + (y′)2

2σ2
⊥

] ∫
dζ ′ζ ′ exp

[
− (ζ ′)2

2(γσz)2

]

×
∫ ∞

0

dλ
[
β2λ2(ζ − ζ ′)3 + (2β2 − 1)(ζ − ζ ′)

]
exp

(
−λ2|R−R′|2

2

)
. (A10)

Analogously, for the field Ẽz1 we find

Ẽz1 =− Nea

2π2c2σ2
⊥σz

∫
dx′dy′ exp

[
− (x′)2 + (y′)2

2σ2
⊥

] ∫
dζ ′ exp

[
− (ζ ′)2

2(γσz)2

]

×
∫ ∞

0

dλ exp
(
−λ2|R−R′|2

2

)
. (A11)

If we change integration variable to ξ = (λσzγ)−2 and define the bunch aspect ratio as
A = σ⊥/σz, then the result of integration is

Ẽz(x, y, z) =− eNa√
2πc2σz

G

(
r

σ⊥
,

z

σz

)
, (A12)

with

G (R, Z) =
∫ ∞

0

dξ exp
[
− R2A2

2 (A2 + ξγ2)
− Z2

2(ξ + 1)

]
F (ξ, Z) , (A13)

where

F (ξ, Z) =
γ2

2(ξ + 1)9/2 (A2 + γ2ξ)
× [

ξ
(
5Z2 +

(−ξZ4 + 2(ξ − 2)(ξ + 1)Z2 + ξ(ξ + 3)2
)
γ2

)

+ ξ
(
4γ2 + ξ

(
Z4 − (ξ − 4)Z2 − ξ

)
+ 3

)
+ 2

]
. (A14)

APPENDIX B: ENERGY CONSERVATION AND THE ACCELERATION FIELD

In this section we will prove that the work of the acceleration field is equal to the change
of the electromagnetic energy of the bunch in the course of acceleration. Our prove is only
valid for nonrelativistic velocities, v ¿ c.

Let us assume that the beam, initially at t = 0 at rest, is accelerated to velocity v at time
t. The work A done by the acceleration field is

A = −e

∫ t

0

dt′v(t′)
∫

n(r, t′)Ẽz(r, t′)d3r

=
e2

2c2

∫ t

0

dt′v(t′)a(t′)
∫

n(r, t′)n(r′, t′)
[

1
|r − r′| +

(z − z′)2

|r − r′|3
]

d3r′d3r

=
e2β2

4

∫
n(r)n(r′)

[
1

|r − r′| +
(z − z′)2

|r − r′|3
]

d3r′d3r , (B1)
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where β = v(t)/c, and we used Eq. (17) for the field Ẽz. Note that the time dependence
of the density distribution n(r, t) reduces to a mere shift of the initial n to the position
of the bunch at time t. We eliminate this shift on the last line of Eq. (B1) by assuming
that the coordinate system at any time t is positioned in such a way that the center of
the bunch is always located at the origin of the coordinate system (note that this is also
assumed in Eq. (17)). We will use such coordinates in the forthcoming calculations of the
electromagnetic energy as well.

To calculate the change of the electromagnetic energy ∆W when the beam is accelerated
from the initial to the final state, ∆W = Wf −Wi, we use the expressions for the energy of
the electromagnetic field

Wi =
1
8π

∫
d3rE2

i , Wf =
1
8π

∫
d3r(E2

f + B2
f ) , (B2)

where in the first expression for Wi we took into account that the magnetic field of the beam
at rest is equal to zero.

We now note that for β ¿ 1, as it follows from Lorentz transformations for the fields,
Bf ≈ βEi⊥, and also Ef = Ei + δE with δE being of the order of β2Ei. Also note that
since we assume that at the initial state the beam is at rest, the electric field Ei can be
expresses as a gradient of the electrostatic potential, Ei = −∇φ. We will now prove that
the contribution of the electric field to ∆W vanishes. This contribution is

1
8π

∫
d3r(E2

f − E2
i ) ≈ 1

4π

∫
d3rEi · δE = − 1

4π

∫
d3r∇φ · δE =

1
4π

∫
d3rφ(∇ · δE) .

(B3)

The last equation in this expression is equal to zero because ∇ · δE = ∇ · Ef − ∇ · Ef

and both fields satisfy ∇ ·Ef = ∇ ·Ei = 4πen. Hence the only contribution to the energy
change comes from the magnetic field

∆W =
1
8π

∫
d3rB2

f =
β2

8π

∫
d3rE2

i⊥ =
β2

8π

∫
d3r

[
(∂xφ)2 + (∂yφ)2

]
. (B4)

We now use the following expression for the electrostatic potential

φ(r) = e

∫
d3r′

n(r′)
|r − r′| ,

which gives for ∆W

∆W =
β2e2

8π

∫
d3rd3r′d3r′′n(r′)n(r′′)

(
∂|r − r′|−1

∂x

∂|r − r′′|−1

∂x
+

∂|r − r′|−1

∂y

∂|r − r′′|−1

∂y

)
.

(B5)

To calculate this integral we consider the following tensor

Tαβ =
∫

d3r
∂|r − r′|−1

∂xα

∂|r − r′′|−1

∂xβ
, (B6)

where the indices α and β take values 1, 2, and 3 with x1, x2, and x3 associated with the
coordinates x, y, and z, respectively. From the symmetry arguments it follows that Tαβ is
a function of the difference ρ = r′ − r′′. A general form of such a tensor is

Tαβ = L(ρ)δαβ
1
ρ

+ M(ρ)
ραρβ

ρ3
, (B7)
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where L and M are yet unknown functions of the magnitude ρ of the vector ρ. To
find these functions, we first compute the quantity Tαα = (3L + M)/ρ (as always, we
assume summation over repeated indices). Using integration by parts and the relation
∂2|r|−1/∂xα∂xα = −4πδ(r) we find from Eq. (B6)

Tαα =
∫

d3r
∂|r − r′|−1

∂xα

∂|r − r′′|−1

∂xα
= −

∫
d3r

1
|r − r′|

∂2|r − r′′|−1

∂xα∂xα

= 4π

∫
d3r

δ(r − r′′)
|r − r′| =

4π

ρ
. (B8)

Hence

3L + M = 4π . (B9)

The second equation for L and M is obtained from calculation of the quantity ∂Tαβ/∂ρβ .
As follows from Eq. (B7). ∂Tαβ/∂ρβ = (M − L)ρα/ρ3 . Using Eq. (B6) and replacing
∂/∂ρβ → −∂/∂x′′β we find

∂Tαβ

∂ρβ
= − ∂

∂x′′β

∫
d3r

∂|r − r′|−1

∂xα

∂|r − r′′|−1

∂xβ
=

∫
d3r

∂|r − r′|−1

∂xα

∂2|r − r′′|−1

∂x′′β∂x′′β

= 4π

∫
d3rδ(r − r′′)

xα − x′α
|r − r′|3 = −4πρα

ρ3
, (B10)

which gives

L−M = 4π . (B11)

From Eqs. (B9) and (B11) we now find

L = −M = 2π . (B12)

Using Eqs. (B6) and (B7) we find
∫

d3r

(
∂|r − r′|−1

∂x

∂|r − r′′|−1

∂x
+

∂|r − r′|−1

∂y

∂|r − r′′|−1

∂y

)

=
4π

|r′ − r′′| − 2π
(x′ − x′′)2 + (y′ − y′′)2

|r′ − r′′|3

=
2π

|r′ − r′′|
(

1 +
(z′ − z′′)2

|r′ − r′′|2
)

. (B13)

Substituting this equality into Eq. (B5) we obtain

∆W =
β2e2

4

∫
d3r′d3r′′n(r′)n(r′′)

1
|r′ − r′′|

(
1 +

(z′ − z′′)2

|r′ − r′′|2
)

, (B14)

which, upon comparing with Eq. (B1), proves that ∆W = A.
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