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ABSTRACT
The relationship between the metric and nonrelativistic matter distribution depends
on the theory of gravity and additional fields, hence providing a possible way of distin-
guishing competing theories. With the assumption that the geometry and kinematics
of the homogeneous universe have been measured, we present a procedure for under-
standing and testing the relationship between the cosmological matter distribution
and metric perturbations (along with their respective evolution) using the ratio of the
physical size of the perturbation to the size of the horizon as our small expansion
parameter. We expand around Newtonian gravity on linear, subhorizon scales with
coefficient functions in front of the expansion parameter. Our framework relies on an
ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii)
the metric variables (and any additional fields) are generated and supported by the
nonrelativistic matter overdensity. The scales for which our framework is intended
are small enough so that cosmic variance does not significantly limit the accuracy of
the measurements and large enough to avoid complications due to nonlinear effects
and baryon cooling. From a theoretical perspective, the coefficient functions provide
a general framework for contrasting the consequences of ΛCDM and its alternatives.
We calculate the coefficient functions for general relativity (GR) with a cosmological
constant and dark matter, GR with dark matter and quintessence, scalar-tensor the-
ories (STT), f(R) gravity and braneworld (DGP) models. For observers, constraining
the coefficient functions provides a streamlined approach for testing gravity in a scale
dependent matter. We briefly discuss the observations best suited for an application
of our framework.
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1 INTRODUCTION

A successful model of the universe must include a back-
ground geometry, an inventory of its contents, a kinematical
description of its expansion and a dynamical explanation
of how its constituents interact, drive the expansion and
develop structure. Recent observations [for example (Riess
et al. 1998; Perlmutter et al. 1999; Freedman et al. 2001;
Allen et al. 2002; Tegmark et al. 2004; Eisenstein et al.
2005; Spergel et al. 2007) and references therein] have led
to a “Flat ΛCDM cosmology”, (henceforth FΛCDM) domi-
nated by dark energy (cosmological constant Λ) and matter
(predominately dark and initially cold) and the observed
expansion rate and growth of structure agree with the pre-
dictions of this model at the ten percent level. Future obser-
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vations should be capable of testing this model at the one
percent level. If they verify its predictions, they will affirm
a remarkable, simple description of the universe, implicit in
the earliest relativistic investigations of Einstein, Friedmann
and Lemâıtre, analogous to the affirmation of general rela-
tivity (GR) that took place twenty years ago (Will 2001).
If FΛCDM passes this test, then the challenge will be to
account for this outcome in terms of physical processes op-
erating at earlier epochs; if it fails, then we shall either have
learned something important about gravitational physics or
uncovered a new constituent. Many alternatives, with and
without GR, to FΛCDM have been proposed. At this stage,
none of them stands out. There is therefore a need to provide
a framework for describing future observations and theoret-
ical investigations in general terms which will facilitate a
distinction between FΛCDM and its alternatives. The pro-
vision of one such framework is the goal of this paper.
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Further observational progress is anticipated over the
coming decade. The analysis of Planck observations (Planck-
Collaboration 2006) of the microwave background, coupled
with local measurements of the contemporary Hubble pa-
rameter, H0, should result in an extremely accurate descrip-
tion of the physical conditions and the statistical properties
of the density fluctuation spectrum at the epoch of recombi-
nation when the universe had a scale factor a ≡ (1 + z)−1 ∼
10−3 relative to today. Combining the calculated physical
sizes of the acoustic peaks in the background radiation spec-
trum with the Hubble constant and the Copernican Princi-
ple leads to a measurement of spatial curvature, which is
already known to contribute to the kinematics at a level of
less than a few percent (Spergel et al. 2007). We shall adopt a
value of zero for illustration purposes. Essentially kinematic
measurements, for example, those involving Type Ia super-
nova explosions, baryonic acoustic oscillations and baryonic
gas fractions in clusters should provide a record of the co-
moving distance, d(a) =

R
cdt/a, from which the evolution

of the Hubble parameter H(a) = d ln a/dt and the acceler-
ation parameter q(a) = d lnHa/d ln a can be inferred1. For
the rest of the paper we shall assume that these evolutions
are known. Note that we are using a instead of the cosmic
time t as the time coordinate as this relates directly to the
observable photon frequency shift. For recent constraints on
the expansion history, see for example (Rapetti et al. 2007)
and references therein.

Given an understanding of the geometry and kinemat-
ics, the task is then to see if the dynamical evolution of the
universe is consistent with GR or mandates an alternative
theory. Now, GR provides a relationship between the space-
time geometry on a cosmological scale measured by the Ein-
stein tensor G[gµν ] and the total Energy-Momentum Tensor
(EMT) of its contents T, G[gµν ] = 8πGT. The discovery
that G[gµν ] 6= 8πGT[“obs”] where T[“obs”] includes known
forms of matter such as electromagnetic radiation, baryons
etc. has led to the addition of dark matter and dark en-
ergy contributions to the EMT. Dark matter candidates in-
clude Weakly Interacting Massive Particles and axions which
would presumably behave gravitationally like baryonic mat-
ter. However other possibilities exist which might behave
differently. Dark energy is most simply characterized as a
temporarily and spatially constant vacuum energy field with
zero enthalpy [see (Carroll 2001) for a review]. However,
it could also have quite different dynamical properties and
might include contributions from additional scalar (Ratra
& Peebles 1988), vector (Armendariz-Picon 2004) or tensor
fields with possible interactions between each other (Farrar
& Peebles 2004) and with known forms of matter. Histori-
cally, the first representation of dark energy was Einstein’s
cosmological constant, which was seen as an augmentation
to G, not T [see for example (Carroll et al. 2004)]. This orig-
inal proposal has also been generalized in many ways so that
G[gµν ] +F[gµν , ϕ] = 8πGT[“obs”], where F[gµν , ϕ] depends
on the metric and more generally some additional gravita-
tional fields, ϕ. For example ϕ could be the additional gravi-
tational scalar field in Scalar-Tensor Theories (STT) [see for
example (Santiago et al. 1998; Perrotta et al. 2000)]. Nature

1 Our acceleration parameter differs from the conventional decel-

eration parameter by a minus sign.

could of course be unkind and we might have

G[gµν ] + F[gµν , ϕ] = 8πGT[“obs”] + 8πGT[“dark”]. (1)

Considerable effort has been made in constructing models
that fall into the above mentioned categories and more re-
cently in finding ways to distinguish between them [for ex-
ample see (Lue et al. 2004; Ishak et al. 2006; Bludman 2006;
Zhang et al. 2007; Huterer & Linder 2007)].

Now, modifying the physics beyond GR with cold dark
matter and Λ can have three quite separate manifestations.
Firstly it can lead to a change in expansion of the universe,
secondly, it can influence the growth of structure and thirdly,
it can confront local tests of the theory of gravity. The ap-
proach that we follow is to assume that the theory is con-
strained by the first and third manifestations and that it is
the growth of structure that is providing the test. This over-
simplifies the data analysis but does lead to a transparent
and simple approach. One important consequence of adopt-
ing local gravitational tests is that photons and baryons, at
least, will follow geodesics and that the photons will be sub-
ject to cosmological redshifting of their frequencies, ν ∝ a−1.
This simplifies the interpretation of observational data.

Our procedure is to adopt a general form for the metric
of a linearly perturbed homogeneous and isotropic universe
which introduces two potentials Φ(x, a) and Ψ(x, a) (scalar
metric perturbations in the Newtonian gauge), where x de-
notes the three spatial coordinates. We also introduce an
associated fractional density perturbation δm(x, a) in non-
relativistic matter and relate it to the potentials. We as-
sume that there is a dominant nonbaryonic contribution to
the clustering nonrelativistic matter. In practice, it is eas-
ier to work with Fourier modes and this allows us to fo-
cus attention on the range of length scales that are most
relevant observationally: comfortably smaller than the hori-
zon so that we can observe enough independent volumes
within our current horizon allowing for a high precision mea-
surement despite “cosmic variance” and yet large enough
that nonlinear effects and baryonic cooling are not a factor.
Within this range of length scales, we adopt the following
ansatz regarding the relationship between linearized metric
and density perturbations, written as an expansion in pow-
ers of (aH/k)2, where k is the magnitude of the comoving
wavevector k.

Φ(k, a) =−4πGρm
H2

„
aH

k

«2
δm(k, a)

"
β0(a)+β1(a)

„
aH

k

«2
+. . .

#

Ψ(k, a) =−4πGρm
H2

„
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k

«2
δm(k, a)
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„
aH

k

«2
+. . .

#

δm(k, a) = δmi(k)

"
δ0(a) + δ1(a)

„
aH

k

«2
+ . . .

#
,

(2)

where the background mass density ρm ∝ a−3 and δmi(k)
is determined from initial conditions which can in principle
be taken close to the surface of last scattering, ai ∼ 10−3,
as long as the modes are sufficiently sub-horizon. Assuming
a simple prescription for evolving the perturbations from
last scattering to the post-reionization era a & 10−1, in
this paper we take ai ∼ 10−1. The coefficient functions
{βn, γn, δn} with n = 0, 1 are arbitrary functions of the
scalefactor. The leading terms in the expansion agree with
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Poisson’s equation on small scales, subsequent terms allow
for a scale-dependent departure from Newtonian theory on
larger scales where the relative velocities approach that of
light. This approach introduces a length-scale dependence
to the perturbations which is equivalent to an expansion
in powers of (Φ/c2) ∼ (v/c)2, similar to what is done in
the Parametrized Post Newtonian development of theories
of gravitation. Relative to Newtonian gravitation, in which
c → ∞, GR introduces corrections. The theories that we
discuss below introduce different corrections (different coef-
ficient functions {βn, γn, δn}) and these differences are mea-
surable. From an observer’s perspective, constraining the
coefficient functions with measurents of Φ,Ψ and δm pro-
vides a streamlined approach to characterizing gravity on
cosmological scales in a scale dependent manner. On the
other hand, from a theorist’s perspective, substituting the
ansatz into the field equations for a given theory allows for
a (mostly straigtforward) calculation of the coefficient func-
tions. The coefficient functions provide a means of compar-
ing the consequences of different theories. We shall discuss
our assumptions, limitations and our ansatz in detail in the
next section.

This is certainly not the first time that an attempt
at constructing and applying such a framework has been
made. The Parametrized Post Newtonian formalism (see
(Will 2001) and references therein) has been a powerful
framework for understanding and constraining gravity on
solar system (and other isolated system) scales. It is hoped
that we can construct a similar framework for cosmologi-
cal scales. Recently a few attempts have been made in this
direction. However most of these are either concerned with
the expansion history alone, deal with specific aspects of
departures from GR such as effective gravitational constant
on small scales (Tsujikawa 2007), growth of perturbations
on small scales (density perturbations & effective gravita-
tional constant in modified gravity models of dark energy
Lin), the gravitational slip (Caldwell et al. 2007), or deal
with superhorizon scales (Bertschinger 2006). The authors
in (Amendola et al. 2007) take into account growth of struc-
ture, anisotropic stress and the modification to the Pois-
son equation and parametrize departures from Einstein’s
gravity with a growth index and two functions of the scale
factor which are relevant for weak lensing surveys. How-
ever, they do not consider scale dependent departures. An-
other popular phenomenological approach for characteriz-
ing the effects of the unknown physics (additional fields,
their interactions, or modified gravitational laws) is to de-
fine an effective fluid energy momentum tensor for every-
thing other than the standard model matter, effectively
move F in equation (1) to the right hand side and define
Teff = −(8πG)−1F[ϕ, gµν ] + T[“dark”]. This effective en-
ergy momentum tensor is then parametrized in terms of the
equation of state, sound speed, anisotropic stress, etc. (Hu &
Eisenstein 1999; Bashinsky 2007). This approach, however,
seems to put an unnecessary restriction of a fluid interpreta-
tion which might be misleading, especially when the effective
dark energy is due to modified gravity or extra dimensions.
We are unaware of a systematic approach undertaken where
the framework includes a scale dependent departure in the
relationship between the matter distribution and the met-
ric perturbations along with their respective evolution on
cosmological scales up to post-Newtonian order.

The rest of the paper is organized as follows. Section
2 discusses our assumptions and the particular form of the
ansatz in detail. In Section 3 we apply our framework to GR,
STT, quintessence, f(R) models (Carroll 2001) and DGP
gravity (Dvali et al. 2000). In particular, we calculate the
coefficient functions in these theories and comment on our
ansatz in the context of these theories. Section 4 is devoted
to how our framework might be employed by observers. We
briefly discuss the observations that could be used to con-
strain the different coefficient functions. Section 5 presents
a short summary and future directions for extending the
framework.

2 OUR ANSATZ AND ASSOCIATED
ASSUMPTIONS

With an eye towards observations in the next decade, we
assume that the geometry (spatial curvature) and kinemat-
ics (expansion history) of the universe have been measured
to a percent level accuracy. What remains to be understood
and measured accurately (at the few percent level) is the
relationship between the metric fluctuations and the non-
relativistic matter distribution along with their respective
evolution on linear, subhorizon scales. This relationship will
depend on the theory of gravity or the presence of yet un-
known components, thus providing a test for distinguish-
ing different theories. To explore this relationship in an (al-
most) model independent way, we provide an ansatz, equa-
tion (2), relating the scalar metric perturbations (in New-
tonian gauge) and the nonrelativistic matter overdensity in
Fourier space. In this section we discuss the particular form
of the ansatz and the underlying assumptions in detail. We
introduce our notation and conventions followed by some
physical arguments regarding our choice of the particular
form of the ansatz. We end with a discussion of the range of
scales for which our ansatz is expected to be useful.

We focus on a perturbed FRW universe (spatially flat)
with scalar metric fluctuations in the Newtonian gauge
(Bardeen 1980). In this gauge the metric takes the following
form (c = 1)

ds2 = −[1 + 2Φ(x, t)]dt2 + a2(t)[1− 2Ψ(x, t)]dx · dx

Here the metric perturbations |Φ(x, t)|, |Ψ(x, t)| � 1. We
choose to work in the Newtonian gauge because Φ(x, t) is
the generalization of the Newtonian gravitational poten-
tial and the potentials Φ(x, t) and Ψ(x, t) are gauge in-
variant Bardeen variables when we specialize to the New-
tonian gauge. The energy density perturbation δm(x, t) is
also gauge invariant, corresponding to the energy density
perturbation on the zero shear spatial hypersurface which
is closest to Newtonian time slicing [see equation (3.14) in
(Bardeen 1980)]. In what follows, we use the scale factor
a as the independent variable instead of cosmic time t with
a(today) = 1. With this change of variables, the metric takes
the form

ds2 = −[1 + 2Φ(x, a)](aH)−2da2 + a2[1− 2Ψ(x, a)]dx · dx

We shall work primarily in Fourier space and use the con-
vention f(x, a) =

R
d3kf(k, a)eik·x. To avoid unnecessary

clutter we write the Fourier transform of the metric per-
turbations Φ(k, a)eik·x as Φ. The same is true for Ψ and
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δm. The background quantities depend on a. We shall often
suppress this dependence; for example by H we mean H(a).

Our ansatz provides a relationship between Φ, Ψ and
δm on linear (in Φ,Ψ and δm), subhorizon scales. We now
turn to the discussion of some important features of this
ansatz. On scales that are much smaller than the size of the
horizon, aH/k � 1, the leading term has the form of a lin-
earised Newtonian gravitational field equation. For the pur-
pose of this paper the Newtonian form of the field equation
refers to the the following relation between the time-time
metric perturbation Φ(x, a) and the nonrelativistic matter
density contrast δm(x, a), ∇2Φ(x, a) ∝ δm(x, a), which in
Fourier space becomes Φ ∝ (aH/k)2δm. Now, in the New-
tonian gauge Φ(x, a) plays the role of the Newtonian po-
tential once the background has been subtracted out. The
proportionality allows for a possible temporal variation in
the effective Newton’s constant which could depend on the
cosmological background evolution.

From GR we know that this Newtonian relation starts
breaking down as the size of the perturbation becomes com-
parable to the size of the horizon. In general, different the-
ories of gravity will introduce different scale dependent de-
partures from this equation, changing the metric-matter re-
lationship. Our claim is that for a large class of theories,
our ansatz, equation (2), captures the scale dependence of
the relationship between the nonrelativistic matter distribu-
tion and cosmological metric perturbations. In particular,
our ansatz faithfully reproduces the scale dependence of the
metric-matter relationship in the fiducial case of GR with
cold dark matter and a cosmological constant. In the pres-
ence of additional fields one might expect this relationship to
break down; however, this is usually not the case. Suppose
that an additional field enters the equations, for example
as a source (quintessence), as a time varying gravitational
constant (Brans Dicke) or indirectly encapsulating the effect
of higher dimensions, etc. Perturbations δϕ in such a scalar
field ϕ (consider quintessence or scalar-tensor theories) will
be involved in the relationship between δm and Φ. However,
from the field equation for δϕ, equations (18) and (19), we
can see that δϕ ∝ Φ(aH/k)2 for quintessance and δϕ ∝ Φ
for scalar-tensor theories when aH/k � 1. Thus, even if
additional scalar fields are present, our ansatz should be a
good approximation for the relationship between the mat-
ter distribution and the metric at the scales of interest. Note
that we have assumed O[Φ] = O[Ψ] for this argument.

Another feature of our ansatz is that Φ and Ψ are di-
rectly proportional to δm. This might seem unusual, since
it implies that in the absence of nonrelativistic matter per-
turbations, there would be no metric perturbations. This is
certainly not true in principle if an additional scalar field is
present. However observationally, we know that nonrelativis-
tic perturbations are present and they dominate over per-
turbations in other fields. The following argument provides
a more detailed justification. Since on the smallest scales, to
lowest order in (aH/k)2, the potential Φ ∝ δm(aH/k)2, we
also have δϕ ∝ δm(aH/k)4 or δϕ ∝ δm(aH/k)2. This means
that the potentials and pertubations in other scalar fields
are supported by the nonrelativistic matter perturbations.

We do not expect to see the effects of the initial power
spectrum of these additional fields up to the order of the
terms considered in our ansatz, with the initial power spec-
trum of the additional field possibly playing a role in higher

order terms. This is one of the reasons for not extending the
power series in aH/k beyond the order considered in the
ansatz.

We note that the above arguments are made under the
assumption that the additional gravitational or nongravita-
tional contribution to the field equations is due to a scalar
field (quintessence or scalar tensor theories). It is certainly
possible to construct theories where this ansatz will fail to
capture some aspect of the scale dependence. One such situ-
ation could arise in extra dimensional theories where bound-
ary conditions on our 4 dimensional brane might give rise to
a scale dependence involving odd powers of k as well.

Regarding Ψ, we assume that the relationship between
Ψ and δm has the same (aH/k) dependence as Φ and δm
since from GR we expect Φ = Ψ when no anisotropic stress is
present. The form of δm(k, a) in the ansatz can be motivated
from the conservation equation for nonrelativistic matter at
first order in Φ,Ψ and δm:

a2∂2
aδm + (2 + q)a∂aδm =−

„
k

aH

«2
Φ

+ 3
ˆ
a2∂2

aΨ+(2 + q)a∂aΨ
˜
.

(3)

As discussed above at lowest order in (aH/k)2, the metric
perturbations Φ,Ψ ∝ δm(aH/k)2, thus the largest term on
the RHS of equation (3) is proportional to δm(k, a). At this
order we get a homogeneous equation for δm which has a so-
lution of the form δm(k, a) = δmi(k)δ0(a). This is the usual
approximation used when investigating the growth function
on small scales. Perturbatively including the next order term
on the RHS, we can see that our ansatz captures the general
form of the solution to that order. Again, we use this argu-
ment as motivation for the form of the ansatz, being aware
of the fact that nonrelativistic dark matter is not covariantly
conserved in some models. In δm, we include both baryonic
and nonbaryonic dark matter, with an understanding that
baryonic matter contibutes a small fraction to the total. We
assume that baryons are covariantly conserved and follow
timelike geodesics, serving as test particles whose motion
can be used to probe the metric.

We now turn to a discussion of the range of scales where
we expect our procedure to be applicable. Our ansatz uses
the ratio of the physical size of the perturbation dp(a) to
the size of the Hubble horizon dH(a) ≡ 1/H(a) as our small
(post-Newtonian) expansion parameter. In Fourier space
dp(a) ∼ a/k and we need dp(a)/dH(a) ∼ aH/k � 1 for
the expansion in aH/k to be meaningful. We first give a
rough upper bound on H0/k. From an observational stand-
point, the largest scales of interest are the ones where cos-
mic variance does not significantly limit the precision of our
measurements. A perturbation with a given k corresponds
roughly to a multipole l ∼ kd(a) where d(a) is the comov-
ing distance. Taking l ∼ 30 as the largest angular scale
where cosmic variance does not significantly limit measure-
ment precision, the corresponding comoving wavevector of
the perturbation at a ∼ 0.5 is k ∼ 10−2 hMpc−1 or equiv-
alently H0/k ∼ 3 × 10−2. As seen in Figure 1, this yields
(aH/k)2 � 1 in the range 10−1 . a . 1, safely consistent
with the ansatz. This upper bound H0/k . 3 × 10−2 can
be relaxed depending on the range of redshift in which the
observations are made.

Now, for the lower bound on H0/k we get H0/k &
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Figure 1. The ratio of the physical size of the perturbation to

the size of the horizon is used as an expansion parameter in our
anzatz. We plot the square of this ratio (aH/k)2 as a function of

a from last scattering to the present for the concordance model

(yellow region). The upper and lower bounds of the yellow region
are determined by considering scales that are small enough so

that cosmic variance does not dominate the errors and at the

same time large enough so that nonlinear evolution and baryon
cooling are not a significant factor. Most of the observations in

the next decade will yield information in the range 10−1 . a . 1.
If we are interested in observations that only care about a smaller

range of the scale factor, then the allowed range ofH0/k increases.

We also plot lines of constant multipole l ∼ kd(a), which provides
a rough estimate of the relationship between k and angular scales

at different redshifts.

3 × 10−3. This corresponds to knl ∼ 10−1 hMpc−1 which
is at the boundary between linear and nonlinear evolu-
tion of δm today. At these scales the linear and nonlin-
ear matter power spectrum differ by a few percent today
(and less in the past). Since the scalar metric fluctuations
O[Φ(x, a),Ψ(x, a)] ∼ 10−5 on these scales, as indicated by
measurements of the cosmic microwave background (CMB),
we can linearize the field equations in Φ,Ψ and δm at these
scales. Another reason for this lower bound is that on scales
larger than these we do not expect a significant bias be-
tween the baryonic and nonbaryonic matter. We can re-
lax the lower bound if the observations are restricted to
smaller scale factors since the scale factor dependence of the
boundary between linear and nonlinear evolution is given by
knl(a) ∼ 10−1a−3/2 hMpc−1.

Figure 1 shows the typical order of magnitude of
(aH/k)2 for the range 3 × 10−3 . H0/k . 3 × 10−2 (filled
yellow region). Finally, the range of scalefactors we have in
mind for our framework is 10−1 . a . 1. Gravitational
dynamics at late times (large a) is particularly interesting
due to cosmic acceleration. The next generation of observa-
tions including lensing, baryon acoustic oscillations, cluster
counts, galaxy power spectra etc. will be made within this
range.

Before we end this section we provide a concrete exam-
ple of what the coefficient functions look like in a simple

case, the Einstein-de Sitter universe:

β0 = γ0 = 1,

β1 = γ1 = −3,

δ0 = a/ai,

δ1 = 3(a/ai)(1− a/ai).

(4)

We turn to the calculation of the coefficient functions in the
next section.

3 APPLICATION OF THE FRAMEWORK
WITH EXAMPLES

In this section we calculate the coefficient functions for GR
with a cosmological constant and nonrelativistic matter, GR
with quintessence, scalar-tensor theories, f(R) theories and
DGP gravity. In general, the nonrelativistic matter consists
of baryons, massive neutrinos and nonbaryonic dark matter
with (possibly) nongravitational interactions between them
and other fields. For simplicity we will ignore massive neutri-
nos and baryons in this section. Local tests of gravity pro-
vide strong constraints on baryons and photons and their
interactions. They do not yet provide similar constraints on
the interactions of nonbaryonic matter. Hence, nonbaryonic
matter need not be covariantly conserved. However in the
examples considered, we treat dark matter as a perfect fluid
that is covariantly conserved for simplicity. This allows us
to use the conservation equation (3), which is sometimes
easier to use than a gravitational field equation that would
otherwise take its place.

The basic strategy is to substitute our ansatz into the
field equations and conservation equations and solve for the
coefficient functions. We begin by substituting our ansatz
(2) into the conservation equation for nonrelativistic perfect
fluid dark matter (3), collecting terms with like powers of
(aH/k)2 and setting their coefficient terms equal to zero to
obtainˆ

a2∂2
a + (2 + q)a∂a

˜
δ0 −

4πGρm
H2

δ0β0 = 0,ˆ
a2∂2

a + (2 + q)a∂a
˜

[(aH)2δ1]− 4πGρm
H2

[(aH)2δ1]

=− 12πGρm
H2

(aH)2

»
a2∂2

a + qa∂a − q −
β1

3γ0

–
[γ0δ0],

(5)

where q and H are assumed to be known from the back-
ground evolution. The above equations are second order dif-
ferential equations for δ0 and δ1. The equation for δ0 can
be solved once β0 is known. Gβ0 is the effective gravita-
tional constant. If β0 = 1, the equation for δ0 is the usual
equation for the fractional matter overdensity on linear and
small scales in GR with nonrelativistic matter as the only
clustering component.

We digress a bit to note that for δ̄1 ≡ (aH)2δ1, the
differential operator acting on δ̄1 and δ0 is [a2∂2

a+(2+q)a∂a−
4πGρmβ0/H

2]. This feature continues if we were to go to
higher order terms as well, hence it might be useful to find
a Green’s function for this operator. In general, to solve for
δ1 we need to know β0, γ0, δ0 and β1 along with two initial
conditions. To progress further we turn to specific theories of
gravitation. Our aim is to show how to apply the formalism
rather than discuss in detail the various models considered.
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Figure 2. The dimensionless coefficient functions characterizing
the relationship between the metric perturbations and matter dis-

tribution are show above for ΛCDM(dashed lines) and the scalar-

tensor theory (STT) (solid lines). The STT model is chosen so
that its expansion history is consistent with observations. In the

case of ΛCDM β0 = γ0 = 1 and β1 = γ1. At early time (mat-

ter domination) β1 = γ1 = −3 with the cosmological constant
causing a departure from this value at late times. The variation

of β0 with the scale factor in the STT can be interpreted as a

variation of Newton’s constant “Gβ0” as far as growth of per-
turbations is concerned. Also note that for STT, β0 6= γ0 and

β1 6= γ1. For STT, the difference in the coefficient functions is

due to Φ−Ψ = −α(ϕ)δϕ 6= 0. We remind the reader that in the
ansatz (2) the coefficients β1 and γ1 are multiplied by (aH/k)2,

whose magnitude is shown in Figure 1, making them accessible
at large scales only.

We leave out the detailed steps, which are straightforward
but tedious.

3.1 General relativity with cold dark matter and
the cosmological constant

We start with the usual Einstein Hilbert action:

S =
1

16πG

Z
d4x
√
−g [R− 2Λ] +

Z
d4x
√
−gLm, (6)

with Lm, the lagrangian density for perfect fluid cold dark
matter The corresponding field equations are

Gµν + Λδµν = 8πGTµν , (7)

where Gµν = Rµν − δµνR/2 and Tµν is the energy-momentum
tensor for a pressureless perfect fluid. As usual, we separate
the field equations into the background and perturbed parts
(first order in Φ,Ψ and δm). Upon substitution of our ansatz
into the perturbed field equations we get the following ex-

Figure 3. The dimensionless coefficient functions characterizing
growth of structure are show above for ΛCDM(dashed lines) and

the scalar-tensor theory (STT) (solid lines). The STT model is

chosen so that its expansion history is consistent with observa-
tions. δ0 is the usual growth function on small scales, whereas δ1
characterizes the departures as we move to larger scales. We note

that δ1 is the coefficient of (aH/k)2, which is small withing the
scales of interest (see Figure 1). The initial conditions for δ0 and

δ1 are chosen at ai ∼ 10−1 and are consistent with growth of

structure in a matter dominated era.

pressions/equations for the coefficient functions.ˆ
a2∂2

a + (2 + q)a∂a
˜
δ0 −

4πGρm
H2

δ0 = 0,ˆ
a2∂2

a + (2 + q)a∂a
˜

[(aH)2δ1]− 4πGρm
H2

[(aH)2δ1]

=− 12πGρm
H2

(aH)2 ˆa2∂2
a + (q + 1)a∂a − q

˜
δ0,

β0 = γ0 = 1,

β1 = γ1 = −3
a∂aδ0
δ0

,

(8)

where we used the 00 and i 6= j Einstein equations along
with the coefficient form of the conservation equations (5).
We need to to provide 4 constants of integration for the two
second order differential equations. We take these to be

δ0(ai) = 1, ai∂aδ0(ai) = 1,

δ1(ai) = 0, ai∂aδ1(ai) = −3.
(9)

This ensures that δm(k, ai) = δmi(k), thus defining δmi(k)
in our ansatz (2). The derivatives are chosen to agree with
the case of pure matter domination at early times, where
the explicit solution takes the form δ0 = a/ai and δ1 =
3(a/ai)(1 − a/ai) after rejecting the decaying modes. We
shall use these initial conditions for all the models we con-
sider in this section.

The dashed lines in Figures 2 and 3 show these di-
mentionless coefficient functions for FΛCDM with Ωm =
8πGρm0/3H

2
0 = 0.3. Since β0 = γ0 = 1, there are no cor-

rections to the Newtonian gravitational constant as far as
growth of perturbations is concerned on small scales. The
fact that β1 = γ1 6= 0 reflects corrections because of GR to
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the relationship between matter and metric perturbations,
whereas β1 = γ1 6= −3 reflects the effect of the cosmolog-
ical constant. δ0 characterizes the growth of structure on
small scales. It deviates from δ0 = a/ai because of Λ. δ1 re-
flects the corrections to the growth function as we move
to larger scales. Note that β1 and γ1 and δ1 are multi-
plied by (aH/k)2, whose magnitude is shown in Figure 1.
The terms β1(aH/k)2, γ1(aH/k)2 and δ1(aH/k)2 are much
smaller than β0, γ0 and δ0, making it difficult to observe
their effects unless we investigate large scales.

3.2 Scalar-tensor theory with cold dark matter
(matter representation)

Scalar-tensor theories are popular alternatives to GR. In the
matter representation (also called the Jordan frame), the
action contains two free functions f(ϕ) and V (ϕ)

S =
1

16πG

Z
d4x
√
−g [f(ϕ)R+ Lϕ] +

Z
d4x
√
−gLm.

(10)

Note that we have decided to make ϕ dimensionless since
we wish to treat the perturbation in this field δϕ on the
same footing as the metric perturbations Φ and Ψ. Also
Lϕ = −(∂ϕ)2/2 − V (ϕ) and Lm does not contain ϕ. The
field equations for this theory are

Gµν +
1

f
[δµν�−∇µ∇ν ] f

=
8πG

f
Tµν +

1

2f

»
∂µϕ∂νϕ− δµν

„
1

2
∂σϕ∂σϕ+ V

«–
.

(11)

The field equation for ϕ is

�ϕ− Vϕ + fϕR = 0, (12)

where fϕ = ∂ϕf and Vϕ = ∂ϕV . These field equations at the
background level can be found in the literature [for example
see (Boisseau et al. 2000)]. Using our ansatz in the perturbed
gravitational field equations and the field equations for ϕ at
first order in Φ,Ψ, δm and δϕ, collecting terms with like
powers of (aH/k)2, and setting the expression in front of
each power of (aH/k)2 equal to zero, we get the following
expressions/equations for the coefficient functions:

β0 =
1

f

„
1 + 4fα2

1 + 3fα2

«
≈ 1

f
+O[α2],

γ0 =
1

f

„
1 + 2fα2

1 + 3fα2

«
≈ 1

f
+O[α2],

β1 = − 3

f

a∂aδ0
δ0

+
1

4f2
(a∂aϕ)2

+

»
−3(a∂aϕ)

a∂aδ0
δ0

+
1

2
(a∂aϕ)2αϕ

α
+ 3(a∂aϕ) +

3Vϕ
2H2

–
α

f

+O[α2],

γ1 = − 3

f

a∂aδ0
δ0

+
1

4f2
(a∂aϕ)2

+

»
(a∂aϕ)

a∂aδ0
δ0

+
1

2
(a∂aϕ)2αϕ

α
− (a∂aϕ)− Vϕ

2H2
)

–
α

f

+O[α2],

(13)

where α = fϕ/f is the coupling function and all the func-
tions depend on the scale factor a . We have calculated the
full expressions for β1 and γ1, which are rather long. The
first two terms are listed as a power series in the coupling
function α � 1 with α ∼ αϕ, αϕϕ... . We used the i 6= j
equation, αδϕ = Ψ−Φ, to eliminate δϕ from the field equa-
tions. The 00 equation and the field equation for δϕ yield
βn and γn with (n = 0, 1). The equations for δ0 and δ1 are
given by equations (5) with β0, β1, γ0 and γ1 given above.
Again using the initial conditions (9), we can solve for all
the coefficient functions once f(ϕ) and V (ϕ) have been pro-
vided. Note that the difference Φ − Ψ depends on βn − γn
(n = 0, 1). This is usually small for α� 1 since β0−γ0 ∼ α2

and β1 − γ1 ∼ α.
We plot the coefficient functions in Figures 2 and 3. We

have chosen f(ϕ) = 1 + c1ϕ
2 and V (ϕ) = 2Λ(1 + c2ϕ

2) with
c1 = c2 = 0.1. The initial conditions were chosen to ensure
that the expansion history remains consistent with observa-
tions (consistent with ΛCDM to within a few percent). The
difference between βn and γn (n = 0, 1) is due to nonmini-
mal coupling (α 6= 0). We stress that we have not included
baryons in this illustrative calculation. Including baryons
would lead to very strong constraints on the function f(ϕ)
today from solar system tests (Schimd et al. 2005). For an
example of a STT that includes dark matter and baryons
with different couplings to gravity see (Bean 2001).

3.3 General relativity with cold dark matter and
quintessence

GR with quintessence is a special case of the scalar-tensor
theories discussed above, with f(ϕ) = 1. The action and
corresponding field equations are

S =
1

16πG

Z
d4x
√
−g [R+ Lϕ] +

Z
d4x
√
−gLm (14)

Gµν = 8πGTµν +
1

2

»
∂µϕ∂νϕ− δµν

„
1

2
∂σϕ∂σϕ+ V

«–
(15)

�ϕ− Vϕ = 0 (16)

The coefficient functions are given by

β0 = γ0 = 1

β1 = γ1 = −3
a∂aδ0
δ0

+
1

4
(a∂aϕ)2

(17)

where (a∂aϕ)2/4 = 1− q − 4πGρm/H
2. The i 6= j Einstein

equation yields βn = γn (n = 0, 1). We used the 0i equation
to eliminate δϕ from the field equations. As before δ0 and
δ1 are provided by equation (5).

We pause to comment on a difference between min-
imally and nonminimally coupled scalar-tensor theories.
Consider the field equation (12) for δϕ:

ˆ
a2∂2

a + (3 + q)a∂a
˜
δϕ+

"„
k

aH

«2
+
Vϕϕ
H2
− 6(1 + q)fϕϕ

#
δϕ

= (a∂aϕ− 6fα)a∂aΦ + 3(a∂aϕ− 2(4 + q)fα)a∂aΨ

− 2

„
6fα(1 + q) +

Vϕ
H2

«
Φ + 2fα

„
k

aH

«2
(Φ− 2Ψ)

(18)
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8 Mustafa A. Amin, Robert V. Wagoner and Roger D. Blandford

In the minimally coupled case we set f(ϕ) = 1, α(ϕ) = 0 to
get

ˆ
a2∂2

a + (3 + q)a∂a
˜
δϕ+

"„
k

aH

«2
+
Vϕϕ
H2

#
δϕ

=(a∂aϕ)a∂aΦ + 3(a∂aϕ)a∂aΨ− 2
Vϕ
H2

Φ.

(19)

From the above equations we can see that in the nonmin-
imally coupled case, for k/aH � 1 we have δϕ ∝ α(ϕ)Φ
whereas in the minimally coupled case δϕ ∝ Φ(aH/k)2.
Along with Φ ∝ δm(aH/k)2, at large k the additional field
δϕ follows the same aH/k expansion as the potentials with
δmi(k) multiplying the expansion. This is one of the argu-
ments we had used in Section 2 to justify the form of our
ansatz. We have assumed O[Φ] = O[Ψ] in this argument.

3.4 f(R) gravity with cold dark matter

In recent years modifications of the Einstein-Hilbert action
in the form of a function of the Ricci scalar has become a
popular alternative to quintessence (see for example (Carroll
et al. 2004; Nojiri & Odintsov 2007)). The action and field
equations are

S =
1

16πG

Z
d4x
√
−g [R+ f(R)] +

Z
d4x
√
−gLm

(1 + fR)Gµν − δµν
f

2
+ [δµν�−∇µ∇ν ]fR = 8πGTµν .

(20)

In the above expressions fR = ∂Rf(R). The coefficient func-
tions are

β0 =
4

3(1 + fR)
,

γ0 =
2

3(1 + fR)
,

β1 =
1

(1 + fR)

»
2

3

a2∂2
aδ0
δ0

− 2

3
{(24B(j + q − 2) + 2− q} a∂aδ0

δ0

+4B
˘

10− 4q + q2 + 2j(q − 4)− s
¯

+72B2(j + q − 2)2 − 4(j + q − 2)a∂aB + 2q − 1

9B

–
,

γ1 =
1

(1 + fR)

»
−2

3

a2∂2
aδ0
δ0

+
2

3
{(6B(j + q − 2)− 7− q} a∂aδ0

δ0

−4B
˘

4− q + q2 + j(2q − 5)− s
¯

+4(j + q − 2)a∂aB − 2q +
1

9B

–
,

(21)

where j = dq/d ln a− (1− 2q)q and s = dj/d ln a− (2− 3q)j
are the scalefactor dependent functions, jerk and snap re-
spectively, and B = H2fRR/(1 + fR)1. To obtain δ0 and δ1
we use equation (5). Note that we have assumed B 6= 0 in
deriving the above expressions, hence it is not appropriate

1 Our B = H2fRR/(1 + fR) differs from the definition of B in

(Song et al. 2007) by a factor of (q − 1)/6(j + q − 2).

to take the limit B → 0 after deriving the coefficient func-
tions. Moreover, to lowest order in (aH/k2), we get Φ = 2Ψ
if B 6= 0. However, when B is very small, then β1(aH/k)2

and γ1(aH/k)2 might become comparable to β0 and γ0, un-
dermining the applicability of our ansatz. More details on
the dynamics of f(R) theories in the context of structure for-
mation, solar system tests, etc. can be found in (Faulkner
et al. 2006; Song et al. 2007; Bean et al. 2007; Chiba et al.
2007).

3.5 Brane world models: DGP Gravity

As a final example, we provide the expressions and equations
governing the coefficient functions for DGP gravity. The ac-
tion and field equations are [see for example (Koyama &
Maartens 2006)]

S =
1

32πGrc

Z
d5x
p
−g(5)R(5)

+
1

16πG

Z
d4x
√
−gR+

Z
d4x
√
−gLm

Gµν = (16πGrc)
2Πµ

ν − Eµν ,

(22)

where

T̃µν = Tµν − (8πG)−1Gµν ,

Πµ
ν = −1

4
T̃µα T̃

α
ν +

1

12
T̃αα T̃

µ
ν +

1

24

h
3T̃αβT̃

αβ − (T̃αα )2
i
δµν ,

(23)

and Eµν is the trace-free projection of the 5D Weyl tensor.
Substituting our ansatz into the field equations and the 4D
matter conservation equation we get

β0 =

»
4− 2Hrc(2 + q)

3− 2Hrc(2 + q)

–
γ0 =

»
2− 2Hrc(2 + q)

3− 2Hrc(2 + q)

–
,

(24)

where we have used the quasi-stationary sub horizon ap-
proximation (Koyama & Maartens 2006). The calculation
of β1, γ1 and δ1 requires solving the perturbation equations
on the brane closer to the size of the horizon. Evolution of
perturbations on these large scales under a scaling ansatz
has been investigated in (Sawicki et al. 2007). We suspect
that an odd power of aH/k might arise due to the bound-
ary conditions on our four dimensional brane. We leave the
investigation of this issue for a later work.

In this section we have calculated the coefficient func-
tions for a few examples. Our aim was to give a flavor of the
calculations rather than be exhaustive in the investigation of
the models considered. It would be interesting to investigate
these models in more detail in the context of these coefficient
functions to see if there is come generic behavior across a
large class of models. Based on the examples considered it
might be tempting to conclude that βn − γn 6= 0 indicates
physics beyond general relativity. However this is not so.
For example a hypothetical dark energy component could
also yield significant anisotropic stress. In the early universe,
a more mundane source of anisotropic stress was provided
by neutrinos. Nevertheless this difference could serve as an
indicator of new physics in the matter or gravity sector.
We have left out many possibilities including Bekenstein’s
TeVeS (Bekenstein 2004), models with non-canonical kinetic
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terms (Chiba et al. 2000), models of imperfect fluid dark
energy with anisotropic stress (Koivisto & Mota 2006), and
many others [see (Copeland et al. 2006) for a review]. We
now turn our attention to observables and their relationship
to the coefficient functions.

4 OBSERATIONAL IMPLICATIONS

We have outlined a procedure that allows many alternative,
dynamical theories to GR with FΛCDM cosmology to be
explored within a common framework. Our approach has
been devised with future observations in mind as its use-
fulness is limited to the observations that we expect will
be the most prescriptive. To reiterate, the large k expan-
sion connects the inhomogeneous nonrelativstic matter dis-
tribution to the perturbed metric in a universe of known
(unperturbed) kinematical behavior, i.e. with a given rela-
tion H(a) [or, equivalently, a(t)]. This presumes that these
theories define a connection from last scattering to the post-
reionization era, a & 10−1, and an understanding of how the
distribution of observable entities such as galaxies relate to
that of total mass. This allows us to focus on the manner
in which structure can be observed to grow in the linear
regime well within the horizon, which avoids the limitations
imposed by cosmic variance considerations and the compli-
cations associated with gas dynamics. We further suppose
that gravitational motion of baryonic matter and photons
follows timelike and null geodesics respectively in this space-
time.

From an observational standpoint, our focus is on co-
moving length scales from ∼ 40 Mpc to ∼ 400 Mpc or equiv-
alently 300 & l & 30 at z ∼ 1, where we expect the effects
to stand out the best. There are three types of observations
that are likely to be relevant. Firstly, there are direct mea-
surements of the two point correlation function and its evo-
lution. Counting galaxies (or clusters) in three dimensions
will lead to measurements of the evolution of the density
function δm (or equivalently δ0(a) and δ1(a)) using future
survey instruments such as LSST (Tyson 2002; Zhan et al.
2006) limited solely by cosmic variance as the photometric
redshift accuracy and biasing errrors will be ignorable on
these scales.

The second type of observation that will be carried out
involves departures from the Hubble flow. These are domi-
nated by the potential function Φ. Under our assumptions,
galaxies will follow timelike geodesics and satisfy the linear
conservation equations relating their peculiar velocities to
Φ.

Finally there are weak lensing observations which de-
pend upon the sum, Φ + Ψ, presuming photons follow null
geodesics. These then allow us to track the evolution of Ψ. A
combination of these measurements would not only allow us
to understand the scale dependent evolution of Φ,Ψ and δm
but also allow us to probe the relationship between them.
For example, using our ansatz, one can obtain constraints
on the coefficient functions by comparing the correlation
functions for the potentials, PΦ+Ψ(k, a) (provided by lens-
ing tomography) and the nonrelativistic matter overdensity
Pδm(k, a) (provided by growth of structure measurements)

using

k4PΦ+Ψ ∝ Pδm(β0 + γ0)2

"
1 + 2

„
β1 + γ1

β0 + γ0

«„
aH

k

«2
+ ...

#
Not surprisingly, the coefficient of the second term is harder
to constrain on small scales.

We have limited ourselves to the linear regime. On small
scales, the nonlinear matter power spectrum and its evolu-
tion can play a role in the observations discussed above. The
linear to nonlinear mapping discussed in (Smith et al. 2003)
can be used for this purpose. However, without understand-
ing the theories under consideration in the nonlinear regime,
this is not fully robust.

Recall that {βn, γn, δn} with (n = 0, 1) are functions
of the scale factor, a. If the observations are to be done in
a limited range of redshifts then Taylor expanding the co-
efficient functions around the central value of the redshift
might be a simple and model independent way of character-
izing these coefficient functions in terms of a few parameters.
From a theoretical perspective, the coefficient functions will
depend on relevant parameters in the theory or model under
consideration. A detailed investigation of the parameteriza-
tion of the coefficient functions and the possible constraints
that can be obtained from current and future observations
is beyond the scope of this paper.

5 DISCUSSION

We have outlined a procedure that can be used to test the
application of general relativity (more specifically FΛCDM)
on cosmological scales in the context where it is most likely
to fail and in the regime where observations should be most
sensitive to measuring a departure from the general rela-
tivistic prediction. The scales are large enough to avoid the
complications from nonlinearities and gas physics, yet small
enough to avoid strong limitations to the interpretation of
observations posed by cosmic variance.

Our procedure assumes that (i) The geometry and kine-
matics of the universe is understood (ii) baryons and pho-
tons behave as ideal test particles following geodesics of
the cosmological metric. Given these assumptions, at late
times, it is the relationship between the cosmological metric
and the nonrelativistic matter distribution (along with their
respective evolution) that provides a test for alternatives
GR with a cosmological constant and cold dark matter. To
probe the dynamics of gravity (or any additional fields) we
provided an ansatz, equation(2), which gave a relationship
between the cosmological metric and nonrelativistic matter
perturbations in the linear, subhorizon regime. This form of
the ansatz is consistent with a large class of theories with
the differences between different theories evident in the co-
efficient functions {βn(a), γn(a), δn(a)} with n = 0, 1. It is
hoped that three scalar functions, the nonrelativistic matter
overdensity δm and the metric potentials Φ and Ψ can be
measured over the next decade, providing constraints on the
coefficient functions. Constraining these coefficient functions
provides observers with concrete targets for testing gravity
in a scale dependent manner.

Our goal was to provide a perturbative framework, sim-
ilar in spirit to the PPN formalism for testing gravity on
solar system scales. However unlike the PPN case, we were
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left with coefficient functions that depend on the scale factor
rather than constant coefficients. Although we have not done
so in this paper, if the observations are limited to a small
range of scale factors, it is possible to characterize these
coefficient functions using a few parameters by expanding
around a given scale factor at which the observations are
centered.

With our choice of scales, we have restricted ourselves
to linear, subhorizon evolution. We leave the connection
between superhorizon and subhorizon evolution as well as
consideration of nonlinearities for the future1. Although, we
have restricted ourselves to scalar perturbations, the frame-
work could be extended to include vector and tensor pertur-
bations.

6 ACKNOWLEDGMENTS

We thank the members of KIPAC at Stanford University
and the Stanford Gravity Probe-B theory group for helpful
discussions. MAA would like to acknowledge the financial
support of a Stanford Graduate Fellowship. RDB acknowl-
edges support from the National Science Foundation grant
AST05-07732. This work was supported in part by the U.S.
Department of Energy under contract number DE-AC02-
76SF00515.

REFERENCES

Allen S. W., Schmidt R. W., Fabian A. C., 2002, Mon. Not.
Roy. Astron. Soc., 334, L11

Amendola L., Kunz M., Sapone D., 2007, arXiv:0704.2421
[astro-ph]

Armendariz-Picon C., 2004, JCAP, 0407, 007
Bardeen J. M., 1980, Phys. Rev., D22, 1882
Bashinsky S., 2007, arXiv:0707.0692 [astro-ph]
Bean R., 2001, Phys. Rev., D64, 123516
Bean R., Bernat D., Pogosian L., Silvestri A., Trodden M.,
2007, Phys. Rev., D75, 064020

Bekenstein J. D., 2004, Phys. Rev., D70, 083509
Bertschinger E., 2006, Astrophys. J., 648, 797
Bludman S., 2006, astro-ph/0605198
Boisseau B., Esposito-Farese G., Polarski D., Starobinsky
A. A., 2000, Phys. Rev. Lett., 85, 2236

Caldwell R., Cooray A., Melchiorri A., 2007, astro-
ph/0703375

Carroll S. M., 2001, Living Rev. Rel., 4, 1
Carroll S. M., Duvvuri V., Trodden M., Turner M. S., 2004,
Phys. Rev., D70, 043528

Chiba T., Okabe T., Yamaguchi M., 2000, Phys. Rev., D62,
023511

Chiba T., Smith T. L., Erickcek A. L., 2007, Phys. Rev.,
D75, 124014

Copeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Mod.
Phys., D15, 1753

1 During the final stages of preparation of this paper, we became
aware of recent work (Hu & Sawicki 2007), which deals with su-

perhorizon evolution and a weakly nonlinear regime.

Dvali G. R., Gabadadze G., Porrati M., 2000, Phys. Lett.,
B485, 208

Eisenstein D. J., et al., 2005, Astrophys. J., 633, 560
Farrar G. R., Peebles P. J. E., 2004, Astrophys. J., 604, 1
Faulkner T., Tegmark M., Bunn E. F., Mao Y., 2006, astro-
ph/0612569

Freedman W. L., et al., 2001, Astrophys. J., 553, 47
Hu W., Eisenstein D. J., 1999, Phys. Rev., D59, 083509
Hu W., Sawicki I., 2007, arXiv:0708.1190 [astro-ph]
Huterer D., Linder E. V., 2007, Phys. Rev., D75, 023519
Ishak M., Upadhye A., Spergel D. N., 2006, Phys. Rev.,
D74, 043513

Koivisto T., Mota D. F., 2006, Phys. Rev., D73, 083502
Koyama K., Maartens R., 2006, JCAP, 0601, 016
Lue A., Scoccimarro R., Starkman G., 2004, Phys. Rev.,
D69, 044005

Nojiri S., Odintsov S. D., 2007, Int. J. Geom. Meth. Mod.
Phys., 4, 115

Perlmutter S., et al., 1999, Astrophys. J., 517, 565
Perrotta F., Baccigalupi C., Matarrese S., 2000, Phys. Rev.,
D61, 023507

Planck-Collaboration 2006, astro-ph/0604069
Rapetti D., Allen S. W., Amin M. A., Blandford R. D.,
2007, Mon. Not. Roy. Astron. Soc., 375, 1510

Ratra B., Peebles P. J. E., 1988, Phys. Rev., D37, 3406
Riess A. G., et al., 1998, Astron. J., 116, 1009
Santiago D. I., Kalligas D., Wagoner R. V., 1998, Phys.
Rev., D58, 124005

Sawicki I., Song Y.-S., Hu W., 2007, Phys. Rev., D75,
064002

Schimd C., Uzan J.-P., Riazuelo A., 2005, Phys. Rev., D71,
083512

Smith R. E., et al., 2003, Mon. Not. Roy. Astron. Soc., 341,
1311

Song Y.-S., Hu W., Sawicki I., 2007, Phys. Rev., D75,
044004

Spergel D. N., et al., 2007, Astrophys. J. Suppl., 170, 377
Tegmark M., et al., 2004, Phys. Rev., D69, 103501
Tsujikawa S., 2007, arXiv:0705.1032 [astro-ph]
Tyson J. A., 2002, Proc. SPIE Int. Soc. Opt. Eng., 4836,
10

Will C. M., 2001, Living Reviews in Relativity, 4
Zhan H., Knox L., Tyson A., Margoniner V., 2006, Astro-
phys. J., 640, 8

Zhang P., Bean R., Dodelson S., 2007, arXiv:0704.1932
[astro-ph]

c© 0000 RAS, MNRAS 000, 000–000


	Introduction
	Our ansatz and associated assumptions
	Application of the framework with examples
	General relativity with cold dark matter and the cosmological constant
	Scalar-tensor theory with cold dark matter (matter representation)
	General relativity with cold dark matter and quintessence
	f(R) gravity with cold dark matter
	Brane world models: DGP Gravity

	Obserational Implications
	Discussion
	Acknowledgments

