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D-brane instantons can perturb the quantum field theories on space-time filling D-branes

by interesting operators. In some cases, these D-brane instantons are novel “stringy”

effects (not interpretable directly as instanton effects in the low-energy quantum field

theory), while in others the D-brane instantons can be directly interpreted as field theory

effects. In this note, we describe a situation where both perspectives are available, by

studying stringy instantons in quivers which arise at simple Calabi-Yau singularities. We

show that a stringy instanton which wraps an unoccupied node of the quiver, and gives

rise to a non-perturbative mass in the space-time field theory, can be reinterpreted as

a conventional gauge theory effect by going up in an appropriate renormalization group

cascade. Interestingly, in the cascade, the contribution of the stringy instanton does not

come from gauge theory instantons but from strong coupling dynamics.
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1. Introduction

Quantum effects which are non-perturbatively small in the coupling constant g may

play an important role in many physical phenomena. For instance, they may be relevant to

dynamical (super)symmetry breaking, or provide a natural mechanism to generate small

Yukawa couplings or masses in the Lagrangian. In string theory, instantons which gener-

ate such effects can often be geometrized as D-branes. Investigation of both novel stringy

effects (not obviously interpretable as field theory instanton effects) [1,2,3] and more con-

ventional field theory instanton effects [4,3,5] involving Euclidean D-branes has recently

been initiated by several groups (building in part on important earlier work of Ganor [6]

and Witten [7]). Further explorations and applications of these instantons appear in [8-20].

A rich set of theories where such effects may be computable and important is provided

by D-branes at Calabi-Yau singularities. Our goal in this paper will be to use such a

system to demonstrate a D-brane instanton effect in two different and complementary

ways. Branes at singularities give rise rather generally to quiver gauge theories [21]. If

some nodes of the quiver are unoccupied by space-filling branes, one may still construct

interesting instantons by wrapping Euclidean branes over the corresponding cycles in the

geometry [3]. These can give rise to stringy perturbations of the low-energy effective theory,

which are not directly interpreted as instanton effects in the quiver gauge theory.

On the other hand, many quivers corresponding to four dimensional N = 1 super-

symmetric gauge theories exhibit renormalization group (RG) cascades [22]. These include

D-branes at conifolds and their generalizations (but not orbifold singularities, which have

free worldsheet descriptions). The cascades describe brane systems where all nodes of the

quiver are occupied at high energies in the field theory, while the low energy physics may

be described by a brane configuration with some unoccupied nodes.

In orbifolds, one can directly use worldsheet techniques to systematically derive the

string instanton contributions. While this is not possible for conifolds and their generaliza-

tions, in such systems, one instead has the intriguing possibility of computing the D-brane

instanton effect generated by a brane wrapping an unoccupied quiver node, in two different

ways:

1) One can do the path integral over D-instanton collective coordinates in the quiver with

occupation numbers describing the end of the cascade. This requires use of sophisticated

mathematical technology to infer the action on the D-instanton [23].
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2) One can try to derive the same effect by analyzing the gauge theory at higher steps

in the cascade, where the relevant node is occupied by space-filling branes. In this case

one should be able to reproduce the desired effect by using standard techniques in N = 1

supersymmetric gauge theory.

The agreement between methods 1) and 2) that we find (in a particular simple system that

we can analyze in detail), can be viewed as a consistency check on the presence and form

of the novel stringy effects. Somewhat surprisingly, in the second method we find that the

effect does not come from field theory instantons but from strong coupling dynamics.

The agreement between the two methods is intuitively expected for the following

reason. The gauge theory at higher steps in the cascade in method 2) can be UV completed

by embedding an appropriate brane configuration in a non-compact, singular Calabi-Yau

manifold1. We can also do this directly with the partially occupied quiver of method 1).

The superpotential of the low-energy field theory is not expected to depend on the number

of cascade steps K. As we lower K, eventually the gauge theory effect that we compute

by method 2), becomes a stringy effect that we compute by method 1).

The organization of this paper is as follows. In §2, we introduce the singularity and

the IR brane configuration that we will study. This configuration was previously explored

in [25,12]. In §3, we review the expected stringy instanton effect. In §4, we describe an

RG cascade which ends with this brane configuration. In §5, we show that careful analysis

of the field theory dynamics along the cascade reproduces the expected result of §3.

Although our analysis is limited to one illustrative case, we expect that similar re-

sults could be obtained for instanton computations in quivers characterizing more general

Calabi-Yau singularities.

2. The quiver of branes at orbifolds of the conifold

Branes at singularities provide interesting gauge theories which exhibit reduced su-

persymmetry and intricate (non-conformal) IR dynamics, and which in many cases admit

dual gravity descriptions. The simplest cases involve orbifold [21,26,27] and conifold [28]

singularities.

1 The cascade does not necessarily need to be completed in this manner. The cascade with an

infinite number of steps can be defined by the holographic renormalization of its gravity dual [24].
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Figure 1: Quiver diagram for the conifold singularity. Each node is
an SU(ri) gauge group, and each arrow is a bifundamental field. The
difference in ranks counts the number of fractional D5-branes.

The conifold can be described by the equation

xy = zw (2.1)

in C4. The quiver which captures the field theory on D3-branes and fractional D5-branes

at this singularity, in type IIB string theory, is shown in Figure 1.

The theory has a superpotential of the schematic form

W = h tr
(
ǫijǫklA

iBkAjBl
)

(2.2)

where the A’s and B’s represent the bifundamentals, and i, j (k, l) are global SU(2) indices

for the flavor symmetry rotating the A’s (B’s). If one chooses r1 = N, r2 = N + M with

N >> M , this theory enjoys an RG cascade described in [22].

A simple generalization of this singularity can be obtained by taking a ZZn quotient.

One class of such orbifolds [29] is described by the equation

(xy)n = zw (2.3)

in C4. Branes at this singularity are governed by the quiver field theory with 2n nodes and

bifundamentals of both chiralities going between adjacent nodes, as in Figure 2:

3

4

1 2

6

5

Figure 2: The quiver diagram of the orbifolded model for n = 3.
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This theory enjoys a quartic superpotential of the form

W =
∑

i

(−1)ihQ(i)Q(i+1)Q̃(i+1)Q̃(i) (2.4)

where Q(i) corresponds to the arrow pointing between node i and node i + 1 and so forth,

and the contraction on gauge indices is the obvious one. If one is interested in a cascading

solution with all ranks deviating from some large N by finite amounts in the UV, one can

think of the matter fields Q as having dimension 3/4, and the parameter h as being (to

leading order in 1/N) dimensionless. In the IR, where the solution departs significantly

from its approximation by the CFT which exists when all ranks are equal, it is more

appropriate to think of h as being the inverse of some mass scale which is larger than any

of the gauge theory dynamical scales Λ(i).

The class of quivers depicted in Figure 2 was studied in [25,12], as a simple home

for metastable supersymmetry breaking vacua in string theory. The subquiver which was

relevant there, and which should arise in the IR limit of any proposed UV completion, is

shown in Figure 3. For appropriate choices of the dynamical scales Λ(i) associated with

nodes 3, 4 and 5, this theory was argued to give rise (at low-energy) to a SUSY QCD

theory with Nf = Nc + 1 slightly massive flavors, and hence to admit metastable vacua

analogous to those described in [30]. (A similar construction was described in [31]).

cc c NN 1

5 4 3 2

N
Figure 3: The gauge theory of interest, which can be engineered in any
of the geometries above with n ≥ 3.

The only relevant point for us is that one of these non-vanishing masses arises from a

stringy instanton, wrapping the (unoccupied) node to the right of the U(1) factor in the

full quiver diagram. This instanton was argued, in suitable circumstances, to give rise to

a mass term

W = · · ·+ mQ(2)Q̃(2) (2.5)

for the Nc + 1’st quark flavor of the gauge group at node 3.
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3. The stringy instanton

First, we should specify the circumstances in which the instanton is believed to con-

tribute. In the absence of the space-filling branes, the instanton would break half of the

supersymmetry in an N = 2 supersymmetric Calabi-Yau compactification. Hence, one

could obtain four fermion zero modes by acting on the instanton solution with the broken

supercharges. These arise in the sector of open strings stretching from the instanton to

itself.

However, to generate a contribution to the space-time superpotential, there should

only be two fermion zero modes (that aren’t soaked up in the integral over instanton

collective coordinates). Although the other branes present in the quiver gauge theory do

break the space-time supersymmetry to N = 1, they do not apparently lift the extra two

fermion zero modes. Therefore, to obtain a contribution to the superpotential, one should

either:

a) Consider a slightly modified configuration, where the instanton wraps a node that

also intersects an orientifold plane [10,13,14,15]. The orientifold projection can eliminate

precisely half of the fermion zero modes in the relevant open string sector, leaving the

needed two.

b) Consider a full compactification with background fluxes (and perhaps other ingredients)

in the vicinity of the instanton. On general grounds, one would expect that in such cases,

the brane could locally detect that the background preserves only N = 1 supersymmetry,

and would have only two zero modes generated by acting with broken supercharges. It is

important to study the precise circumstances in which this happens, of course. Results

in this direction, for instantons which do not intersect space-filling D-branes, are implicit

in [7] (where the geometry of F-theory reduces the number of zero modes on certain D3-

instantons to the required two), and are generalized to models with flux in [32-37].

We shall proceed with option a). In fact, a class of orientifold models which leave

the gauge theory on the space-filling branes unmodified, while allowing the instanton to

intersect an O-plane, was already described in [12,18].

It is easier to describe the relevant geometries in the T-dual type IIA picture. Recall

that e.g. the quiver in Figure 3 can be T-dualized to a type IIA brane configuration. The

occupation numbers of the nodes map to numbers of D4 branes stretching on a circle in

the x6 direction between NS 5 branes stretched in the 012345 directions and NS 5’ branes
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Figure 4: Type IIA T-dual description of the type IIB quiver in Fig-
ure 3.

stretched in the 012389 directions – the NS and NS’ branes alternate as one goes around

the circle. Our configuration is shown in Figure 4.

To make a quiver gauge theory which keeps the physics at our occupied nodes un-

changed, while allowing the D-brane instanton at node 1 to acquire the required zero mode

content, we introduce orientifolds as in Figure 5. This configuration can be obtained by

orientifolding the n = 5 model in an obvious way. The O6−-planes extend along the 01237

directions, and lie at a 45 degree angle with respect to the 45 and 89 planes.

cN Nc cN

NccN
Nc

NS’

NS’
NS

NS
NS

O6

O6

1

1

Figure 5: An orientifold which preserves our gauge theory and contains
the required instantons.

In this geometry (or the generalization including any number of additional SU(Ni)

nodes between the O-planes), the D-instanton wrapping the node to the right of the SU(1)

node, i.e. wrapping node 1, has SO(1) worldvolume gauge group (while space-filling branes

occupying the same node would have symplectic gauge groups). This SO projection lifts

the extra two fermion zero modes, so this D-instanton can potentially contribute to the

space-time superpotential. It has in addition collective coordinates (“Ganor strings” [6])

which stretch to node 2, as in the extended quiver diagram shown in Figure 6.

6



cN
α

β
13 2

1
Figure 6: The extended quiver diagram, including a node for the Eu-
clidean D-brane.

The instanton action is expected to contain a quartic coupling

S = ... + αQ(2)Q̃(2)β . (3.1)

After integrating out the α, β collective coordinates, one will be left in the space-time

theory with a mass term (2.5), with m suppressed by the exponential of the area A of

node 1. Note that this effect only depends on nodes 1, 2 and 3, and should arise in any

theory containing these nodes (as depicted in Figure 6).

In the next sections we will derive the same superpotential (2.5) in an alternative

way, by embedding the gauge theory in a renormalization group cascade. In this picture,

the effect of the stringy instanton is reproduced by a gauge theory computation, and the

exponential suppression of m due to the instanton action becomes exponential suppression

by the dynamical scales of asymptotically-free gauge group factors (which confine and

disappear at low energies).

4. The cascade and its orientifold

4.1. The U(Ni) cascade

In this subsection we briefly review the cascade in the quiver theories of §2. At some

energy scale, these theories can be described as a
∏2n

i=1 SU(Ni) gauge theory, with chiral

multiplets Q(i) and Q̃(i) (i = 1, · · · , 2n) in the (Ni,Ni+1) and (Ni,Ni+1) representations,

respectively (i+1 is defined modulo 2n). The quiver diagram for this theory is depicted in

Figure 2; it is a generalization of the original cascade of Klebanov and Strassler [22] which

arises for n = 1. The theory has an effective superpotential (in an arbitrary normalization

of the fields) of the form

W =
2n∑

i=1

(−1)iQ(i)Q(i+1)Q̃(i+1)Q̃(i), (4.1)

7



with the obvious contractions of indices. Throughout this section we will ignore numerical

factors which will not be important for our considerations.

In this subsection we will analyze a generic high-energy step of the cascade, assuming

that all the Ni’s are large and comparable. Each gauge group in this theory has some

strong coupling scale Λ(i). The general analysis of this theory is very complicated, but

the analysis becomes simple when there are large ratios between all the scales Λ(i); then

we can analyze the dynamics of each gauge theory separately as we go down in energy,

ignoring the dynamics of the other gauge groups. A particularly simple ordering is

Λ(1) ≫ Λ(3) ≫ · · · ≫ Λ(2n−1) ≫ Λ(2) ≫ · · · ≫ Λ(2n). (4.2)

In the order (4.2) the SU(N1) theory, which has Nf = N2 +N2n becomes strongly coupled

first. Ignoring all other interactions (including the superpotential interactions which are as-

sumed to be small at the scale Λ1), the infrared dynamics of this theory is the same as that

of its Seiberg dual [38], so we can use the variables of the dual theory instead of our original

variables (a detailed description of the justification for this may be found in [39]). The dual

is an SU(Nf −N1) = SU(N2 + N2n −N1) = SU(N̂1) gauge theory, whose degrees of free-

dom are quarks q(1), q̃(1), q(2n) and q̃(2n) in the (N̂1,N2), (N̂1,N2), (N2n, N̂1), (N2n, N̂1)

representations, respectively, and mesons M (2n,2n) (in the adjoint+singlet representation

of SU(N2n)), M (2,2) (in the adjoint+singlet representation of SU(N2)), M (2n,2) (in the

(N2n,N2) representation) and M (2,2n) (in the (N2n,N2) representation). The superpo-

tential of this theory, including the relevant terms from (4.1) (translated into the new

variables), takes the form (with obvious contractions)

W = M (2,2)q(1)q̃(1) + M (2n,2n)q(2n)q̃(2n) + M (2,2n)q̃(2n)q̃(1) + M (2n,2)q(1)q(2n)

+ M (2,2n)M (2n,2) − M (2,2)Q(2)Q̃(2) − M (2n,2n)Q(2n−1)Q̃(2n−1).
(4.3)

The mesons M (2n,2) and M (2,2n) are massive so they can be integrated out as we go to

lower scales; this leaves a superpotential of the form

W = M (2,2)q(1)q̃(1) + M (2n,2n)q(2n)q̃(2n) − q(2n)q(1)q̃(1)q̃(2n)

− M (2,2)Q(2)Q̃(2) − M (2n,2n)Q(2n−1)Q̃(2n−1).
(4.4)

The theory at lower scales has been modified in three important ways (in additional to

small changes in the charge assignments); instead of an SU(N1) gauge theory we have an

SU(N2 + N2n − N1) theory, we have two additional sets of adjoint+singlet fields for the
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SU(N2) and SU(N2n) nodes, and these fields have trilinear superpotential couplings to all

the quarks surrounding them, which replace the two quartic couplings centered on these

two nodes.

We can now perform a similar analysis for the SU(N3) node, which will become

dualized to an SU(N2 + N4 − N3) theory. Most of the analysis is the same, except that

one of the trilinear couplings in (4.4) now becomes a mass term for M (2,2) and for the

field with the same quantum numbers arising as a meson in the SU(N3) theory. Thus,

these fields can also be integrated out, and after this step we are left with no adjoint for

the SU(N2) theory, and its quartic coupling is reinstated (by integrating out the massive

mesons), with an opposite sign compared to the original quartic coupling in (4.1). Thus,

after this step we get a theory in which the SU(N2n) and SU(N4) nodes are modified (by

adding adjoints and their associated couplings) and the other nodes are not. If we now

continue to perform a similar analysis for the SU(N5), SU(N7), · · ·, SU(N2n−1) theories,

we eventually end up with a theory of the same form as we started with; in the last step

we have two sets of adjoint fields becoming massive. The only differences (except for the

overall sign of the superpotential) are that all fundamentals of the odd nodes have become

anti-fundamentals (and vice versa), and the ranks of the odd nodes have been modified to

SU(Ni) → SU(Ni−1 +Ni+1 −Ni). The total rank of all groups together has been reduced

by

Ncascade = 2
n∑

i=1

(N2i−1 − N2i); (4.5)

this must be positive in order to have a cascade and to be consistent with (4.2).

Obviously, we can now perform a similar analysis for all the even nodes. After the

additional n steps we again go back to a theory of the same form, with the total rank of

all groups again reduced by the same amount Ncascade. The field representations and the

overall sign of the superpotential are now the same as in the original theory we started

from. We can continue cascading down in energy, going back to the same theory (with

reduced ranks) after every 2n steps. Eventually, the ranks become small enough so that

the group that becomes strongly coupled goes outside the range Nc +2 ≤ Nf < 3Nc where

we can use Seiberg duality as above. One then has to check in detail what happens next;

in some cases one obtains confinement in the IR theory.

Finally, let us discuss the global symmetries. There are (2n) obvious vector-like U(1)

symmetries, acting on each pair Q(i), Q̃(i). In addition, we have in the classical theory

a U(1)R symmetry (with (Q(i), Q̃(i)) both having charge 1/2) and a single axial U(1)A
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symmetry which is preserved by the superpotential (4.1), under which (Q(i), Q̃(i)) both

have charge (−1)i. For generic values of the Ni which lead to a cascade, both of these

symmetries are anomalous. Note that these two U(1) symmetries do not remain fixed along

the cascade; if we make some charge assignment at some energy scale, we get a different

charge assignment after going through a cascade step (with explicit factors of Λ’s in the

superpotential to fix its charge). However, we can always rescale the bi-fundamentals at

each step of the cascade by some factors of Λ’s to go back to the simpler charge assignments

described above.

4.2. The orientifolded cascade

We will now discuss a particular orientifold of this cascade, which was described in

the appendix of [12] and reviewed in §3. The orientifold acts as a reflection on the quiver

diagram generalizing Figure 2 to arbitrary n. The groups SU(N1) and SU(Nn+1) are

identified with themselves with a symplectic projection (this is only consistent when N1 and

Nn+1 are both even), while the group SU(N2) is identified (up to an outer automorphism

exchanging fundamentals and anti-fundamentals, due to the orientation reversal) with

SU(N2n), SU(N3) with SU(N2n−1), and so on (up to SU(Nn) which is identified with

SU(Nn+2)). All in all, we end up with a gauge group

USp(N1) × SU(N2) × SU(N3) × · · · × SU(Nn) × USp(Nn+1). (4.6)

The matter content still includes bi-fundamentals Q and anti-bi-fundamentals Q̃ between

all adjacent group factors in (4.6). The superpotential is similar to (4.1), except that on

the two edges we have additional quartic terms coming from the projection of (4.1) using

the identification described above :

W = Q(1)Q(1)Q̃(1)Q̃(1)+

n∑

i=1

(−1)iQ(i)Q(i+1)Q̃(i+1)Q̃(i)+(−1)n+1Q(n+1)Q(n+1)Q̃(n+1)Q̃(n+1),

(4.7)

where in the first and last terms the two Q’s (and the two Q̃’s) are contracted in the USp

group, so that they give an anti-symmetric tensor of the adjacent SU group.

The cascade in this theory is very similar to the previous one, except for the steps

involving the “edge nodes”. Again, let us assume for simplicity that

Λ(1) ≫ Λ(3) ≫ · · · ≫ Λ(2) ≫ Λ(4) ≫ · · · . (4.8)
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In the first step of the cascade we then need to perform a Seiberg duality on the USp(N1)

group which has Nf = 2N2 flavors. This proceeds as described in [40], and turns the

gauge group into USp(2N2 − N1 − 4). The field content involves new bi-fundamental

and anti-bi-fundamental quarks q(1) and q̃(1), and mesons M (2,2) in the (adjoint+singlet)

representation of SU(N2), MA in the anti-symmetric tensor representation of SU(N2)

and MA in the conjugate anti-symmetric representation. The superpotential, including

the terms coming from the duality transformation as well as the relevant terms of (4.7), is

W = M (2,2)q(1)q̃(1) + MAq̃(1)q̃(1) + MAq(1)q(1) + MAMA − M (2,2)Q(2)Q̃(2). (4.9)

The fields MA and MA are massive and can be integrated out, leading to a quartic term

−q(1)q(1)q̃(1)q̃(1). The quartic terms involving the second node have been replaced by

having an adjoint+singlet field M (2,2) with trilinear couplings, just as in the discussion of

the previous subsection.

If we now dualize the group SU(N3), then again this will give a mass to M (2,2) (and

regenerate the quartic couplings involving this mode), and generate a new adjoint field

M (4,4) with trilinear couplings. Continuing along the cascade, if n is even we finish the

odd steps by dualizing USp(Nn+1), while if n is odd we finish by dualizing SU(Nn). In

both cases, after this we return to a theory of the same form (up to some signs and

conjugations) as the original theory. The total rank is reduced by

Ncascade = N1 + 2 − 2N2 + 2N3 − · · · − 2Nn + Nn+1 + 2 (4.10)

when n is even, and by

Ncascade = N1 + 2 − 2N2 + 2N3 − · · ·+ 2Nn − Nn+1 (4.11)

when n is odd.

As before, we can now perform a similar cascade involving the even nodes. The duality

of SU(N2) does not give an adjoint for the adjacent USp group (since the superpotential

makes this massive), but it does give an adjoint for the adjacent SU group. As we go

down the cascade, eventually all the adjoints become massive, and we go back to the a

theory with the same form as the original theory, just as in the previous case. We can then

continue cascading until the ranks become too small to perform further Seiberg dualities,

and a different analysis is required in the IR.
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Finally, let us describe the global symmetries in this case. We now have (n + 1)

vector-like U(1) global symmetries. There is still a classical U(1)R symmetry (with all

bi-fundamentals having charge 1/2), but there is no longer any axial U(1) consistent with

(4.7). For generic values of the Ni (for which Ncascade 6= 0, as required in order to have a

cascade) the U(1)R symmetry is anomalous. As before, this U(1)R is not invariant under

the cascade, unless we rescale the bi-fundamentals by appropriate powers of Λ’s.

5. The IR physics of the cascade: non-perturbative mass generation

We will now discuss the IR physics of the cascade in two special cases. We assume

that the cascade proceeds as in the previous section, until we need to perform a duality

on the USp(N1) node but its rank is not large enough.

The first case we discuss is the case discussed in section 3, in which we want to end

up with USp(0) × SU(1) × · · ·. For this we need to start higher up in the cascade with

N1 = 2N2−4, and with N4 = N3 +1. The USp(N1) theory now has 2N2 = N1 +4 flavors.

In this case the low-energy dynamics of this theory does not involve any modification

of the classical moduli space for the mesons M (2,2), MA and MA. Rather, there is an

effective superpotential implementing the classical constraints. If we denote the full anti-

symmetric meson matrix of the USp(N1) theory by M (Mij = MA
ij , Mi(j+N2) = M

(2,2)
ij ,

M(i+N2)(j+N2) = MA
ij for all i, j = 1, · · · , N2), then the low-energy superpotential is [40] of

the form (we will ignore constants and powers of Λ’s in all our expressions here, as before)

W = Pf(M). (5.1)

The other couplings of the mesons are the same as the last two terms in (4.9) above,

which come from the quartic superpotential. Since the fields MA, MA are massive we can

integrate them out, and end up with a superpotential

W = det(M (2,2)) − M (2,2)Q(2)Q̃(2). (5.2)

As described above, the next stage in the cascade involves dualizing the SU(N3) group

to a SU(N̂3) = SU(N4 + N2 −N3) = SU(N2 + 1) group. In this step we replace Q(2)Q̃(2)

by a new meson field M̃ (2,2), and the relevant terms in the superpotential become

W = det(M (2,2)) − M (2,2)M̃ (2,2) + M̃ (2,2)q(2)q̃(2). (5.3)

12



The fields M (2,2) and M̃ (2,2) are now massive; integrating them out means that we can

replace M (2,2) in (5.3) by q(2)q̃(2), where the SU(N̂3) indices are contracted and the SU(N2)

indices are not; we will denote this matrix by (qq̃)(2,2).

We can now continue down the cascade, dualizing all the odd nodes. Next, we need to

analyze the low-energy dynamics of the SU(N2) node. This node has Nf = N̂3 = N2 + 1

coming from the q(2) and q̃(2) flavors, so its low-energy description is in terms of mesons

and baryons, with an effective superpotential imposing the classical constraints relating

the mesons and the baryons [41]. The mesons M̂ (3,3) are an adjoint+singlet of SU(N̂3),

while the baryons B(2) and anti-baryons B̃(2) are in the fundamental and anti-fundamental

representations. Like any other gauge-invariant chiral operator, we can write det((qq̃)(2,2))

in terms of these mesons and baryons. In fact, there are several ways to do this. On one

hand it is equal to the subdeterminant of the mesons, which is a polynomial of rank N2 in

the traces of the (N̂3 × N̂3) meson matrix M̂ (3,3), of the form

subdet(M) = N2!

∞∑

l=1

N2∑

ni=1;i=1,···,l

(−1)l+N2

l!
δ∑

i
ni,N2

l∏

i=1

tr(Mni)

ni

= tr(M)N2 + · · ·+ (N2 − 1)!(−1)1+N2tr(MN2).

(5.4)

On the other hand, it is equal to a product of baryons B(2)B̃(2), with a contraction of their

SU(N̂3) indices. These two expressions are the same classically, and in this theory this

equivalence remains true also quantum-mechanically; the superpotential which imposes

that the moduli space is equal to the classical moduli space makes these two expressions

the same in the chiral ring (namely, they are the same up to the addition of non-chiral

operators).

At low energies the SU(N2) group is gone. Making a specific choice of writing the

determinant operator det((qq̃)(2,2)) using baryons rather than mesons (all other choices

are equivalent in the superpotential), we obtain an effective action

W = M̂ (3,3)(B(2)B̃(2) − q(3)q̃(3)) − det(M̂ (3,3)) + B(2)B̃(2). (5.5)

Next, we want to perform a duality on the SU(N4) theory. This turns q(3)q̃(3) into a

new meson M (3,3), that couples trilinearly to new quarks B(3) and B̃(3). The equation of

motion of M (3,3) now relates M̂ (3,3) to bilinears of these quarks. Integrating out all the

massive fields reduces the superpotential to

W = B(2)B(3)B̃(3)B̃(2) − det(B(3)B̃(3)) + B(2)B̃(2), (5.6)
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where in the second term the quarks are contracted to give an adjoint+singlet of SU(N̂3).

The quiver theory that we ended up with is the same as the one described in Figure 6

(identifying N̂3 = Nc). The superpotential we find is also the same as we found there (up

to the irrelevant determinant operator in (5.6)). In the derivation from the cascade it is

not obvious that the mass term in (5.6) is related to a one-instanton effect in the “USp(0)”

gauge group that we get at the end. However, it is easy to verify that such a one-instanton

term would have the same quantum numbers (=the same anomalous R-charge) as the

term we got2. Note that a one-instanton term in a specific gauge group in a cascading

theory does not translate into a one-instanton term higher up in the cascade. This is

evident from the computation in this section, in which the stringy instanton effect arises

not from instantons but from strongly coupled dynamics of the gauge groups higher up in

the cascade. Even though a single Seiberg duality transforms a one-instanton term into

a one-instanton term, this is not true of the full cascade, which involves multiple Seiberg

dualities on all the nodes (including nodes which are “flavor” nodes from the point of view

of the instanton).

Similarly, we can analyze the case of N1 = 2N2 − 2, which formally ends up after

the cascade step with N̂1 = −2. In this case, the low-energy dynamics of the USp(N1)

theory leads to a quantum modified moduli space [40]. So, instead of the terms involving

det(M (2,2)) in the superpotential, we get constraint terms λ(det(M (2,2)) − 1) with a La-

grange multiplier λ. All the later dualities are not modified, so at the end of the cascade

step in this case we obtain the same superpotential as (5.6), but with the last term replaced

by λ(B(2)B̃(2) − 1).
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