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Abstract 
Emittance growth is an important issue for plasma 

wakefield accelerators (PWFAs).  Multiple Coulomb 
scattering (MCS) is one factor that contributes to this 
growth.  Here, the MCS emittance growth of an electron 
beam traveling through a PWFA in the blow out regime is 
calculated.  The calculation uses well established 
formulas for angular scatter in a neutral vapor and then 
extends the range of Coulomb interaction to include the 
effects of traveling through an ion column.  Emittance 
growth is negligible for low Z materials; however, 
becomes important for high Z materials. 

INTRODUCTION 
   The first section of this paper reviews results for 
multiple scattering in a neutral vapor.  These are extended 
in the second section to include the contribution from the 
ion column.  The next two sections deal with the effect on 
beam propagation and emittance growth, respectively. 

SCATTERING THROUGH NEUTRAL 
VAPOR 

   The emittance growth of a beam through a neutral vapor 
can be found from the angular scatter through the vapor, 
which is related to the radiation length.  Equation 1 shows 
how to determine the radiation length, Lr [1]. 
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where Z is the atomic number of traversed material, NA is 
Avogadro’s number in units of mole-1, and n is the density 
of the neutral vapor.   
   The rate of angular scatter of an ultra-relativistic 
electron through a neutral vapor can be found from the 
following equation [2]: 
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where γ is the Lorentz factor, θ is angle in the x plane, c is 
the speed of light, me is the electron mass, and z is 
distance along the accelerator.  

SCATTERING THROUGH AN ION 
COLUMN 

   In recent PWFA experiments the electric field from the 
drive beam was strong enough to completely expel 
electrons from its volume, which created an ion column in 
the plasma [3].  The radius of the ion column is called the 
blow out radius, Rb.  Scattering through an ion column 
extends the range of the Coulomb interaction.  In a neutral 
vapor, if the incident particle doesn’t come within the 
atomic dimensions of an atom, then the nucleus of the 
atom is shielded by its electrons.  In order to account for 
the fact that there are charged ions, another Coulomb 
scattering term is added with a range from the atomic 
radius, Ra, to the blow out radius. 
   The radial kick in momentum that an incident electron 
receives from a charged ion is found by time integrating 
over the radial electric field.  This kick is then projected 
onto the x plane and is turned into an angle after dividing 
by the electron’s momentum. 
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where e is the charge of a proton, P is the electron’s 
momentum, b is the ion’s impact parameter, v is the 
electron velocity, Q·e is the ion charge, ε0 is the 
permittivity of free space, and φ is the azimuthal angle of 
the ion.  Next, equation 3 is turned into a squared angle 
expectation value by integrating over an ion that is 
randomly placed with Ra < b < Rb.  Since the incident 
particle is ultra-relativistic, P·v = γ·me·c

2.   
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   The angular scatters from individual ions add in 
quadrature.  The reason can be seen by looking at the 
expectation value for the addition of two angles. 
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Angular scatter from individual ions are just as likely to 
be positive as negative, so the <θ1θ2> term is zero. The 
total rate of change in mean square scatter can then be 
found by multiplying by the number of ions that the 
incident particle will intercept per unit length by the mean 
square scatter from one. 
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The total rate of angular scatter is then the addition of the 
vapor and ion scattering terms.  Equations 9 and 10 are 
the result of some algebra. 

dz

d

dz

d

dz

d vaporionT
><

+
><

=
>< 222 θθθ

        (8) 

S
rk

dz

d cpT ⋅
⋅

=
><

2

22

γ
θ

                    (9) 

( )




















⋅+⋅⋅+







⋅=

ZQ

ZZ

R

R
QS

a

b 287
ln

178.1
ln

2
   (10) 

 
where θT is the total angle, kp = np·e

2/(me·ε0·c
2), np is the 

plasma density (np = Q·n), and rc is the classical electron 
radius.  For Z=1, the terms from the ion column and 
neutral vapor are roughly the same size; however, for 
higher Z the term from the neutral vapor dominates. 

BEAM PROPAGATION 
Beam size in the plasma relates the rate of angular 

scatter to the emittance growth.  The beam size can be 
found by understanding the focusing forces.  The 
following differential equation is appropriate for 
describing an ultra relativistic electron oscillating through 
the beam axis of the bare ion column [4]. 
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where x is the electron position coordinate in the x plane.  
For an ultra relativistic electron with constant energy, 
equation 11 can be turned into 12. 
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where the dots represent derivatives in z.  There are 
conditions in which the beam size doesn’t change along 
the accelerator.  When these conditions are satisfied the 
beam is matched to the plasma.  The conditions for 
matching can be found by taking derivatives of the beam 
size. 
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The angle brackets refer to expectation values over the 
entire beam.  The second derivative of x can be replaced 
from equation 12 into 14.  By setting the first two 
derivates equal to zero, it insures that all higher order 
derivatives are also zero.  This makes <x2> a constant, 
with the following criterion for a matched beam: 
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The following is the definition for the geometric 
emittance: 
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Plugging in from equation 15 into 16 gives the 
relationship between the emittance and beam size. 
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It can be shown that an accelerating beam that starts 
matched retains the conditions expressed in equation 15 
[5]. 

EMITTANCE GROWTH 
The rate of emittance growth is found by taking a z 

derivative of equation 16. 
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The next step is to substitute for x&& .  In order to do this it 
is now important to include not only the energy change 
term but also rate of angular growth from scattering.  By 
converting time derivatives to z derivatives and by adding 
the angular growth from the scatterers shown in equation 
9, equation 11 can be turned into the following 
differential equation: 
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Equation 19 is next substituted into equation 18. 
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As long as the relative angular growth in one betatron 
oscillation is small, then a beam that starts match will 
remain closely matched.  This means we can drop the 



>< xx&  term.  The scatter term was calculated in the 
earlier part of this paper. 
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The relationship to the normalized emittance growth can 
be found by substituting equations 9 and 21 into 20, 
multiplying by γ, and dividing by ε. 
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Now substituting back in for the relationship between the 
emittance and the size: 
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where εN is the normalized emittance.  The derivative in z 
can be turned into a derivative in γ [6]. 
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This can then be integrated from the initial Lorentz factor, 
γi, to the final Lorentz factor, γf, which gives the 
following formula for the change in normalized 
emittance: 
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Equation 25 can be simplified a step further by taking into 
account the scale of the acceleration. By assuming the 
beam is accelerated by an electric field of mc2kp/e then 
dγ/dz = kp.   
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   One current scheme for a PWFA is to use it at the end 
of a conventional linear collider to double the energy of a 
witness electron bunch [7].  As an example equation 26 
was used to calculate the emittance growth from doubling 
the energy of an electron beam initially at 500 GeV 
through various materials that have been singly ionized 
(see Fig. 1).  The blow out radius was set to 2.5·10-5 m, 
and the atomic radius was set to 10-10 m.  ILC projected 
emittances are εN,y = 4·10-8m, and εN,x = 9.6·10-6m [8].  At 
Z ~ 60 the y normalized emittance will double after 

energy doubling.  The red dotted lines were put in for the 
normalized emittance growth of the following elements: 
Li = 2.0·10-10 m, Na = 1.7·10-9 m, K = 4.6·10-9 m, Rb = 
1.6·10-8 m, and Cs = 3.3·10-8 m.   
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Figure 1:  Normalized emittance growth from doubling 
the energy of an electron beam initially at 500 GeV 
through singly ionized materials with various atomic 
numbers. 

CONCLUSION 
A calculation is shown for the normalized emittance 

growth of a beam traversing a PWFA operated in the blow 
out regime.  Emittance growth is negligible for low Z 
materials; however, becomes important for high Z 
materials. 
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