## Search for the Decays $B^{0} \rightarrow e^{+} e^{-} \gamma$ and $B^{0} \rightarrow \mu^{+} \mu^{-} \gamma$

B. Aubert,,${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$
L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ D. Lopes Pegna, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$
M. T. Ronan,,${ }^{5, *}$ K. Tackmann, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ P. del Amo Sanchez, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ A. T. Watson, ${ }^{6}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ T. Schroeder, ${ }^{7}$ M. Steinke, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ A. Khan, ${ }^{10}$ M. Saleem, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11} \mathrm{~K}$. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich,,$^{12}$ D. Kirkby,,$^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ S. D. Foulkes, ${ }^{14}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14}$ L. Zhang, ${ }^{14}$ H. P. Paar, ${ }^{15}$ S. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ A. Cunha, ${ }^{16}$ B. Dahmes, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco,,${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman,,${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom, ${ }^{17}$ E. Chen, ${ }^{18}$ C. H. Cheng, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc, ${ }^{20}$ P. C. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W. T. Ford, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ A. Kreisel, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith, ${ }^{20}$
K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ J. Zhang, ${ }^{20}$ A. M. Gabareen, ${ }^{21}$ A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ F. Winklmeier, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ V. Klose, ${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ J. Schubert, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ V. Lombardo,,$^{24}$ Ch. Thiebaux,,${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ F. Muheim, ${ }^{25}$ S. Playfer, ${ }^{25}$ A. I. Robertson, ${ }^{25}$ Y. Xie,,${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella,,${ }^{26}$ L. Piemontese, ${ }^{26}$ E. Prencipe,,${ }^{26}$ V. Santoro, ${ }^{26}$ F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27}$, $\dagger$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii,,$^{29}$ J. Wu, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ R. L. Flack, ${ }^{31}$ J. A. Nash, ${ }^{31}$ W. Panduro Vazquez, ${ }^{31}$ M. Tibbetts, ${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik, ${ }^{32}$ V. Ziegler, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ V. Eyges, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ A. E. Rubin, ${ }^{33}$ Y. Y. Gao, ${ }^{34}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch,,${ }^{35}$ G. Schott, ${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ M. Davier, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W. F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham,,${ }^{38}$
C. A. Chavez, ${ }^{38}$ I. J. Forster, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield, ${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ W. Menges, ${ }^{39}$ R. Sacco, ${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ J. Allison, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ T. J. West, ${ }^{42}$ J. I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle, ${ }^{43}$ G. Blaylock, ${ }^{44}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore,${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic, ${ }^{45}$ P. H. Fisher, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ S. J. Sekula, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ Y. Zheng, ${ }^{45}$ S. E. Mclachlin, ${ }^{46, *}$ P. M. Patel,${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ M. Simard, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud,,${ }^{49}$ H. Nicholson,,${ }^{50}$ G. De Nardo, ${ }^{51}$ F. Fabozzi, ${ }^{51, \ddagger}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ C. Sciacca,,${ }^{51}$ M. A. Baak, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$
K. Honscheid, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ J. P. Morris, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ J. J. Regensburger, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb, ${ }^{55}$ M. Lu, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinee, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ N. Gagliardi, ${ }^{56}$ A. Gaz, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ A. Pompili, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci,,${ }^{56}$ E. Ben-Haim, ${ }^{57}$ H. Briand, ${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclè̀, ${ }^{57}$ J. Ocariz, ${ }^{57}$ A. Perez, ${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ R. Cenci,,${ }^{60}$ A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. A. Mazur, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh, ${ }^{60}$ M. Haire,,${ }^{61}$ J. Biesiada, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ E. Baracchini, ${ }^{63}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{63}$ A. D'Orazio, ${ }^{63}$ D. del Re, ${ }^{63}$ E. Di Marco, ${ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ P. D. Jackson, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Polci, ${ }^{63}$ F. Renga, ${ }^{63}$ C. Voena, ${ }^{63}$
M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ G. Castelli,,${ }^{65}$ B. Franek,,${ }^{65}$ E. O. Olaiya, ${ }^{65}$ S. Ricciardi, ${ }^{65}$ W. Roethel, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ M. Escalier, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X. R. Chen,,${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ N. Berger, ${ }^{68}$ R. Claus,,${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$ G. P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ S. Li, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch,,${ }^{68}$ D. B. MacFarlane, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl,,${ }^{68}$ T. Pulliam, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ N. van Bakel, ${ }^{68}$ A. P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen,,${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ R. Bula, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ V. Jain,,$^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ S. B. Zain,,${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland, ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ M. Pelliccioni, ${ }^{74}$ M. Bomben, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ L. Lanceri, ${ }^{75}$ L. Vitale, ${ }^{75}$ V. Azzolini, ${ }^{76}$ N. Lopez-March, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76,}{ }^{8}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ P. F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T. E. Latham,,$^{78}$ G. B. Mohanty, ${ }^{78}$ M. Pappagallo, ${ }^{78}$, H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ S. L. Wu, ${ }^{79}$ and H. Neal ${ }^{80}$ (The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universiẗ̈t Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA ${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany

[^0](Dated: June 21, 2007)


#### Abstract

We present results of a search for the decays $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma(\ell=e, \mu)$. The search is performed using $320 \times 10^{6} B \bar{B}$ pairs collected at the $\Upsilon(4 S)$ resonance with the BABAR detector at the PEP-II $B$ Factory at SLAC. We find no significant signal and set the following branching fraction upper limits at the $90 \%$ confidence level: $\mathcal{B}\left(B^{0} \rightarrow e^{+} e^{-} \gamma\right)<1.2 \times 10^{-7}$ and $\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<1.5 \times 10^{-7}$.


PACS numbers: $13.20 . \mathrm{He}, 14.40 . \mathrm{Nd}$

Radiative leptonic decays of neutral $B$ mesons, $B^{0} \rightarrow$ $\ell^{+} \ell^{-} \gamma$ with $\ell=e, \mu[1]$, are flavor-changing neutralcurrent transitions that are forbidden at the tree level in the standard model (SM). In the SM, such processes are described by penguin and box diagrams to leading order, as shown in Fig. 1. The expected branching fractions for these processes are of order of $10^{-10}$ [2]. A measured branching fraction bigger than this would be an evidence for new physics. The largest contributions arise from processes in which a photon is emitted from one of the initial quarks, thus avoiding the helicity suppression of the purely leptonic decay $B^{0} \rightarrow \ell^{+} \ell^{-}$. A search for the processes $B^{0} \rightarrow \ell^{+} \ell^{-}$has been performed by the BABAR collaboration and others [3], but there is no previous search for the $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ decays.

The analysis described in this Letter uses a sample of $320 \times 10^{6} B \bar{B}$ pairs recorded with the $B A B A R$ detector at the PEP-II asymmetric energy $e^{+} e^{-}$storage rings. This corresponds to an integrated luminosity of $292 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance.

A detailed description of the $B A B A R$ detector can be found elsewhere [4]. Charged-particle trajectories are measured by a five-layer silicon vertex tracker and a 40layer drift chamber operating in a 1.5 T magnetic field. A detector of internally reflected Cherenkov light is used for charged hadron identification. Surrounding this is an electromagnetic calorimeter (EMC) consisting of 6580 $\mathrm{CsI}(\mathrm{Tl})$ crystals, and the instrumented flux return for the solenoid, which consists of layers of steel interspersed with resistive plate chambers or limited streamer tubes.

A full BABAR Monte Carlo (MC) simulation using GEANT4 [5] is used to evaluate signal efficiencies and to identify and study background sources. The signal MC sample is based on a calculation where the $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ transition depends on three Wilson coefficients $C_{7}, C_{9}$, and $C_{10}$ at leading order [6].

We reconstruct the $B^{0}$ signal candidates by combining two oppositely-charged leptons and a photon. The $B^{0}$ vertex is fitted using a Kalman Filter method [7]. The leptons are required to originate from a common vertex, and the $B^{0}$ candidate is required to be consistent with coming from the beam interaction point.

To minimize the number of misidentified particles, the leptons are required to satisfy stringent particle identification criteria [8]. For the electron candidates, the energy loss due to bremsstrahlung is recovered whenever possible, by looking for the energy deposits (clusters) in the EMC close to the intersection of their tracks with the EMC. For photon clusters, the transverse shower shape is
required to be consistent with an electromagnetic shower. Leptons and photons are required to reside fully in the geometric acceptance of the detector.

Since the signal event contains two neutral $B$ mesons and no additional particles, the total energy of each $B$ meson in the center-of-mass (CM) frame must be equal to half of the total beam energy in the CM frame. We define $m_{\mathrm{ES}}=\sqrt{\left(E_{\text {beam }}^{*}\right)^{2}-\left(\sum_{i} \mathbf{p}_{i}^{*}\right)^{2}}$ and $\Delta E=$ $\sum_{i} \sqrt{m_{i}^{2}+\left(\mathbf{p}_{i}^{*}\right)^{2}}-E_{\text {beam }}^{*}$, where $E_{\text {beam }}^{*}$ is the beam energy in the CM frame, $\mathbf{p}_{i}^{*}$ and $m_{i}$ are the momenta in the CM frame and the masses of the daughter particles $i\left(i=\ell^{+}, \ell^{-}, \gamma\right)$, respectively. $E_{\text {beam }}^{*}$ is used instead of the measured $B$ meson energy in the CM frame because $E_{\text {beam }}^{*}$ is more precisely known. For correctly reconstructed $B^{0}$ mesons, the $m_{\mathrm{ES}}$ distribution has a maximum at the $B^{0}$ mass with a standard deviation of about $3 \mathrm{MeV} / c^{2}$ and the $\Delta E$ distribution has a maximum near zero with a standard deviation of about 30 MeV .

The $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ candidates are selected by requiring $-0.5 \leq \Delta E \leq 0.5 \mathrm{GeV}$ and $5.0 \leq m_{\mathrm{ES}} \leq$ $5.3 \mathrm{GeV} / c^{2}$. These ranges include both background- and signal-dominated regions. As shown in Fig. 2, five background-dominated regions (sideband areas) are used for the background estimation. To avoid experimenter's bias, the events in the signal-dominated region (signal box) and in the shaded area covering the signal box are not included in the analysis until the final selection criteria have been optimized and the background estimation has been finalized. The shapes of the $m_{\mathrm{ES}}$ and $\Delta E$ distributions of the signal MC are parameterized by the Crystal Ball function [9] to allow for the asymmetric shape of the signal peak due to energy loss in the EMC. The size of the signal box is chosen to be approximately $\pm 3 \times$ FWHM for $\Delta E$ and $m_{\mathrm{ES}}:-0.146(-0.112) \leq$ $\Delta E \leq 0.082 \mathrm{GeV}$ for the $e^{+} e^{-} \gamma\left(\mu^{+} \mu^{-} \gamma\right)$ mode, and $5.270 \leq m_{\mathrm{ES}} \leq 5.289 \mathrm{GeV} / c^{2}$ for both modes.

The dominant backgrounds are: 1) unmodeled higherorder QED and hadronic two-photon processes for the $e^{+} e^{-} \gamma$ mode; 2) $B$ decays where the photon comes from a $\pi^{0}$ decay, or the lepton is from a $J / \psi$ or $\psi(2 S)$ decay; and 3) continuum background from $e^{+} e^{-} \rightarrow f \bar{f}$ (where $f=u, d, s, c$, or $\tau)$ processes at the parton level.

To take into account higher-order QED and hadronic two-photon processes, we introduce additional selection criteria for the $e^{+} e^{-} \gamma$ candidates: we require the cosine of the polar angle of $e^{-}(\gamma)$ to be between $-0.743(-0.618)$ and 0.81 (0.8), the energy of the photon to be $\geq 0.3 \mathrm{GeV}$, the number of charged tracks (EMC clusters) in the event to be $\geq 5(10)$, and the ratio of the second-to-zeroth order


FIG. 1: The penguin (left and middle) and box (right) Feynman diagrams for $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma(\ell=e, \mu)$ decays. The photon can be emitted from any of the quarks or leptons, but the amplitudes are largest if the photon is emitted from one of the initial quarks.


FIG. 2: Definitions of the signal box, blinded area (equal to the sum of the signal box and of the shaded area), and sideband areas in the $\Delta E$ vs. $m_{\text {ES }}$ plot: Upper1 (U1), Upper2 (U2), Lower1 (L1), Lower2 (L2), and Middle1 (M1). The signal box has the same $\Delta E$ range as the M1 box (different for each mode), and the same $m_{\mathrm{ES}}$ limits as the U2 and L2 boxes. The figure is not drawn to scale.

Fox-Wolfram moments ( $R_{2}$ ) [10], which is calculated with the charged tracks and neutral clusters in the rest of the event (ROE), to be $\leq 0.7$.

To reduce the number of events where the photon is from a $\pi^{0}$ decay, we veto photon candidates that can be combined with any other photon in the event to form a $\pi^{0}$ candidate with a mass within three standard deviations $\left(\sim 20 \mathrm{MeV} / c^{2}\right)$ of the nominal $\pi^{0}$ mass.

We veto lepton candidates that form a suitable $J / \psi$ or $\psi(2 S)$, as described in Ref. [11].

To suppress the continuum background, we require $R_{2}$, calculated from all charged tracks and neutral clusters, to be less than 0.35 , and the absolute value of the cosine of the angle between the thrust axis of the $B^{0}$ candidate and that of the ROE to be less than 0.8. These variables are used in a neural network combined with the following variables: 1) the absolute value of the cosine of the angle between the $B^{0}$ direction and the beam axis, 2 ) the absolute value of the cosine of the angle between the thrust axis of the $B^{0}$ candidate's decay products and the beam
axis, 3) the ratio of second order to zeroth order Legendre moments of all charged tracks and neutral clusters, and 4) the invariant mass of the dileptons. The neural network rejects 20 (36)\% of the background while keeping $95(89) \%$ of the signal, for the $e^{+} e^{-} \gamma\left(\mu^{+} \mu^{-} \gamma\right)$ mode. All the selection criteria are optimized with MC samples to discriminate signal from background.

After all requirements are applied, there are on average 1.01(1.07) candidates per event for the $e^{+} e^{-} \gamma\left(\mu^{+} \mu^{-} \gamma\right)$ mode. In events with multiple candidates, the one with the highest probability for the vertex fit is retained. The signal efficiency is $7.4(5.2) \%$ for the $e^{+} e^{-} \gamma\left(\mu^{+} \mu^{-} \gamma\right)$ mode. The $e^{+} e^{-} \gamma$ mode has higher efficiency because electrons have higher detection efficiency than muons.

To assess possible background contributions that peak in the signal box, we examined 32 exclusive hadronic and semileptonic $B$ decays using MC, including events where both $B$ mesons decay semileptonically, and found no significant contribution.

A variety of methods to estimate the background in the signal box have been tried, including fitting and counting methods in various $m_{\mathrm{ES}}$ and $\Delta E$ sideband areas with different conditions. All studies yield results that are compatible within uncertainties.

The chosen method is model-independent, is based on data only, and has a small systematic uncertainty. To estimate the background level in the signal box, five different sideband areas are used, as indicated in Fig. 2. The ratio $R_{\text {est }}^{M}$ is the estimated ratio of the yield in the signal box to the yield in the M1 box. The expected background in the signal box $\left(n_{b g}^{e x p}\right)$ is calculated by multiplying $R_{\text {est }}^{M}$ by the yield in the M1 box. We estimate $R_{\text {est }}^{M}$ as the mean of two ratios $R^{U}$ and $R^{L}$, where $R^{U(L)}=N^{U 2(L 2)} / N^{U 1(L 1)}$, and where $N^{X}$ is the yield in box $X$. This assumes that the changes in the ratio $R^{L}$, $R_{e s t}^{M}$ and $R^{U}$ are linear in $\Delta E$.

To test our assumption of this linearity, we use MC samples and calculate the ratio $R^{M}$ by dividing the yield in the signal box by the yield in the M1 box. The relative difference between $R^{M}$ and $R_{e s t}^{M}$ in MC samples is assigned as a systematic uncertainty. The estimated background is $1.75 \pm 1.38 \pm 0.36(2.66 \pm 1.40 \pm 1.58)$ events
for the $e^{+} e^{-} \gamma\left(\mu^{+} \mu^{-} \gamma\right)$ mode, where the stated errors represent the statistical and systematic uncertainties, respectively.

The dominant source of systematic uncertainty on the signal yield is the calculation used for the signal MC [6]. The three theoretical input parameters, the Wilson coefficients $C_{7}, C_{9}$, and $C_{10}$, used in the calculation are varied by $\pm 10 \%$, as recommended by the authors of [6]. This variation changes the kinematics of the signal events and can thereby impact the detection efficiency. The largest relative change in signal efficiency by this variation is assigned as a systematic uncertainty.

We have studied $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ decays in data to assess the systematic uncertainty in photon reconstruction.

The systematic uncertainty from the lepton identification has been determined using an independent control sample of $J / \psi$ decays.

The uncertainty on the number of $B \bar{B}$ events is $1.1 \%$ [12].

The systematic uncertainty related to an imperfect detector simulation is studied using a control sample of $B^{0} \rightarrow J / \psi K_{S}^{0}$ events. The same continuum background suppression requirements are applied on this sample and the signal efficiency is calculated. The relative difference in the signal efficiencies between data and MC samples is assigned as a systematic uncertainty.

The systematic uncertainty related to the tracking efficiency is determined from $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$interactions, with one $\tau$ decaying leptonically and the other to three charged hadrons. All the contributions to the systematic uncertainties are added in quadrature and summarized in Table I.

TABLE I: Summary of the systematic uncertainties on the signal yields.

|  | $e^{+} e^{-} \gamma(\%)$ | $\mu^{+} \mu^{-} \gamma(\%)$ |
| :--- | :---: | :---: |
| Signal Calculation | 2.3 | 3.8 |
| Photon Reconstruction | 1.6 | 1.6 |
| Lepton Identification | 0.7 | 1.3 |
| Number of $B \bar{B}$ Pairs | 1.1 | 1.1 |
| Data/MC comparison | 1.3 | 0.4 |
| Tracking Efficiency | 0.9 | 0.9 |
| Total | 3.5 | 4.6 |

After applying the selection criteria we find one event in the signal box for each mode, as shown in Fig. 3 and Table II. These numbers are compatible with the expected background for both modes.

An upper limit on the branching fraction is computed from

$$
\begin{equation*}
\mathcal{B}_{U L}\left(B^{0} \rightarrow \ell^{+} \ell^{-} \gamma\right)=\frac{N_{U L}}{N_{B^{0}} \cdot \epsilon_{s i g}} \tag{1}
\end{equation*}
$$

where $N_{U L}$ is the $90 \%$ confidence level (C.L.) upper limit for the signal yield, determined by taking into account
the one observed event in the signal box and the estimated background, using the frequentist method described in Ref. [13] including both statistical and systematic uncertainties, $N_{B^{0}}$ is the number of neutral $B$ mesons and $\epsilon_{\text {sig }}$ is the signal reconstruction efficiency. The systematic uncertainties are included in $\epsilon_{s i g}$. It is assumed that $\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$, and so $N_{B^{0}}$ is equal to the number of $B \bar{B}$ events. The $90 \%$ C.L. branching fraction upper limits obtained are $\mathcal{B}\left(B^{0} \rightarrow e^{+} e^{-} \gamma\right)<1.2 \times 10^{-7}$ and $\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<$ $1.5 \times 10^{-7}$.

TABLE II: Summary of the results where $n_{o b s}\left(n_{b g}^{e x p}\right)$ is the number of observed (expected background) events in the signal box, $\epsilon_{s i g}$ is the efficiency, $N_{U L}$ is the $90 \%$ C.L. upper limit for the signal yield, and $\mathcal{B}_{U L}$ is the upper limit on the branching fraction at the $90 \%$ C.L. The stated uncertainties on $n_{b g}^{\exp }$ are statistical and systematic, and the uncertainty on $\epsilon_{s i g}$ is systematic.

$$
\begin{array}{cccccc}
\hline \text { Mode } & n_{\text {obs }} & n_{b g}^{e x p} & \epsilon_{s i g}(\%) & N_{U L} & \mathcal{B}_{U L} \\
\hline \hline e^{+} e^{-} \gamma & 1 & 1.75 \pm 1.38 \pm 0.36 & 7.4 \pm 0.3 & 2.82 & 1.2 \times 10^{-7} \\
\mu^{+} \mu^{-} \gamma & 1 & 2.66 \pm 1.40 \pm 1.58 & 5.2 \pm 0.2 & 2.55 & 1.5 \times 10^{-7} \\
\hline
\end{array}
$$



FIG. 3: Distribution of events in $m_{\mathrm{ES}}$ and $\Delta E$. The left plot is for the $e^{+} e^{-} \gamma$ mode and the right plot is for the $\mu^{+} \mu^{-} \gamma$ mode. The dots are the events outside the signal box (rectangular region), and the triangles are the events inside the signal box.

In summary, a search for $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma(\ell=e$ or $\mu)$ decays has been performed based on $320 \times 10^{6} B \bar{B}$ events. We obtain $90 \%$ C.L. upper limits for the branching fractions of $\mathcal{B}\left(B^{0} \rightarrow e^{+} e^{-} \gamma\right)<1.2 \times 10^{-7}$ and $\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<1.5 \times 10^{-7}$, which represent the first limits placed on these decay channels. These are well above the SM expectations.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy),

FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
$\dagger$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
$\ddagger$ Also with Università della Basilicata, Potenza, Italy
§ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
- Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom
[1] Throughout the Letter the charge-conjugate modes are included implicitly.
[2] G. Eliam et al., Phys. Lett. B 391, 461 (1997); T.M. Aliev et al., Phys. Rev. D 55, 7059 (1997).
[3] B. Aubert et al., [BABAR Collaboration], Phys. Rev. Lett. 94, 221803 (2005); M.-C. Chang et al., [Belle Collaboration], Phys. Rev. D 68, 111101 (2003); T. Bergfeld et al., [CLEO Collaboration], Phys. Rev. D 62, 091102 (2000).
[4] B. Aubert et al., [BABAR Collaboration], Nucl. Instr. Meth. A 479, 1 (2002).
[5] S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).
[6] Y. Dincer and L. M. Sehgal et al., Phys. Lett. B 521, 7 (2001).
[7] P. Billoir, Nucl. Instr. Meth. A 225, 225 (1984); D.N. Brown, E.A. Charles, D.A. Roberts, The BABAR track fitting algorithm, Proceedings of CHEP 2000, Padova, Italy, 2000.
[8] See for instance B. Aubert et al., [BABAR Collaboration], Phys. Rev. D 66, 032003 (2002).
[9] M.J. Oreglia, Ph.D Thesis, SLAC-236(1980), Appendix D; J.E. Gaiser, Ph.D Thesis, SLAC-255(1982), Appendix F; T. Skwarnicki, Ph.D Thesis, DESY F31-8602(1986), Appendix E.
The Crystal Ball function can be written as:

$$
C B(m)= \begin{cases}\exp \left(-\frac{(m-\mu)^{2}}{2 \sigma^{2}}\right) & m>\mu-\alpha \sigma \\ \frac{(n / \alpha)^{n} \exp \left(-\alpha^{2} / 2\right)}{((\mu-m) / \sigma+n / \alpha-\alpha)^{n}} & m<\mu-\alpha \sigma\end{cases}
$$

where $\mu$ is the mean value, $\sigma$ is a measure of the width, and $n$ and $\alpha$ are parameters describing the tail.
[10] G. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[11] B. Aubert et al., [BABAR Collaboration], Phys. Rev. D 73, 092001 (2006).
[12] B. Aubert et al., [BABAR Collaboration], Phys. Rev. D 67, 032002 (2003).
[13] R. Barlow, Comput. Phys. Commun. 149, 97 (2002).


[^0]:    ${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
    ${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
    ${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
    ${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
    ${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
    ${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
    ${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
    ${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
    ${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
    ${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
    ${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
    ${ }^{34}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
    ${ }^{35}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
    ${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
    ${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
    ${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
    ${ }^{39}$ Queen Mary, University of London, E1 4NS, United Kingdom
    ${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
    ${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
    ${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
    ${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
    ${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
    ${ }^{46}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
    ${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
    ${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
    ${ }^{49}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
    ${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
    ${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
    ${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
    ${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
    ${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
    ${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
    ${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
    ${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
    ${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
    ${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
    ${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
    ${ }^{61}$ Prairie View A $\mathcal{G M}$ University, Prairie View, Texas 77446, USA ${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
    ${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
    ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
    ${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
    ${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
    ${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
    ${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
    ${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
    ${ }^{70}$ State University of New York, Albany, New York 12222, USA
    ${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
    ${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
    ${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
    ${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
    ${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
    ${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
    ${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
    ${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
    ${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
    ${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA

