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Abstract

An analysis method for a three section mode transformer
that converts a TE0,1 circular waveguide mode to a TE0,2

rectangular waveguide mode will be presented. Experi-
mental results for this taper were earlier published in [1].
The middle section is a cylinder with a wall radius defined
by rwall = a(1 + ε cos(2θ)), where a is the radius of the
circular guide and ε is a design parameter. This cylinder
is connected on either side to a circular waveguide and
a rectangular waveguide section respectively, through ta-
pered waveguide sections. In this analysis we used a per-
turbation technique where the rectangular waveguide sec-
tion’s wall radius is treated as a Fourier series expansion
with a, the fundamental radius and ε the perturbation pa-
rameter. By applying the proper boundary conditions we
optimize the taper dimensions to minimize conversion into
spurious modes.

INTRODUCTION

In ultra high power RF systems such as those suggested
for linear colliders, hundreds of megawatts of pulsed RF
power is manipulated. Over-moded waveguides are widely
used to increase the power handling capacity. Losses in
the system are minimized by transporting power in circu-
lar waveguides in azimuthally symmetric modes such as
the TE0,1-mode. In many instances the RF power is eas-
ier to manipulate in rectangular waveguides than in circu-
lar waveguides [1]. Therefore, the power is often manipu-
lated in rectangular waveguides and transported in circular
waveguides.

In order to transport power between a circular waveguide
and a rectangular waveguide, the two waveguides should
be connected through a mode converter. It is possible to
convert a TE0,1-mode in a circular waveguide transitions
into a TE0,2-mode in a rectangular waveguide with a suf-
ficiently smooth taper without scattering into other modes
all along the taper. The length of the taper for such an adi-
abatic transition to a single mode at 11.424 GHz is about
18 inches which is excessive. We present a design method
where the wave entering one end of the mode converter
scatters into two modes and recombines into a single mode
while coming out at the other end, leading to a much shorter
mode converter.

The idea behind this mode converter is as follows. Let
a circular waveguide be transitioned to another waveguide
of a certain cross section (let us call it an “oval” waveg-
uide) through a linear taper (taper1) such that a TE0,1-
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mode traveling through the circular waveguide would scat-
ter into two modes, say M1 and M2 in the oval waveg-
uide. Let a rectangular waveguide be transitioned to the
same oval waveguide through another linear taper (taper2)
such that a TE2,0-mode traveling through the rectangular
waveguide is scattered into the same modes M1 and M2

in the oval waveguide. Then, we may be able to achieve
perfect mode conversion from a circular TE0,1-mode to a
rectangular TE2,0-mode by transitioning through the three
sections viz., taper1, oval waveguide and taper2, in that or-
der and by optimizing the length of the three sections.

It is possible to design the mode converter using tra-
ditional numerical techniques like Finite Element Method
(FEM). However, it would require a large amount of com-
putational time to find an optimized solution for the design
of the mode converter using FEM or other numerical tech-
niques.

In this work we present a semi-analytical method to an-
alyze a nonlinear waveguide whose cross section varies in
two dimensions. We have used this method along with per-
turbation techniques to design the mode converter which
needs much less computational time than FEM.

MODAL ANALYSIS

The wall radius of a waveguide that has a cross section
with twofold symmetry (rw(φ) = rw(−φ) = rw(π +φ) =
rw(π − φ)), may be expressed as,

rw(φ) = a0

(

1 + ε

P
∑

p=1

δp cos[2pφ]

)

, (1)

δp are Fourier expansion coefficients normalized to ε such
that δ1 = 1. (If the waveguide wall cross section does not
have twofold symmetry, then cos[2pφ] should be replaced
by cos[pφ] in (1)).

For the oval waveguide, the cross section wall radius has
a Fourier expansion only up to P = 1 which may be written
as,

rw,oval(φ) = a(1 + εoval cos[2φ]), (2)

where a is the radius of the circular waveguide and εoval

is a small parameter which determines the deviation of the
second section from a circular waveguide. The linear taper
between the circular waveguide and the oval waveguide,
taper1, also has a wall radius of the form of equation (2).

For a rectangular waveguide with side lengths c and d,
the wall radius is given by

rw,rect(φ) =
d

2 cos φ
, 0 < φ < tan−1

( c

d

)

=
c

2 sin φ
, tan−1

( c

d

)

< φ <
π

2
. (3)
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The Fourier expansion coefficients in (1) for a rectangu-
lar waveguide can be expressed as Fourier integrals of the
wall radius given by (3). For the case of taper2, the ex-
pansion coefficients in (1) can be linearly interpolated in
z in terms of the expansion coefficients of a rectangular
waveguide. Thus, the mode converter’s Fourier expansion
coefficients in (1) may be determined anywhere along the
axis in terms of the design parameters, viz., a, εoval, and
the dimensions of the rectangular waveguide.

For TE modes, the mode vector function ~ei which is pro-
portional to the RF electric field inside the waveguide is
given by [2],

~ei = ẑ ×∇⊥Ψi. (4)

∇⊥ is the gradient operator transverse to the waveguide
axis and ẑ is the unit vector in the direction of the waveg-
uide axis and Ψi is the mode eigen function.

The eigen function for a mode in a nonlinear waveguide
may be written as a Fourier series of the mode in a circular
waveguide perturbed by a small expansion factor ε, which
may be expressed as

Ψs =

H
∑

i

α2iJ2i (k⊥sr) cos (2iφ) , (5)

where α2i =
∑

j A2i,jε
j and k⊥s =

∑

j
χjεj

a
. A2i,j and χj

are the expansion coefficients of the mode amplitude and
mode cutoff wave number at any given cross section, re-
spectively. We use subscript s to represent any mode inside
the mode converter.

By applying the boundary condition that the tangential
component of the electric field at the waveguide wall is
zero,

~es ·
∂~rw

∂φ
= 0, (6)

where ~rw = rw r̂, we can determine all the expansion co-
efficients A2i,j and χj in (5) at any cross section along the
axis of the nonlinear waveguide and hence determine the
eigen function for both modes.

MODE COUPLING

This section describes a method developed by Soly-
mar [3] to estimate the scattering of modes in a nonlinear
waveguide.

The inter-mode coupling in a nonlinear waveguide may
be accounted through Telegrapher’s equations of the form,

dVi

dz
= −jkzi

ZiIi +
∑

m

TimVm

dIi

dz
= −j

kzi

Zi

Vi −
∑

m

TmiIm, (7)

where Vi and Ii are the mode voltage and current, kzi
=

√

k2 − k2
⊥i

is the uncoupled propagation constant for the

ith mode, k⊥i
is the cutoff wave number of the ith mode,

k is the propagation constant in free space, m denotes all
other modes including the main mode in the waveguide,
and Zi is the mode wave impedance.

The mode coupling coefficients given in (7) are given by,

Tmi =

∫

S

~em ·
∂~ei

∂z
dS, (8)

where S is the cross sectional surface of the nonlinear
waveguide.

Assuming that the modes considered are above cutoff,
the mode voltage Vi and mode current Ii may be expressed
in terms of forward and backward wave amplitudes, A+

i

and A−

i . We assume that only two modes, M1 and M2 are
present inside the non-linear waveguide and there are no
reflections. Under these conditions the amplitude of the ith
mode due to the coupling with the mth mode is described
by,

dA+

i

dz
+ jkzi

A+

i = S+

imA+
m. (9)

where

S+

im =
1

2

[
√

kzi

kzm

Tmi −

√

kzm

kzi

Tim

]

, (10)

is the transfer coefficient between the two modes.

RESULTS

Inside the mode converter the modes M1 and M2 may be
considered as perturbations of circular waveguide TE0,1-
mode and TE2,1-mode respectively. Then the known ex-
pansion coefficients in (5) for mode M1 are A0,0 = 1,
A0,j = 0 for j 6= 0, A2i,0 = 0 for i 6= 0 and χ0 = 3.832
(eigen number corresponding to TE0,1-mode in a circular
waveguide) and for mode M2 are A0,0 = 0, A2,0 = 1,
A2,j = 0 for j 6= 0, A2i,0 = 0 for i 6= 1 and χ0 = 3.054
(eigen number corresponding to TE2,1-mode in a circu-
lar waveguide). Using these known expansion coefficients
the unknown coefficients A2i,j and χj may be determined
by expanding the left hand side of (6) in ε and equating
the expansion coefficients to zero to find the eigen func-
tions for the two modes M1 and M2 anywhere inside the
mode converter. The accuracy of the solution increases as
we consider more number of RF harmonics, H , as well as
more number of waveguide wall radius expansion harmon-
ics, P , to represent a rectangular waveguide in (1). As H

and P are increased the number of expressions that need to
be solved to determine the expansion coefficients increases
rapidly into thousands. This necessitates the use of a sym-
bolic solver like Mathematica [4] which we have used in
our calculations.

We have considered the rectangular waveguide wall ra-
dius as a Fourier expansion given in (1) with P = 5. Also
we have assumed that there are, H = 6, RF harmonics in-
side the mode converter. We have optimized the length of
taper1, taper2 and oval waveguide as well as εoval to ob-
tain the lowest level of the mode M2 at the end of the mode



converter at 11.424 GHz. The following are the dimensions
of the mode converter that were obtained by this exercise.
Radius of circular waveguide, a = 1.905 cm. Rectangular
waveguide sides, c = 1.52 cm, d = 1.82 cm. Taper length
between circular and oval waveguides (taper1), L1 = 2.43
cm. Length of oval waveguide = 1.975 cm. Taper length
between oval and rectangular waveguide (taper2)= 3.0 cm.
εoval = 0.1132.
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Figure 1: Level of mode M2 at the end of taper1 calculated
using HFSS and perturbation techniques.

We have studied the frequency response of the above ge-
ometry with different number of RF harmonics H . We
first consider only taper1 for our study. Fig.1 shows the
normalized amplitude of the mode M2 (normalized to the
amplitude of the main mode M1) at the end of taper1 for
H = 5 − 9, along with the results of HFSS field solver
simulation (see reference [5]) for the same geometry as a
function of frequency. We see that the frequency response
has similar characteristics for all values of H except for a
difference in the level of M2. It is interesting to note that
the level of M2 changes very little for H = 5, 6 and for
H = 7, 8. We also see from Fig.1 that the results of per-
turbation theory matches reasonably closely with that of
HFSS field solver simulations at the end of taper1 (within
0.2 dB over the frequency range considered).
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Figure 2: Level of mode M2 at the end of mode converter.
A fifth order Fourier approximation (P = 5) for the wall
radius of the rectangular waveguide is used.

In Fig.2 we have shown the normalized amplitude of the
mode M2 (normalized to the amplitude of the main mode

M1) at the end of the mode converter (beginning of the
rectangular waveguide) when the rectangular wall radius
is expanded up to the 5th component of the Fourier series
(P = 5). For a fair comparison between perturbation the-
ory and HFSS simulations, we have used exactly the same
geometry for our simulations in HFSS where the rectangu-
lar waveguide wall radius is approximated by a 5th order
Fourier expansion.

In Fig.2 mode conversion into the mode M2 was calcu-
lated using the perturbation theory with H = 6, 7 and 8
RF harmonics. A small change in the frequency response
characteristics is observed with change in the number of
RF harmonics considered in our calculations using pertur-
bation techniques. The resonant frequency as predicted by
our analytical method based on perturbation techniques is
within 1% of the resonant frequency predicted by HFSS for
all the three cases considered. However, the resonant fre-
quency reduces with increase in the number of RF harmon-
ics, H , constituting a “drift” from the resonant frequency
predicted by HFSS, as can be seen from Fig.2. The rea-
son for this descripency may be due to the approximations
used in the perturbation theory where all reflections inside
the mode converter are neglected.

CONCLUSIONS

We have developed an analytical perturbation technique
that was used to design a compact circular to rectangular
waveguide transition. This technique predicts the level of
a spurious mode inside the mode converter which is a non-
linear waveguide within reasonable accuracy compared to
HFSS field solver simulations. As the perturbation tech-
nique presented in this work leads to an analytical solution,
the calculations are much faster than HFSS. Therefore this
technique, which is quite general, can be an attractive tool
in the design and analysis of a wide variety of nonlinear
waveguides.
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