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Abstract

We analyze in detail a second order phase transition that occurs in large N Gaussian

multi-matrix models in which the matrices are constrained to be commuting. The phase

transition occurs as the relative masses of the matrices are varied, assuming that there

are at least four matrices in the lowest mass level. We also discuss the phase structure of

weakly coupled large N 3+1 dimensional gauge theories compactified on an S3 of radius

R. We argue that these theories are well described at high temperatures (T ≫ 1/R)

by a Gaussian multi-matrix model, and that they do not exhibit any phase transitions

between the deconfinement scale (T ∼ 1/R) and the scale where perturbation theory

breaks down (T ∼ 1/λR, where λ is the ’t Hooft coupling).
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1 Introduction

In this paper we analyze a phase transition that occurs in large N Gaussian matrix models

for which the matrices commute with each other, as a function of the masses. Our original

motivation for considering such matrix models came from the hope [1, 2, 3] that they would

be relevant for describing the high-temperature regime of 3+1 dimensional weakly coupled

gauge theories on S3. As we describe in section 2, it seems that this hope is not realized,

since at high temperatures the commutator squared terms in the action are not large enough

to constrain the matrices to commute with each other. However, such matrix models have

been suggested to be useful for studying BPS states in supersymmetric gauge theories on

S3 at strong coupling [4], and we hope that other applications may be found for them as

well.

We begin in section 2 by reviewing the phase structure of weakly coupled large N gauge

theories on S3, and arguing that these theories do not exhibit any phase transition in the

range between the deconfinement temperature and the temperature where perturbation

theory breaks down. In section 3 we analyze in detail a phase transition that occurs in

commuting matrix models as the masses are varied. A special case of this transition was

studied in [3]; here we generalize that analysis to general numbers of matrices, and describe

analytically how the theory looks just below the transition. This allows us to prove that

there is a second order phase transition, and to compute the jump in the second derivative

of the action.

2 Thermal gauge theories on S
3

The thermal partition functions of gauge theories on S3 can be computed by performing the

Euclidean path integral of the theory on S3 ×S1, where the S1 has circumference β = 1/T .

We will denote the radius of the S3 by R. This path integral can naturally be performed

by expanding all the fields into Kaluza-Klein (KK) modes on S3 ×S1, and then integrating

over these modes (which are just matrices). The derivative terms in the original action now

become mass terms for the various matrices, with contributions proportional to T 2 coming

from the Euclidean time derivatives, and contributions proportional to 1/R2 coming from

the spatial derivatives.

Classically, such a gauge theory has a single massless mode – the zero mode α of A0, both

on the S3 and on the S1. All other modes are massive (assuming that any scalar fields either

have a classical mass, or have a conformal coupling to the curvature that gives them a mass

on S3), with masses at least of order 1/R or of order T . It is then natural to integrate out

all the other modes, and obtain an effective action for α, which due to the symmetry under

large gauge transformations on the S1 is really an action for the unitary matrix U = eiβα.

This effective action turns out to be non-trivial already in the free theory, since the one-loop

path integral with some background value for α is non-trivial. We assume for simplicity
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that all fields in the gauge theory are in the adjoint representation; the generalization to

other cases is straightforward. The effective action of such free gauge theories, as computed

in [5, 6], takes the form, up to an overall additive constant,

S = −
∞
∑

n=1

1

n

(

zB(nβ) + (−1)n+1zF (nβ)
)

Tr(Un)Tr(U−n), (1)

where zB(β) (zF (β)) is the generating function for the bosonic (fermionic) modes in this

classical theory on S3, given by the sum of e−βEi over all bosonic (fermionic) states of

energy Ei, counting each mode in the adjoint representation once. The phase structure of

the matrix model (1) was analyzed in [5, 6]; the action S provides an attraction between

the eigenvalues (at least at short distance), but as in any unitary matrix model there is a

repulsion between the eigenvalues coming from the measure. We can write the action in

terms of the eigenvalues eiθp (p = 1, · · · , N) of U in the form:

S =
∑

p 6=q

∞
∑

n=1

1

n

(

1 − zB(nβ) − (−1)n+1zF (nβ)
)

cos(n(θp − θq)), (2)

where the first term comes from the change of measure from the unitary matrix to its

eigenvalues. From now on we will discuss only the large N limit of the gauge theory, in

which we can assume that there is some smooth distribution of the eigenvalues. At low

temperatures the repulsion wins and the eigenvalue distribution is uniform, corresponding

to a confined phase in which the expectation values of the Polyakov-Susskind loops Tr(Un)

vanish. At a temperature Td of order 1/R, given by the solution to zB(β) + zF (β) = 1,

there is a weakly first order phase transition to a phase where the eigenvalue distribution is

non-uniform and gapped, and this deconfined phase governs the high temperature behavior.

Adding higher loop corrections turns this weakly first order transition either into a first order

transition or into a second order transition followed by a third order transition, depending

on a coefficient which requires a three-loop computation [6, 7].

For T ≫ 1/R the eigenvalue distribution becomes highly localized. In this limit the

functions zB and zF go as 2nB(TR)3 and as 2nF (TR)3, respectively, where nB (nF ) is the

number of bosonic (fermionic) adjoint degrees of freedom in the theory: two from the vector

field plus one for every additional scalar field. We can then expand the action (2) for small

values of θ. The action includes a quadratic term, which is a one-loop mass term for the zero

mode α; recalling that we are working in a normalization of the fields with a factor of N/λ

in front of the classical action (where λ is the ’t Hooft coupling λ ≡ g2
Y MN), this quadratic

term corresponds to a physical mass proportional to λT 2(nB + 1
2nF ). This is precisely the

one-loop “electric mass term” that we expect to find for A0 in the large volume limit (see

[8] and references therein); in the large TR limit the diagrams giving this mass term in the

theory on S3 become identical to the same diagrams on R
3 (they are not IR-divergent).

The presence of this mass term means that even though classically α is always the lightest

mode, in the theory with finite coupling this is no longer true when λT 2 ∼ 1/R2, since then
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the KK modes of other fields could start becoming lighter than α, and it no longer makes

sense to integrate out the other fields and keep only α.

In the range TR ≫ 1 it is easy to see that the higher order interaction terms in (2) are

negligible, so the effective action of U is simply a Gaussian matrix model, and the eigenvalue

distribution approaches a semi-circle. When T & 1/
√

λR, we need to add also additional

fields in our effective action, since the lowest KK modes of the other massless bosonic fields

have masses of the same order (they have classical masses of order 1/R, and all of them,

except for the spatial components of the gauge field Ai, also have one-loop mass terms of

order
√

λT ). However, at such high temperatures, all fields are massive enough so that

their eigenvalues are small, and all interaction terms can be ignored. Balancing the mass

term against a logarithmic eigenvalue repulsion for each field of mass m, one sees that the

effects of the classical commutator squared interaction terms scale as λT/m4R3 compared

to the mass terms, so they can be consistently ignored whenever λT ≪ m4R3; this is true

for all our fields until we reach T ∼ 1/λR. At this scale perturbation theory breaks down

since the interactions of the Ai fields (with m ∼ 1/R) become large (note that up to this

temperature, perturbation theory is valid if we add to it the effect of the “electric mass

terms”, as discussed in section 5 of [7]). The effects of additional interaction terms arising

from quantum corrections are even smaller than the effect of these classical interactions, so

they can also be ignored for all T ≫ 1/R.

Thus, for all 1/λR ≫ T ≫ 1/R, gauge theories on S3 are well-approximated by a Gaus-

sian multi-matrix model for all the KK modes, with the masses given by a combination of

the classical KK masses and the one-loop masses. The eigenvalue distribution of these ma-

trices is (to a very good approximation) a semi-circle distribution, with a size proportional

to 1/m. There is no correlation between the different modes, so that different modes do

not generically commute with each other1. When T ≪ 1/
√

λR, α is much lighter than the

other modes, so its eigenvalues will be larger and dominate the dynamics. On the other

hand, when T ≫ 1/
√

λR, the KK modes of Ai will be much lighter than those of all other

fields (since they are the only ones which do not obtain an “electric mass term” at one-loop

order), so they will dominate the dynamics.

This implies that such weakly coupled gauge theories do not have phase transitions

in the range of temperatures between the deconfinement scale T ∼ 1/R and the scale

T ∼ 1/λR where perturbation theory breaks down. For any T ≪ 1/
√

λR the theory is well-

approximated by the single-matrix model (1), which has one or two phase transitions around

T ∼ 1/R but no additional transitions at higher temperatures. For all 1/λR ≫ T ≫ 1/R

the theory is well-approximated by a Gaussian multi-matrix model, and such models do not

have any phase transitions. This contradicts previous claims about phase transitions in this

range of temperatures that were made in [1, 3]; these claims were based on the assumption

that the matrices commute with each other. This assumption seems to be wrong (at least

1We are very grateful to Shiraz Minwalla for pointing this fact out to us, and correcting the first version

of this paper in which we wrongly assumed that the different modes commute.
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for T ≫ 1/R), and the dominant configuration, in which the matrices do not necessarily

commute, does not exhibit any phase transitions in this range.

3 Commuting Gaussian multi-matrix models

In this section we analyze the behavior of Gaussian multi-matrix models of the form

S = N
∑

i

m2
i Tr((~Φi)2), (3)

where ~Φi is a vector of ni Hermitean matrices, and the matrices are coupled by the require-

ment that they commute with each other in the dominant configuration. Similar models

have been discussed recently in [3, 4, 9]. We will not discuss here the justification for the

assumption that the matrices commute; in general one might expect that if there are strong

enough commutator interactions that would force the matrices to commute, they would

also lead to strong interactions between the diagonal elements, but we will assume that

imposing the constraint that the matrices commute does not lead to any other interactions

in our model. Perhaps this can be justified in a model describing only BPS states [4, 9].

With the assumption that all the matrices commute, we can diagonalize all of them

simultaneously with eigenvalues ~φi
p (p = 1, · · · , N). The action for the eigenvalues, including

the term coming from the change in the measure from the matrices to their eigenvalues,

then takes the form

S = N
∑

i

m2
i

∑

p

|~φi
p|2 − 1

2

∑

p 6=q

ln

(

∑

i

|~φi
p − ~φi

q|2
)

. (4)

We assume that the masses are ordered so that m2
1 < m2

2 < · · · ; if some masses are

equal we can join the corresponding modes together into a single vector. We will discuss

the phase structure of the theory as the ratios between the masses are varied. The equations

of motion following from the action (4) are

m2
i
~φi

p =
1

N

∑

q 6=p

~φi
p − ~φi

q
∑

j |~φ
j
p − ~φj

q|2
. (5)

3.1 The spherical phase and its stability

In this model, unlike the general (unconstrained) Gaussian matrix model that was men-

tioned in the previous section, we do not have a separate repulsive interaction between the

eigenvalues of each matrix, but just a single repulsive potential (4). Thus, the simplest

assumption to make is that only the lightest mode ~φ1 condenses, and all others do not. In

the large N limit where we have a smooth distribution ρ(~φ) for the eigenvalues of ~φ1, we

can write the equation of motion for such a solution as

m2
1
~φ =

∫

dn1 ~φ′ρ(~φ′)
~φ − ~φ′

|~φ − ~φ′|2
. (6)
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A simple argument shows that (for n1 > 2) there are no solutions in which ρ is a smooth

function on R
n1 [4, 3]. It is easy to see that (6) has a solution where all eigenvalues are

distributed on an Sn1−1 sphere [10, 9, 3], of the form

ρ(~φ) =
δ(|~φ| − r1)

|~φ|n1−1Vol(Sn1−1)
, (7)

where the sphere has radius

r1 =
1√
2m1

. (8)

The fact that the radius does not depend on the dimension was noted in [10]. This solution

is valid for all n1 > 1; for n1 = 1 the solution turns out to be a semi-circle, and for n1 = 2

the lowest action saddle is in fact a disc rather than the circle described above, but in this

note we will limit ourselves to theories with n1 ≥ 4. The action for this configuration takes

the form

S = N2

(

1

2
+ ln(m1) −

1

2
fn1

)

, (9)

where fn is a complicated expression involving hypergeometric functions, which is mono-

tonically increasing with n (approaching zero for large n). Its values for small n are

f8 = 37/60−ln(2) ≃ −0.0765, f7 = −47/60+ln(2) ≃ −0.0902, f6 = 7/12−ln(2) ≃ −0.1098,

f5 = −5/6 + ln(2) ≃ −0.1402, f4 = 1/2 − ln(2) ≃ −0.1931, f3 = −1 + ln(2) ≃ −0.3069,

f2 = − ln(2) ≃ −0.6931.

We can also write down many other saddle points of (6), where only some of the compo-

nents of ~φ1 condense on a lower dimensional sphere of radius (8). These clearly have higher

action than the saddle point above due to the monotonicity of fn. It is also possible for

different sets of components to condense on different spheres, so that the distribution is a

product of expressions of the form (7). All possible examples for n1 = 6 were considered in

[3], and their action was always found to be larger than that of the Sn1−1 distribution. We

believe that this is true for all values of n1 > 2.

The stability of this saddle point with respect to fluctuations of the ~φ1 eigenvalues was

checked in [3], and it seems to be stable. There are of course zero modes corresponding to

rotations of the Sn1−1, but all other fluctuations seem to raise the action. Next, we can

check for the stability of this saddle point with respect to turning on the eigenvalues of the

second lightest mode, generalizing a similar computation in [3]. A fluctuation in ~φ2 leads

to the quadratic action

δS = N
∑

p

m2
2|~φ2

p|2 −
1

2

∑

p 6=q

|~φ2
q − ~φ2

p|2

|~φ1
q − ~φ1

p|2
. (10)

In the large N limit, most of these fluctuations start becoming tachyonic when

m2
2 <

n1 − 2

n1 − 3
m2

1 . (11)

This analysis requires n1 > 3 for the convergence of the relevant integral.

5



Thus, assuming that n1 > 3, we have the following picture. If all other masses are larger

than (n1−2)m2
1/(n1−3), then the dominant saddle point is the one with only ~φ1 condensed

on a Sn1−1. Then, as we change the masses (perhaps due to changes in external parameters

such as the temperature), this saddle point becomes unstable whenever the mass of some

mode goes below this value. The crucial dynamics here is that once one set of eigenvalues

has condensed, it prevents the next lightest mode from condensing, over a range of masses.

3.2 The behavior just below the transition

In order to analyze the phase transition in detail we need to know the dominant eigenvalue

distribution immediately below the transition. This follows from the action for the joint

eigenvalue distribution of φ1 and φ2, which in the large N limit we denote as a continuous

function ρ(φ1, φ2). We will perform this analysis here only for n1 ≥ 6. The action is

1

N2
S =

∫

dn1φ1dn2φ2ρ(φ1, φ2)
(

m2
1|~φ1|2 + m2

2|~φ2|2
)

−1

2

∫

dn1φ1dn2φ2dn1φ1′dn2φ2′ρ(φ1, φ2)ρ(φ1′, φ2′) ln
(

|~φ1 − ~φ1′|2 + |~φ2 − ~φ2′|2
)

.(12)

We do not know how to minimize this action in general. However, immediately below

the transition, we expect the eigenvalue distribution to be localized so that |~φ2| ≪ |~φ1|.
Analytic expressions for the eigenvalue distribution may then be obtained by expanding the

action (12) in powers of φ2, using

ln
(

|~φ1 − ~φ1′|2 + |~φ2 − ~φ2′|2
)

= ln
(

|~φ1 − ~φ1′|2
)

+
|~φ2 − ~φ2′|2

|~φ1 − ~φ1′|2
+ · · · . (13)

There will be regions of the eigenvalue distribution where |~φ1 − ~φ1′| will be small and this

expansion is not strictly valid there. However, our expansion is performed inside an integral

weighted by ρ(φ1, φ2), so that just below the phase transition these regions contribute

negligibly to the integral (for n1 > 5).

By imposing that the SO(n1) × SO(n2) symmetry of the action is not broken by the

solution, the eigenvalue distribution may be written as

ρ(φ1, φ2) =

∫

dr2ρ(r2)
δ(|~φ1| − r1(r2))δ(|~φ2| − r2)

√

1 + (∂r1/∂r2)2|~φ1|n1−1|~φ2|n2−1Vol(Sn1−1)Vol(Sn2−1)
. (14)

There are two undetermined functions here, the eigenvalue density ρ(r2) (whose integral

is normalized to one) and the radius of the φ1 sphere r1(r2), where r2 is the radius of the

φ2 sphere. When we perform a small φ2 expansion as in (13), we should also expand the

undetermined function

r2
1(r2) = r2

1(0) + r
(1)
1 (0)r2

2 + · · · . (15)

Our strategy is to perform this expansion in the action, and then extremize to solve for

r1(0) and r
(1)
1 (0). However, r1(r2) is not the only undetermined function in the ansatz (14).
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We must also solve for the effective eigenvalue density ρ(r2). For the leading order behavior

below the transition it is enough to expand the action to order r4
2, and to this order (for

n1 > 5) the action only depends on the eigenvalue density through the moments

〈r2
2〉 ≡

∫

dr2ρ(r2)r
2
2 , 〈r4

2〉 ≡
∫

dr2ρ(r2)r
4
2 . (16)

Naively, one may treat 〈r2
2〉 and 〈r4

2〉 as independent variables in the action. However, this

leads to inconsistent equations of motion. The reason for this is that the Cauchy-Schwartz

inequality requires that 〈r4
2〉 ≥ 〈r2

2〉2, with equality only for the delta function distribution,

so these variables are not independent of each other. The procedure we will use will be to

define a new variable x by

〈r4
2〉 = x〈r2

2〉2 , (17)

and to extremize the action with respect to 〈r2
2〉 and x subject to the constraint x ≥ 1.

Simultaneously to the small r2 expansion, we must expand about the transition point

(11). We do this by introducing a small parameter, ε, defined by

m2
2 =

n1 − 2

n1 − 3
m2

1 − ε . (18)

We then solve for r1(0), r
(1)
1 (0), 〈r2

2〉 and x in an expansion in small ε. Our objective is to

compute the action of the solution just below the transition to the first non-trivial order,

which is order ε2.

Using the ansatz (14) for the eigenvalue distribution, one can perform the integrals over

the spherical directions in the action. Then, we can solve the equations of motion of r1(0),

r
(1)
1 (0) and 〈r2

2〉 in a power series in ε. We find, up to the order we need:

〈r2
2〉 =

n2(n1 − 3)2(n1 − 4)(n1 − 5) ε

2m4
1(n1 − 2)((n1 − 4)(n1 − 3)2 + n2(n2

1 − 6n1 + 7 + (n1 − 3)x))
+ O(ε2) ,

1

r2
1(0)

= 2m2
1 −

4(n1 − 2)m4
1

(n1 − 4)(n1 − 3)
〈r2

2〉 + O(ε2) ,

r
(1)
1 (0) = −n1 − 2

n1 − 4
+ O(ε) . (19)

It is interesting that the eccentricity of the ellipsoid defined by (15) does not tend to 1 at the

phase transition (it does not become a pancake). As we approach the transition from below,

the eigenvalues slide along the ellipsoid, which remains of constant shape, and accumulate

at r2 = 0. Note also that the relation between r1 and r2 does not depend (at leading order)

on the number of modes which condense at the transition, n2. This number only enters in

the solution for 〈r2
2〉. The form of the ellipsoid (15) suggests that below the transition the

eigenvalue distribution has topology Sn1+n2−1. This is supported by the numerical results

in [3].

If we now try to solve the equation of motion of x we see that it has no solution. Plugging

the solution (19) into the action, we see that within the allowed range of x ≥ 1 the action
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is minimized at the boundary x = 1, which is why this equation cannot be satisfied. Thus,

the minimal action solution is (19) with x = 1 (at leading order in ε). This delta function

behavior of the eigenvalue density to leading order in ε implies that just below the transition

the eigenvalues will be clustered around r2 ∼ 〈r2
2〉1/2.

We can check the correctness of the results we have just stated by comparing with

numerical solutions of the equations of motion. Figure 1 compares our results with a

numerically computed eigenvalue distribution with N = 350 points, n1 = 6, n2 = 1 and

ε = 0.04. There is a good agreement, especially in the region where the bulk of the

eigenvalues are clustered, at r2 ∼ 〈r2
2〉1/2. Quantitatively, the numerical analysis gives

〈r2
2〉 ≈ 0.0073 whereas our formula (19) gives 〈r2

2〉 ≈ 0.0053. The discrepancy here is of

order ε2 = 0.0016, as we should expect. The numerics furthermore give 〈r4
2〉/〈r2

2〉2 ≈ 1.21,

which is roughly of order ε away from x = 1, again consistent with our approximations.

0.79 0.792 0.794 0.796 0.798 0.8 0.802
r1

0

0.02

0.04

0.06

0.08

0.1

r2

Figure 1: Numerical analysis and leading order analytic results for n1 = 6, n2 = 1 at

masses m2
1 = 0.78 and m2

2 = 1, corresponding to ε = 0.04. The numerical analysis uses

N = 350 eigenvalues. At leading order in ε the distribution is supposed to be a delta

function at r2 =
√

〈r2
2〉 = 0.0727. Consistently with this, the fraction of the eigenvalues in

the lower grouping is around 15 percent, which is of order ε.

It is now straightforward to take our solution (19) and evaluate the action (12) to order

ε2. Relative to the sphere solution (7), the action is

1

N2
∆S = −ε

2
〈r2

2〉 = − n2(n1 − 5)(n1 − 3)2

4(n1 − 2)((n1 − 3)2 + n2(n1 − 1))

ε2

m4
1

. (20)

Thus we see that there is a second order phase transition as ε → 0.

It would be interesting to see if there are additional transitions in these models, for

instance as the mass of a third matrix is decreased. It would also be interesting to generalize

our analysis to matrix models that have lower values of n1. For n1 < 4 it seems that more

than one vector of matrices condenses for any ratio of masses, and it would be interesting

to see if similar phase transitions to the one we described still occur or not.
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