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Abstract: A gas cloud near a supernova remnant (SNR) provides a target forpp-collisions leading
to subsequentγ-ray emission throughπ0-decay. The assumption of a power-law ambient spectrum of
accelerated particles with index near –2 is usually built into models predicting the spectra of very-high
energy (VHE)γ-ray emission from SNRs. However, if the gas cloud is located at some distance from
the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with
the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with
the injection energy gradually decreasing as the SNR ages. Theγ-ray spectrum resulting from particle
interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum
distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and
apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.

Introduction

SNRs are believed to be the primary sources of
cosmic rays (CR) in the Galaxy. Observations of
X-ray [12] andγ-ray emission [3, 4] from SNR
shocks reveal the presence of energetic particles,
thus testifying to efficient acceleration processes.
Acceleration of particles in collisionless shocks
is a matter of intensive research in conjunction
with the problem of CR origin [7, 6, 11]. Cur-
rent models include nonlinear effects (e.g., [5])
and treat particle acceleration using hydrodynamic
codes (e.g., [9]). The predicted spectrum of accel-
erated particles has a power-law form in rigidity
with index which may slightly vary around –2.

The VHE γ-ray emission from shell-type SNRs
has been modelled using leptonic (inverse Comp-
ton – IC) and hadronic (π0-decay) scenarios. The
leptonic scenario fits the broad-band spectrum of
a SNR assuming a pool of accelerated electrons IC
scattering off the interstellar radiation field produc-
ing VHE γ-rays while the magnetic field and elec-
tron spectrum cut-off are tuned to fit the radio and
X-ray data (e.g., [13, 18]). The hadronic model

fits the VHEγ-ray spectrum assuming a beam of
accelerated protons hits a target, such as a nearby
molecular cloud [1, 14]. The latter, if definitively
proven, would be the first experimental evidence of
proton acceleration in SNRs.

The assumption of a power-law ambient spectrum
of accelerated particles with index near –2 is usu-
ally built into the models predicting the spectra of
VHE γ-ray emission from SNRs. However, if a
molecular cloud is located at some distance from
the shock, the particles which interact with the
cloud are those leaking from the shock and their
spectrum is different [10]. In a toy model, the
shock accelerates particles until the highest pos-
sible energy is reached. At this point the shock
cannot confine the particles any longer and they
escape into the interstellar medium (ISM). The en-
ergy spectrum of these particles will be monoener-
getic with the injection energy gradually decreas-
ing as the SNR ages. Theγ-ray spectrum result-
ing from the particles interacting with a gas cloud
will be essentially flatter than expected. The dif-
fuse emission detected at the Galactic centre by the
HESS [2] may be of this sort.
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Particle acceleration in SNR shock

We use the steady-state diffusion-convection equa-
tion
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∂f
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, (1)

wheref(x, p) is the isotropic (in the local fluid
frame) part of the particle distribution, andp is
the particle momentum inmc units. We use a
planar geometry and assume that the gaseous dis-
continuity (sub-shock) is located atx = 0 while
the shock propagates in the positivex-direction.
The flow velocity in the shock frame can be repre-
sented asV (x) = −u(x) where the (positive) flow
speedu(x) jumps fromu2 ≡ u(0−) downstream
tou0 ≡ u(0+) > u2 across the sub-shock and then
gradually increases up tou1 ≡ u(+∞) ≥ u0. The
particle density is assumed to vanish far upstream
(f → 0, x → ∞), while the only bounded solution
downstream isf(x, p) = f0(p) ≡ f(0, p). We as-
sume Bohm diffusionκ(p) = Kp2/

√

1 + p2. The
constantK depends on theδB/B level of the mag-
netohydrodynamic turbulence that scatters parti-
cles in pitch angle. However, it can be rescaled out
of eq. (1) since we are not interested in the shock
structure here.

To include the back-reaction of accelerated parti-
cles on the plasma flow the following equations
are used in a quasi-stationary acceleration regime:
(i) the conservation of the momentum flux in the
smooth part of the shock transition (CR-precursor,
x > 0) Pc+ρu2 = ρ1u

2
1, wherePc is the CR pres-

sure (CRs escape after crossingp = pmax), (ii) the
continuity equationρu = ρ1u1, (iii) the Rankine-
Hugoniot relations for the sub-shock strengthrs ≡

u0/u2 = (γ + 1) /
(

γ − 1 + 2Rγ+1M−2
)

where
M is the Mach number atx = ∞, the precursor
compressionR ≡ u1/u0, andγ is the adiabatic
index of the plasma.

These equations self-consistently describe the par-
ticle spectrum and flow structure. An efficient so-
lution method is to reduce this system to one in-
tegral equation [16]. A key dependent variable is
an integral transform of the flow profileu(x) with a
kernel suggested by anexact (in the limitM → ∞,
pmax → ∞) asymptotic solution of the system
which has the following form

f(x, p) = f0(p) exp
[

−
q

3κ
Ψ

]

, (2)

where the flow potentialΨ =
∫ x

0
u(x′)dx′ and the

spectral index at the sub-shock and downstream
q(p) = −dlnf0/dlnp. The integral transform gen-
erates the “spectral function” of the flow velocity
U (p) instead of the flow velocityu (x) as follows
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and is related toq(p) as q(p) = dlnU/dlnp +
3/[rsRU(p)] + 3. The equation forU (p) is
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wheret = lnp, t0,1 = lnp0,1. The injection param-
eterν = (4π/3)(mc2/ρ1u

2
1)p

4
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Our main goal is to calculate the flux of escaping
particles. Since they leave the accelerator through
thep = pmax boundary and the solution normali-
sation is set by the particle distribution atp = pinj

(injection rate), the flux will depend on the entire
solution betweenpinj andpmax. For typical SNR
conditions, this interval spans seven orders of mag-
nitude or more and even small errors in the slope
along the spectrum will result in a failure of the
flux determination. To avoid this, we first compare
our analytic solution with a numerical one [8]. The
result of the comparison is illustrated in Fig. 1. To
compare we substitute the injection rate ( i.e., the
height of the spectrum atp = pinj) indicated in the
Monte Carlo (MC) simulations. To calculate the
escaping flux we use the time dependent version of
eq. (1) usingg ≡ p3f in place off

−
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and calculate the temporal variation of the total
number of particles in the regionx > 0 assum-
ing pmax ≃ const (see [15] for a discussion of
this assumption, along with our assumption about
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Figure 1: Comparison of our analytic solution with
MC simulation [8]. Belowpinj, it is a thermal
Maxwellian; MC simulation parameters:M=128,
pmax=105, ν≃0.4.

monoenergetic escape and for further references).
Note thatpmax(t) is adopted in [19, 10]

NUp = 4π

∫

∞

0
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Therefore, from eq. (6) we obtain
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In this particle balance equation the term contain-
ing g (pinj) is simply due to particle injection at
p = pinj, while the last term is the particle convec-
tive flux downstream. The remaining term is the
flux of escaping particles

Qn =
4π

3

∫

∞

0−

du (x) g (pmax, x)

≃
4π

3
f0 (pmax) p3

maxu1U (pmax) , (8)

where we have used definition of the spectral func-
tion U (p) eq. (3), and the solution, eq. (2). Using
the plasma number densityn1 = ρ1/mp one can
obtain the normalised flux as

Qn

n1u1

= ν
u2

1

c2

p3
maxf0 (pmax)U (pmax)

p4
injf0 (pinj)

.

This quantity is plotted in Fig. 2 as a function of
compressionr. Note that the injection rate ob-
tained from MC simulations corresponds to nearly
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Figure 2: Bifurcation diagram showing injection
rateν (which is actually a control parameter) ver-
susr. The insert shows the region of the “phase
transition.” The upper curve shows the particle es-
caping flux, normalised to the plasma flux far up-
stream and multiplied by the factor108, for clarity.

the maximum escaping flux possible, where the
functionr (ν) saturates. This saturation is related
to the sub-shock smearing,Rγ+1→M2. We be-
lieve that the MC methodoverestimates the in-
jection due to the lack of the feedback from par-
ticle driven turbulence. It was argued [16] that
self-regulation of acceleration, which includes but
is not limited to the particle trapping by self-
generated waves, leads to a significant reduction of
the injection rate which is maintained at nearly the
critical level where the shock compressionr (ν)
rises sharply, Fig. 2. For the calculations shown in
Fig. 2, this approach indeed reduces the injection
by an order of magnitude compared to MC results.

Detailed calculations of the escaping flux will be
presented elsewhere. Here we note that the nor-
malised fluxQn/n1u1 does not depend strongly
on M saturating (whenM

∼
>100) at Qn/n1u1 ≈

10−5/pmax for u1=0.005c. This scaling is the re-
sult of energy requirement, sinceQe = cpmaxQn

andQe is the escaping energy flux which is con-
strained by the available mechanical energy flux
and the equipartition condition. The latter means
that for the injection rate close to the critical, about
half of the shock energy goes into the CR.

Calculations

Diffuse emission has been detected at the Galac-
tic centre by the HESS [2]. Its intensity correlates
with the gas density as traced by the CS emission
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Figure 3: The spectrum ofγ-rays from outer (mo-
noenergetic protons of 25 TeV, thin solid) and inner
clouds (power-law with index−2.29, dashes); nor-
malisations are arbitrary. Thick solid line shows
the total spectrum. Data: HESS [2].

up to the>200 pc from the central source, while
the SNR shell is about half this size,∼100 pc, as-
suming a SNR ageτSNR∼10 kyr and shock speed
104 km s−1. Clearly, some part of this emission

∼
>100 pc may be produced by particles which left
the SNR shockτ<1.5 kyr, if the diffusion coeffi-
cient in the ISMDxx(10 TeV)

∼
>1 kpc2 Myr−1,

i.e. relatively recentlyτ ≪ τSNR.

The HESS data are obtained for the combined
emission from all gas clouds in the region. How-
ever, the model predicts different VHEγ-ray spec-
tra from clouds at different distances from the
SNR. The most distant clouds should exhibit a flat-
ter spectrum with index close to –1; closer to the
SNR shell the spectrum may steepen and become a
regular power-law with index about –2 for clouds
located at or inside the shell. To evaluate the feasi-
bility of such scenario, we calculate the spectrum
of VHE γ-rays assuming two components: one for
the clouds outside of the shell (a monoenergetic
ambient spectrum of protons) and another for the
clouds inside the shell with a power-law index sim-
ilar to the central source –2.29. The spectrum of
γ-rays can be evaluated using the scaling approxi-
mation [20] as described in [17].

To illustrate the idea, Fig. 3 shows the calculated
two-component spectrum from the Galactic centre
together with the HESS data. Reasonable agree-
ment with the data can be obtained for a proton in-
jection energy∼25 TeV, consistent with the SNR

age of∼10 kyr. The spectrum from the outer
clouds differs significantly from what is expected
for the usual hadronic scenario: it has slope close
to –1. Gabici and Aharonian [10] came to a similar
conclusion.
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