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Abstract 
 

This article explores the energy gain for a single relativistic electron from 
a monochromatic linearly polarized plane wave incident on a planar 
reflective boundary oriented at an arbitrary oblique angle, and compares 
the prediction for the energy gain from Inverse Transition Radiation 
method and the electric field path integral method.  It is found that both 
methods predict the same energy gain regardless of the orientation of the 
boundary. A brief analysis on partially reflecting surfaces is presented. 
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I. Introduction 

The question of laser driven particle acceleration as an inverse radiation process presents 
an interesting view of the underlying physics for charged particle acceleration. The 
conservation of electromagnetic energy statement known as Poynting’s Theorem [1] is 
the center of the inverse-radiation picture. It the case of structure based linear particle 
acceleration the Inverse Transition Radiation (ITR) picture predicts an energy gain equal 
to the overlap integral of laser and the particle’s wake field radiation patterns in the far-
field [2,3].   
 
Historically the energy gain calculations for laser-driven particle acceleration in semi-
open structures typically utilized the field Path Integral Method (PIM) of the incident 
laser field co-propagating with the electron beam and made no assumptions about the 
accelerator structure other than its ability to ‘magically’ terminate the laser field [4,5]. At 
first glance this raises the question to the general validity of the path integral energy gain 
method and would prompt us to seek special instances where we would expect ITR and 
PIM have different energy gain predictions.  
 
One such candidate situation for potential differences between ITR and PIM came up in 
the proof-of-principle experiment (the LEAP experiment [6]) for laser-driven particle 
acceleration in a semi-infinite vacuum. A large fluctuation in the observed energy 
modulation was observed even at conditions where there appeared to be good spatial and 
temporal overlap between the laser and the electron beam. As a possible explanation it 
was hypothesized that the energy gain fluctuation was caused by shot-to-shot variations 
of the orientation the reflective boundary, resulting overlap variations between the laser 
and the transition radiation fields. The data shown in Figure 1 is an example of the 
fluctuation of the energy modulation typically observed.  
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Figure 1 

 
If the energy gain predicted by the ITR process does indeed differ from the energy gain 
predicted by the electric field path integral method for boundaries at oblique orientations 
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we would have the possibility to test this with our experimental setup, and in a future set 
of experiments at E163 we plan to measure the energy gain as a function of a controlled 
obliquity angle of the reflective tape, ranging from normal incidence to at least 45 
degrees. Therefore a thorough analysis of the predictions from the ITR and the PIM 
pictures prior to the experiment are of interest. 
 
 
II. Energy gain calculations and assumptions 

We have to calculate the expected energy gain with a boundary at oblique orientation by 
both methods. To do this we will make the following assumptions: 

• For the sake of simplicity assume that the laser beam is monochromatic and that it 
can be described by a plane wave. For the large gaussian laser beam we employ in 
the LEAP experiment this is a very good approximation. This does not 
compromise the physics, since we can describe laser beams of arbitrary spatial 
and temporal profiles as superposition of monochromatic plane waves, and the 
analysis for both ITR and PIM is linear. 

• The boundary is a perfect high reflector. For the metallic surface of the boundary 
and the NIR laser this is a fairly good approximation. Absorption effects will be 
dealt in a subsequent article.  

• The electron trajectory is straight and is unaffected by the laser or the boundary, 
and furthermore the electron’s velocity v=βc remains unchanged; an assumption 
typically made in all path integral energy gain calculations. 

• The energy lost from transition radiation can be neglected. 
We first evaluate the energy gain expected from the ITR picture and then proceed with 
the PIM picture. 
 
 
III. Energy gain from the ITR picture 

With the assumptions listed earlier we can utilize Poynting’s Theorem and find that the 
energy gain of the charged particle is  
 

( ) dtdsnBErdEU
Sc

∫ ∫∫
∞

∞−

⋅×−=⋅=Δ ˆ1

0

rrrr

μ
     1 

 
where E

r
 is the total electric field and B

r
 is the total magnetic field. The total field is the 

superposition of the laser field and the retarded field of the charged particle. denotes the 
path of the charged particle and  is the surface of the volume which encompasses the 
interaction.  In the far field the “accelerating” E- and B-components (

c
S

TRE
r

 and TRB
r

) of the 
retarded fields dominate. These are normal to  and normal to each other, that is, n̂

nBE TRTR ˆ⊥⊥
rr

.  The laser field can be described by an incident component nBE II ˆ−∝×
rr

 
with flux entering  and a reflected component S nBE RR ˆ+∝×

rr
 leaving the surface . See 

figure 2. 
S
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Figure 2 
 
 
Using the Fourier transformation pair that has the form 
  

( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

− =↔= ωωω ω
π

ω derEtrEdtetrErE titi ,~,    ,,~
2
1r    2 

 
and the relation between the incident, the reflected laser fields and the retarded fields we 
can express the energy gain of the particle of equation 1 as 
 

( ) ( )( ) ωωω
π

ddsEE
Z

U
S

TRR∫ ∫
∞

∞−

⋅−=Δ *

0

1 rr
      3 

 
where is the vacuum impedance.  A detailed derivation of equation 3 is given in the 
appendix. As seen in equation 3 only the reflected laser field component contributes to 
the overlap integral in the ITR picture.  Now we need to find 

0Z

( )ωTRE
r

. The transition 
radiation from a flat infinite reflective boundary can be conveniently found by the 
method of image charges. We assume a charge  with velocity 1q 1β

r
 (normalized to c) is 
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incident on a flat boundary at an oblique angle. By the method of image charges there is a 
corresponding image charge  with velocity 2q 2β

r
 behind the boundary. These intersect at 

the boundary and can be thought of coming to a sudden stop, effectively canceling each 
other. 
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Figure 3 
 
Starting from the retarded scalar and vector potentials for a point charge  
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and using the electric and magnetic field expressions 
 

AEAB dt
d
rrrr

−Φ−∇=×∇=     ,        5 
  

The retarded electric field of an accelerating charge can be found to be 
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In the frequency spectrum this corresponds to 
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Assume the deceleration time for the charge  is infinitely short, hence the term 1q

( cRtie −′− ω ) is approximately constant over the integration time where β changes value. 
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using 0=finalβ

r
 and  we get zinitial ˆ1 βββ ==

rr
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note that the electric field is radially polarized 
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For the image charge  we perform exactly the same type of calculation, except that it is 
convenient to introduce a separate rotated set of coordinates aligned with the initial 
trajectory of this charge 

2q

2//ˆ β
r

z . 
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It is easy to verify that the cartesian coordinates ( )zyx ′′′ ,,  are related to (  by the 
rotation matrix with a rotation angle of 

)zyx ,,
ξπ − about . ŷ
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and 
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The total field is 2,1, TRTRTR EEE

rrr
+= . In our case we are interested in the TR field pattern 

in the xz plane (y=0). This allows us to express the field pattern as a function of θ . Using 
 we obtain 12 qq −=
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where ( )θξπθ −−=′  
 
Solution in the relativistic limit 
In the relativistic limit the overlap between the TR cones of the charge and the image 
charge are negligibly small.  Since the TR cone of the charge lies in the forward direction 
(behind the boundary) the laser has virtually no overlap and we can approximate the TR 
field in the vacuum space as the contribution from the image charge 
 

( )
( )

( )⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′−

′

′−
′

′
=′′

′

θθ

θθ

θβ
θβ

π
θ

ω

sin
0

cos

cos1
sin

4
, 0

R
eqZRE

cRi

TR

r
    15 

Next, we need to express the reflected laser field in terms of the ( )θ ′′,R  coordinates. As 
shown in Figure 4 assume that the incident laser beam is a monochromatic plane wave at 
a shallow angle α  with respect to the electron beam. Hence the laser field reflected from 
the screen  is propagating at a shallow angle to the ( zyxf ′′′ ,, ) z′ˆ  axis. In this instance the 
far-field pattern  of the laser beam can be expressed in terms of the Fraunhofer 
diffraction of the laser field at 

( ∞→′R )
0=′z .  
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The  plane is orthogonal to the ( vu, ) z′ˆ  axis and goes through the origin . Note that 0=′z

ck ω=  and can be positive or negative. So when evaluating the integral of equation 16 
we have to watch the sign of ω , especially when we take the absolute value of and 
express it in terms of the wavelength 

k
λ . 

 
If the boundary is a flat perfect reflector the reflected laser beam is also a plane wave. 
Assume that the plane wave has the form ( ) ( )RRR trkPEtrE ϕω +−′⋅=′ 00 cosˆ, rrrr

 with 
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α0kkx −= , ,  and 0=yk 22
0

2
xz kkk −= ck 00 ω= . The coefficient α0kkx =  indicates that 

the plane wave is at an angle α  with respect to the z′ˆ axis.  is the polarization unit 
vector of the plane wave. 
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Figure 4 
 
In the frequency domain the amplitude of the electric field is  
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Therefore the far-field diffraction amplitude is 
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(The quantity in brackets is not a vector; it is a sum.) Note that when 00 kk +=→= ωω , 
and when 00 kk −=→−= ωω , that is, k can be positive or negative. In equation 18 we 
have the integral of a complex exponential, which gives a delta function: 
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where ( ) 1+=ωS  for 0>ω   and ( ) 1−=ωS   for  0<ω .   
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which simplifies to 
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In the small angle approximation the coordinates φθ ′′,  are related to RyRx ′′′′ ,  by 
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since ( ) ( ) ( ) ( ) θφδθδδδ ′′−′=− sinavau (switching to spherical coordinates) 
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The reflected laser electric field vector is 
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With the overlap integral of the TR field and the reflected laser beam we can evaluate the 
energy gain  UΔ
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where cR′= 0ωχ  is a relative phase angle of the transition radiation at frequency 0ω .  
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In the small angle approximation we can use αα ~sin , 2

2
11~cos αα − , and in the 

relativistic limit we can approximate 2211~ γβ − .  Therefore 
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As expected, is proportional to and UΔ 0E λ , depends on the polarization angle ρ  and 
on the optical phase Rϕ  and shows the expected dependence on the laser crossing angle 

( ) ( )22 1 γααα +=F  that has a maximum at γα 1max ±= . 
 

IV. Energy gain from the path integral method, relativistic limit 

For a plane wave at an angle α  with respect to the electron beam describe the electric 
field of the incident laser beam by 
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where α0kkx = , ,  and 0=yk 22
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angle ρ , the polarization vector of the laser field is 
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Along the electron beam trajectory ( )tz ,0,0,  the electric field is 
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Assuming constant velocity t  can be eliminated by βczt = . Therefore 
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The energy gain is 
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For now assume that electron beam is relativistic and hence the slippage distance for the 
reflected laser beam is very small compared to the slippage distance of the incident laser 
beam and therefore contribution to UΔ from the reflected laser beam is small compared 
to the contribution from the incident laser beam. Then  
 

( )(∫∫
∞−∞−

⋅+−=⋅=Δ
0

0

0

ˆˆ1coscosˆ dzzPkzEqdzzEqU III ϕβα
r

)    35 

 
ραρα cos~cossinˆˆ −=⋅ zPI  for small angles  α   , and therefore 
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The integral is of the form 
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Therefore the energy gain of the charged particle is 
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Note that since πϕϕ += RI  from the Fresnel condition of reflection from a metallic 
surface equation 29 and equation 38 are identical, illustrating the equivalence between 
the ITR and the PIM pictures, at least in the highly relativistic limit.  
 
So what about the energy gain predictions of these two methods in the low energy limit? 
The assumptions listed in the introduction do not make any statement about the particle’s 
velocities, and hence we should expect the ITR and the PIM methods to give identical 
energy gain predictions. 
 
 
V. General Solution including the low energy limit 

In the low energy limit the previous assumptions for high γ break down. In the PIM 
picture we cannot neglect the energy gain contribution from the counter propagating laser 
beam, and in the ITR picture we have to include the retarded fields of both charge and 
image charge.  
 
The ITR picture 
The TR fields for the charge and image charge start to have significant overlap and the 
contribution from both has to be included for the total transition radiation field in 
equation 14. We had found that the transition radiation pattern had the form 
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The two terms in the brackets represent the angular distribution functions of the retarded 
fields of the charge and image charge. At lower γ the denominators of these two terms do 
not approach zero at a particular angle and hence the radiation patterns do not form sharp 
and large-value peaks but start to have significant overlap at all angles. This results in a 
more pronounced asymmetry in the observed transition radiation cones Figure 5 shows a 
polar plot of the intensity of the angular distribution of the transition radiation field of 
equation 39, ( ) max, IRITR θ  at four different beam energies: 0.1, 2, 10 and 50 MeV. 
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Figure 5; polar plots of ( ) max, IRITR θ  for a metal foil at normal incidence 
(0°), and a metal foil at 45° 

 
 It can be seen that at the lower energies the TR distribution has a wider angular spread 
and hence the cone asymmetry for the oblique angle surfaces is more pronounced.  
Hence, for reflective surfaces at oblique angles we expect an asymmetry of the energy 
gain depending with which side of the TR cone the reflected laser beam overlaps. 
Equation 39 describes the TR pattern. To calculate the overlap integral we need to 
express the far-field laser pattern given in terms of yx ′′, in equation 22 in terms of θ .  
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I will rewrite this expression as 
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Where ( βξα ;,F  is the angular dependence function of the energy gain. 
 
The PIM picture 
Can the PIM method account for the same predicted asymmetry of the energy gain as a 
function of laser crossing angle? As stated earlier at lower γ the assumption that 

 no longer holds: the slippage distance of the forward going laser beam  
reduces in length to a few λ and the contribution from the reflected laser beam becomes 
significant and in this limit both incident and reflected laser beam have to be taken into 
account. 

RI ZZ >> IZ

 
The electric fields from the incident and the reflected laser beam were described by 
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where and  indicate the polarization states. Now we need to find the total 
longitudinal electric field 

IP̂ RP̂

zIzRz EEE ,, += at the coordinates of the particle . ( )zr ,0,0=
r
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the quantities , ,  and  can be found from the figure below zIP , zRP , zIk , zRk ,
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hence the energy gain from the incident and reflected beam is 
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Since πϕϕ += RI (reflection from a metallic boundary) and βczt =  
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Using the formula of equation 37 to evaluate the cosine-integral the values of and  
of equation 46 become 

IU RU
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Hence the total energy gain is RI UUU +=Δ  
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where A and ( βξα ;,F  have the same values as the energy gain calculated by the ITR 
method, shown in equation 41. Clearly for surfaces at oblique orientations 0≠ξ  the 
energy gain ( ) ( )αα −Δ≠Δ UU  is not symmetric with the laser-crossing angle. 
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Figure 7: The angular distribution function ( ) ( )βξαβξα ;,;, maxFF  
normalized to its maximum value for different beam energies 

 
Figure 7 illustrates the normalized energy gain function for the boundary at normal 
incidence and at 45°.  As expected, for the boundary oriented at 45° it can be observed 
there is a clear asymmetry of the energy gain that is more pronounced at the lower 
electron energies and furthermore there is a nonzero energy gain for an incident laser 
crossing angle of 0=α . This is due to the electric field of the reflected laser beam being 
parallel to the electron trajectory and doing work for a sub-wavelength slippage distance. 
Although it would appear from Figure 7 that this effect is strongest at lower energies it is 
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actually largest for the highly relativistic case since at that limit the slippage distance 
approaches 2λ . A plot of ( )βξα ;,F  versus the laser-crossing angle α  shown in figure 

8 illustrates this. The inset shows ( )βξα ;,F  in the vicinity of 0=α , and shows that at 

0=α  the function ( )βξα ;,F  has the same small but nonzero value for the higher 
particle energies. Only the instance for 5.0=β  shows a significantly lower value at 

0=α , due to the reduced slippage distance at lower electron speeds. 
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Figure 8 
 
Let’s explore this instance of having the incident laser beam at 0=α  to the case where 
the high reflector surface is rotated from normal incidence 0=ξ  to almost at grazing 
incidence for the electron beam, such that the reflected laser beam slippage distance is 
significantly increased, or in the ITR picture the reflected laser beam is optimally 
overlapped with the TR pattern. 
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Figure 9 shows the function ( )βξα ;,0=F  as the boundary angle is swept from 0° to 
180°, corresponding to sweeping the reflected laser beam from ξ = 0° to ξ =360°. As 
expected the optimum energy gain at higher energies occurs at very shallow angles where 
the reflected laser beam is almost co propagating with the electron beam and has a very 
long slippage distance (the optimum angle now being γξπ 1=− ).  At the lower 
energies the maximum energy gain is smaller (due to the reduced slippage distance) but 
at the same time it is less selective to the reflected laser beam angle ξ . 
 
It is interesting to note that the energy gain from sweeping of the angle of the reflected 
laser beam (either by tilting of the reflective boundary or by sweeping of the input laser 
beam angle is simply a probe of the transition radiation amplitude angular distribution. If 
the electron beam is optically bunched even the phase of the TR pattern could be 
determined. 
  
 
VI. Laser acceleration in the downstream space of the reflective boundary 

The examples involved the analysis of laser acceleration in the upstream space of a high 
reflector. The analysis in the downstream space is not much different, either in the ITR or 
in the PIM picture.  The ITR energy gain equation 3 is general and also applies in this 
instance, and the PIM energy gain equation 34 is the same except for a change of the path 
integral limits to 
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The transition radiation pattern can be found in the same fashion as before; as the particle 
emerges into the downstream space the fields in the downstream space can be analyzed in 
terms of a charge and image charge overlapped and at rest abruptly moving at a velocity 

cβ  into different directions depending on the tilt angle of the surface. Up to a phase 
factor this results in the same type of TR field pattern as described in equation 11.   
 
Assume again that the input and reflected laser field is a plane wave and the tilt angle of 
the surface 2ξ  is small. The energy gain still has the same form, except that the incident 
laser field  and the reflected  reversed roles. Now  is co propagating with the 
electron and shows a long slippage distance while  is counter propagating to the 
electron beam and hence shows a very short slippage distance. The energy gain for laser 
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The main difference with the case for the acceleration upstream of the boundary is that 
this time the optimum occurs at γαξ 1=+ .  Also, sweeping the tilt angle of the surface 
or of the incident laser beam probes the amplitude of the downstream transition radiation 
pattern.   
 
VII.  Partially reflective boundary 

As stated throughout the article the boundary was assumed to be a flat perfect reflector. 
We may ask how equation 50 modifies for a partially reflective surface with a reflection 
coefficient 1<r . To gain a first answer we will use the PIM picture to find the energy 
gain. With a less-than-perfect reflective boundary the amplitude of the reflected laser 
beam becomes IR ErE =  and therefore for the upstream laser acceleration we have 
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and for the downstream laser acceleration we get 
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In the highly relativistic limit the counter propagating term becomes negligible and we 
have 
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With the PIM picture and in the highly relativistic limit we expect to see no significant 
effect from a poorly reflective boundary for laser acceleration in the upstream space 
while in the downstream space we expect rUdownstream ∝Δ  
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Figure 10 
 
The ITR picture would predict a different outcome, especially for the upstream 
acceleration case, which from the PIM picture appears to be independent of the boundary 
properties. The ITR picture would expect a reduction of the energy gain due to the 
reduced reflected laser field component and from a reduced TR pattern from the lossy 
medium. The discrepancy lies in the assumptions made in the ITR picture, where the 
medium is assumed to have no ohmic loss and the only nonzero terms in Poynting’s 
theorem are the electric field path integral of the traveling particle and the far-field 
radiative terms. With a lossy medium Poynting’s Theorem would become 
 

( ) dtdsnBEUdvdtEJU
S

EM
M

Mparticle ∫ ∫∫ ∫ ⋅×−Δ−=⋅+Δ
ττ μ

ˆ1

0

rrrr
   54 

 

MJ
r

is the current inside the medium M. If the medium is lossy the external electric field 

penetrates the medium and 0≠E
r

inside the medium, making the volume integral of the 

currents and fields ∫ ⋅ dvEJM

rr
 in the medium M in equation 54 nonzero. If the total 

volume in equation 54 did not store electromagnetic energy during the transit of the 
particle  and we would be left with 0=Δ EMU
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Hence for a lossy medium the energy gain predicted by the inverse-radiation picture is 
not correct. 
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The inclusion of a laser-absorbing boundary is a simple extension to the planed set of 
experiments with reflective boundaries and will provide an experimental opportunity to 
both test for the failure of the ITR picture and for the validity of the PIM picture under a 
more general boundary condition. 
 
VIII.  Conclusions 

It has been shown that for perfect reflective flat boundaries the energy gain predicted by 
the ITR and the PIM methods yield exactly the same value, regardless of the particle’s 
initial energy, the orientation of the boundary, or the upstream or downstream 
acceleration case. Hence we can rule out the hypothesis that the observed energy 
fluctuations were due to random tilting of the boundary surface. A high reflector 
boundary of the type used in the previous proof-of-principle experiment with laser 
acceleration cannot distinguish between ITR and the PIM pictures. Given the perfect-
reflector assumption this finding should not be surprising at all, since for lossless media 
Poynting’s Theorem collapses to equation 1, which puts the path integral energy gain and 
the radiation overlap integral on an equal footing. 
 
However, the brief analysis of the expected particle acceleration in the upstream space of 
lossy boundaries ( 1<r ) appears to show a case where the ITR picture clearly differs in 
its energy gain predictions from the PIM picture. It is argued that the ITR picture does 
not apply to these instances because of the appearance of an additional ohmic loss term of 
the material that prevents Poynting’s Theorem from collapsing to the simple expression 
of equation 1. This brief analysis is a motivation for a more detailed treatment of a more 
generalized inverse-radiation picture that includes lossy materials. 
 
Another interesting instance to be analyzed is the case of a lossless transparent boundary 
of the appropriate thickness that could reset the laser phase and effectively double the 
energy gain. 
 
 
IX.  Appendix 

In the far field region the electric and magnetic fields have the relations II BcE
rr

= , 

RR BcE
rr

=  and TRTR BcE
rr

= . Also, the electric and magnetic field components are 

mutually orthogonal and obey  
 

nBE

nBE

nBE

TRTR

RR

II

ˆ

ˆ

ˆ

⊥⊥

⊥⊥

⊥⊥

rr

rr

rr

        A1 

 
( )nEcBE III ˆ1 2 −=×

rr
 

nEcBE RRR ˆ1 2=×
rr

        A2  
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nEcBE TRTRTR ˆ1 2=×
rr

 
 
Note that the negative term for the incident field indicates an inward flux of energy. The 
total electric and magnetic fields are TRRI EEEE

rrrr
++=  and 

.  Hence the integral of equation 1 reads TRRI BBBB
rrrr

++=
 

( ) ( ) ( )∫∫ ⋅++×++−=⋅×−=
S

TRRITRRI
S

t dsnBBBEEEdsnBEUd ˆ1ˆ1

00

rrrrrrrr

μμ
 A3 

 
which expands to 
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( ) ⎟

⎟
⎟
⎟
⎟
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⎟

⎠

⎞

⎜
⎜
⎜
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⎜
⎜
⎜

⎝

⎛

⋅×+×+×+×+

⋅×+×+

⋅++−

−=

∫

∫

∫

S
RTRITRTRRTRI

S
IRRI

S
TRRI

t

dsnBEBEBEBE

dsnBEBE

dsnnEcnEcnEc

Ud

ˆ

ˆ

ˆˆ1ˆ1ˆ1

1

222

0
rrrrrrrr

rrrr

μ
  A4 

 
For the very first surface integral in A4, if the medium is a perfect reflector the output 
reflected power is equal to the input incident power, regardless of the shape of the 
reflector, and we have 
 

( ) ( )∫∫ ⋅=⋅
S

R
S

I dsnnEcdsnnEc ˆˆ1ˆˆ1 22       A5 

 
and therefore the 1st surface integral reduces to the wake field radiation term 
 

( ) ( ) TR
S

TR
S

TRRI PdsnnEcdsnnEcnEcnEc Δ≡⋅=⋅++− ∫∫ ˆˆ1ˆˆ1ˆ1ˆ1 2222  A6 

 
The second surface integral of A4 can be evaluated from the relations in A1. The cross 
products have the form 
 

( )
( )nEEcnEEcnBEBE

nEEcnEEcnBEBE

RIRIRIIR

RIRIRIRI

ˆ1ˆcos1ˆsin

ˆ1ˆcos1ˆsin
rrrrrrrr

rrrrrrrr

⋅−=−=−=×

⋅===×

ϕϕ

ϕϕ
  A7 

 
The sign reversal of the second expression in A7 with respect to the first is due to the 
opposite flux directions of the incident and reflected fields. Now we can see that the 2nd 
surface integral of A4 reduces to zero. 
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( )∫ =⋅×+×
S

IRRI dsnBEBE 0ˆ
rrrr

       A8 

 
For the 3rd surface integral in A4 we can find a similar set of values for the cross products 
 

( )
( )

( )
( )nEEcnBEBE

nEEcnBEBE

nEEcnBEBE

nEEcnBEBE

TRRTRRRTR

TRRTRRTRR
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rrrrrr

rrrrrr
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φ

φ

φ

φ

     A9 

 
Note that for the pair of TRR BE

rr
×  and RTR BE

rr
×  there is no sign reversal since both 

reflected field and the wake field have a flux of energy in the same (outward) direction. 
Hence the 3rd surface integral collapses to 
 

( ) ( )∫∫ ⋅=⋅×+×
S

TRR
S

RTRTRR dsEEcdsnBEBE
rrrrrr

2ˆ     A10 

 
Therefore the total energy gain is 
 

( ) TR
S

TRR UdsdtEE
c

U Δ−⋅−=Δ ∫ ∫
∞

∞−

rr

0

2
μ

      A11 

 
Taking into account the assumptions listed in the introduction we can neglect  and 
are left with 

TRUΔ

 

( ) ( )( )∫ ∫
∞

∞−

⋅−=Δ
S

TRR dsdttEtE
Z

U
rr

0

2       A12  

 
With the Fourier transform definition in equation 2  
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∞

∞−

∞

∞−

′+ ′′⋅⎟
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π
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12 2
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   A13 

 
which can be rearranged to 
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For real functions of time ( ) ( )ωω TRTR EE *~~ =−  and therefore 
 

( ) ( )∫ ∫
∞

∞−

⋅−=Δ
S

TRR dsdEE
Z

U ωωω
π

*

0

~~1       A15 

 
This proves the particle energy gain formula shown in equation 3. 
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