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Abstract

This article explores the energy gain for a single relativistic electron from
a monochromatic linearly polarized plane wave incident on a planar
reflective boundary oriented at an arbitrary oblique angle, and compares
the prediction for the energy gain from Inverse Transition Radiation
method and the electric field path integral method. It is found that both
methods predict the same energy gain regardless of the orientation of the
boundary. A brief analysis on partially reflecting surfaces is presented.
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|. Introduction

The question of laser driven particle acceleration as an inverse radiation process presents
an interesting view of the underlying physics for charged particle acceleration. The
conservation of electromagnetic energy statement known as Poynting’s Theorem [1] is
the center of the inverse-radiation picture. It the case of structure based linear particle
acceleration the Inverse Transition Radiation (ITR) picture predicts an energy gain equal
to the overlap integral of laser and the particle’s wake field radiation patterns in the far-
field [2,3].

Historically the energy gain calculations for laser-driven particle acceleration in semi-
open structures typically utilized the field Path Integral Method (PIM) of the incident
laser field co-propagating with the electron beam and made no assumptions about the
accelerator structure other than its ability to ‘magically’ terminate the laser field [4,5]. At
first glance this raises the question to the general validity of the path integral energy gain
method and would prompt us to seek special instances where we would expect ITR and
PIM have different energy gain predictions.

One such candidate situation for potential differences between ITR and PIM came up in
the proof-of-principle experiment (the LEAP experiment [6]) for laser-driven particle
acceleration in a semi-infinite vacuum. A large fluctuation in the observed energy
modulation was observed even at conditions where there appeared to be good spatial and
temporal overlap between the laser and the electron beam. As a possible explanation it
was hypothesized that the energy gain fluctuation was caused by shot-to-shot variations
of the orientation the reflective boundary, resulting overlap variations between the laser
and the transition radiation fields. The data shown in Figure 1 is an example of the
fluctuation of the energy modulation typically observed.
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Figure 1

If the energy gain predicted by the ITR process does indeed differ from the energy gain
predicted by the electric field path integral method for boundaries at oblique orientations
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we would have the possibility to test this with our experimental setup, and in a future set
of experiments at E163 we plan to measure the energy gain as a function of a controlled
obliquity angle of the reflective tape, ranging from normal incidence to at least 45
degrees. Therefore a thorough analysis of the predictions from the ITR and the PIM
pictures prior to the experiment are of interest.

I1. Energy gain calculations and assumptions

We have to calculate the expected energy gain with a boundary at oblique orientation by
both methods. To do this we will make the following assumptions:

e For the sake of simplicity assume that the laser beam is monochromatic and that it
can be described by a plane wave. For the large gaussian laser beam we employ in
the LEAP experiment this is a very good approximation. This does not
compromise the physics, since we can describe laser beams of arbitrary spatial
and temporal profiles as superposition of monochromatic plane waves, and the
analysis for both ITR and PIM is linear.

e The boundary is a perfect high reflector. For the metallic surface of the boundary
and the NIR laser this is a fairly good approximation. Absorption effects will be
dealt in a subsequent article.

e The electron trajectory is straight and is unaffected by the laser or the boundary,
and furthermore the electron’s velocity v=/c remains unchanged; an assumption
typically made in all path integral energy gain calculations.

e The energy lost from transition radiation can be neglected.

We first evaluate the energy gain expected from the ITR picture and then proceed with
the PIM picture.

I11. Energy gain from the ITR picture

With the assumptions listed earlier we can utilize Poynting’s Theorem and find that the
energy gain of the charged particle is

AU :!E-dF:—ﬂioif(Exé)ﬁdsdt 1

where E is the total electric field and B is the total magnetic field. The total field is the
superposition of the laser field and the retarded field of the charged particle. ¢ denotes the
path of the charged particle and S is the surface of the volume which encompasses the

interaction. In the far field the “accelerating” E- and B-components (E,, and B.,) of the
retarded fields dominate. These are normal to A and normal to each other, that is,
E., LB LA. The laser field can be described by an incident component E, x B, oc —Ai
with flux entering S and a reflected component E, x B, oc +A leaving the surface S . See
figure 2.
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Using the Fourier transformation pair that has the form
E(r.0)= [E(rte™dt o E(rt)=4 [E(rok“do 2

and the relation between the incident, the reflected laser fields and the retarded fields we
can express the energy gain of the particle of equation 1 as

AU = —ﬂ% Tf(ER (0)-Ew (a)))dsda) 3

0 —0S

where Z,is the vacuum impedance. A detailed derivation of equation 3 is given in the
appendix. As seen in equation 3 only the reflected laser field component contributes to
the overlap integral in the ITR picture. Now we need to find E.;(@). The transition
radiation from a flat infinite reflective boundary can be conveniently found by the
method of image charges. We assume a charge g, with velocity ,E’l (normalized to c) is
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incident on a flat boundary at an oblique angle. By the method of image charges there is a
corresponding image charge g, with velocity Ez behind the boundary. These intersect at

the boundary and can be thought of coming to a sudden stop, effectively canceling each
other.
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Figure 3

Starting from the retarded scalar and vector potentials for a point charge

_ 0 S -t RIC)y,
4z 3 R(X,t;t)

CDret()?,t): q 5(t’—f+ R/C)dt,
4re, ™ R(Xt;t)

Au(Xt)

and using the electric and magnetic field expressions

B=VxA, E=-VO-4A 5
The retarded electric field of an accelerating charge can be found to be

E - qZ, d ﬁx(ﬁxﬁ) 6
47KR dt’ K
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In the frequency spectrum this corresponds to
E(%, @)= P20 [ 1P lerote-sgy 7
47R 7 dt' K

Assume the deceleration time for the charge g, is infinitely short, hence the term
—io(t'-R/c

e Jis approximately constant over the integration time where S changes value.
. qz . d ﬁxlB ) qZ ein/C ~ ﬁxﬁﬁfinal
E(Y(,co)~—°jn><— — L |glRedt’ ~ =0 A x 8

4zR 7 dt'| K Arx K .
using ,Bﬁnal =0 and Bl = :Binitial = pZ we get
7 g cosécos ¢
Eres(R.O.4,0)=— 10 psin cosdsing | 9
‘ 47R 1—- fcosd )
—-siné
note that the electric field is radially polarized
coS&Ccos ¢
ﬁx(ﬁxﬁ): cos@sin ¢ 10
—sind

For the image charge g, we perform exactly the same type of calculation, except that it is
convenient to introduce a separate rotated set of coordinates aligned with the initial
trajectory of this charge 2// 3, .

7 ing cosé'cos ¢’
ETRVZ(R,19’7¢,’C¢)): —_ jzsz; 1_ﬂ;|:OSH! C050(8|n¢! ein'/C 11
—sing’

It is easy to verify that the cartesian coordinates (x',y’,z') are related to (x,y,z) by the
rotation matrix with a rotation angle of 7 —¢& about .

X'=-xcos& —zsiné
y'=y 12
Z'=-zc0S& +xsiné

and
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R:1/x2+y2+22,tan<9:1/x2+y2/z,tan¢: y/X
R =\X?+y?+2% tan@ = /x> +y"” /z’,tan¢'= y' /X 13
I:R

R

The total field is E,; = E;p, + Ep,. In our case we are interested in the TR field pattern

in the xz plane (y=0). This allows us to express the field pattern as a function of . Using
g, =—0, we obtain

7 ioR/c H 9! H 2] cos¢
ETR __0Zee Asin N £sin 0 14
4R \1-pcos@d 1-pcosd sing

where ' =(7-£-0)

Solution in the relativistic limit

In the relativistic limit the overlap between the TR cones of the charge and the image
charge are negligibly small. Since the TR cone of the charge lies in the forward direction
(behind the boundary) the laser has virtually no overlap and we can approximate the TR
field in the vacuum space as the contribution from the image charge

o cosH(6'
zqzoe"”R/c £siné’ @)

E.(R,&
w(R.6) 47R'  1-fBcosd’

15

—sind(¢)

Next, we need to express the reflected laser field in terms of the (R’,8’) coordinates. As
shown in Figure 4 assume that the incident laser beam is a monochromatic plane wave at
a shallow angle « with respect to the electron beam. Hence the laser field reflected from
the screen f(x', Y, z') is propagating at a shallow angle to the Z" axis. In this instance the
far-field pattern (R’ — oo) of the laser beam can be expressed in terms of the Fraunhofer
diffraction of the laser field at z'=0.

o (KR! 0 o0 kX W
£(x,y)= —2”:;;’ J'J'f(u,v)e TR dudv 16

—00—00

The (u,v) plane is orthogonal to the ' axis and goes through the origin z' = 0. Note that
k = w/c and can be positive or negative. So when evaluating the integral of equation 16

we have to watch the sign of @, especially when we take the absolute value of k and
express it in terms of the wavelength 4.

If the boundary is a flat perfect reflector the reflected laser beam is also a plane wave.
Assume that the plane wave has the form E.(F',t)=E,P, cos(IZ-F’—a)OHgoR) with
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k, = —koar .k, =0, k,* =k,” —k,* and k, = e, /c. The coefficient k, =kyer indicates that

the plane wave is at an angle « with respect to the Z'axis. I3R is the polarization unit
vector of the plane wave.

reflected
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Figure 4

In the frequency domain the amplitude of the electric field is
E(U,V, Z,, CU) = Eoﬂ'(é‘(a) — @, )6i(—k0au+kzz’+(pp) + 5(0) + @, k—i(—koau+kzz’+(pp)) 17

Therefore the far-field diffraction amplitude is
. iR % o S — i(-koau+z ) i Y
f(x, y’)=—I7ZkE—°e, (0=l _ 7% dudy 18

27R + 5(a)+ @, )e*'(*koa'U“/’R)

—00—00

(The quantity in brackets is not a vector; it is a sum.) Note that when o =@, - k =+k,,
and when o =-a, - k =k, that is, k can be positive or negative. In equation 18 we
have the integral of a complex exponential, which gives a delta function:

e me gy = (2/k)s(a +b) y
- oo K@) a+ X s(w) e
f(x, y’,a))=_'E2°;' [2—”] 5(1 +5(a,+a,o)k(a,)(5[a f%,s( 3))8% 20
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where S(w)=+1for >0 and S(w)=-1 for w<0.

5( +aj5(a)—a)o)e"”R
X' S

—5(0{+Hj5(a)+a)o)e 7

)= - iA7E,0(y'/R )"

f(x' v
(X’y’a) R!

which simplifies to

N (k)
(X, )= - 275 5(y ja(x +aji Slo-ak 22
R’ R AR 2( - 5(w+a, ")

In the small angle approximation the coordinates &',¢" are related to x'/R’,y’/R’ by
12 i
=X?+y / R 23
tan¢ =Xy

since 5(u—a)s(v)= (0" —a)s(g')/sin &’ (switching to spherical coordinates)

f(0,¢,0)=- 24

27AE, S(z—¢)5(a—0) i [ S(0—a, )"
R’ sing’ 2( - S(w+ , !0

The reflected laser electric field vector is

Ex(0. 4, 0)= (0.4, 0)P,

200E, S(x—§)5(a- ) i [ S— )" 5 25
R’ sing' 2| = S(w+ w, Koo R

With the overlap integral of the TR field and the reflected laser beam we can evaluate the
energy gain AU

AU = _ﬂ%o_zf(ER (0)-E'w (a)))R’Z sinddodgdw

1 qZ,27E,A 0 = i(kR'+ i(kR'-pg) W-iwR//c
= Z (17: 1° EIw(5(w+wo)e (R "’R)+§(a)—a)0)e(kR "’R))s Ried

x§5(” #)0a=0)5 5 gin pugdg
Jsing'(1-pcosg) T

26
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cosé(@') \( cosd(6')cos p

aty=0->¢'=0,7 P, -P= 0 sin p =c0s p. Since k = w/c
—sin@(@') \ —sin 9(6")cos p

qE,A i

AU = 75(@% — e_i(’R )

mcosp 27
1- pcosa
where y = o,R’/c is a relative phase angle of the transition radiation at frequency .

_gE,Asina Bcos psin g
2r 1-fpcosa

28

AU =
In the small angle approximation we can use sina ~a, cosa ~1-1a?, and in the
relativistic limit we can approximate S ~ 1—1/2;/2 . Therefore

_qu/1
7 al+1/y?

AU = €S psin ¢; 29

As expected, AU is proportional to E and A, depends on the polarization angle p and
on the optical phase ¢, and shows the expected dependence on the laser crossing angle
F(a)=a/(a? +1/7?) that has a maximum at c,, =+1/ .

IV. Energy gain from the path integral method, relativistic limit

For a plane wave at an angle « with respect to the electron beam describe the electric
field of the incident laser beam by

E,(F,t)=E,P cos(k - — oyt + 9, ) 30

where k, =k, .k, =0, k,°=k," k. and k,=e,/c. Allowing for the polarization
angle p, the polarization vector of the laser field is

COS COS p
 =| sinp 31

>

sinacos p

Along the electron beam trajectory (z,0,0,t) the electric field is

10
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E,(2,0,0,t)= E,P, cos(k,z — st + ¢, ) -
= E,P, cos(kcosa - 2—at+¢,)
Assuming constant velocity t can be eliminated by t = z/c/. Therefore
E,(2,0,0,t)= E,P, cos((k cosex — o, /c8)z + 9, ) 2
= E,P, cos((cosa —1/B)kz + ,)
The energy gain is
- 0
AUzq'[E-dfz .f( )zdz 34

For now assume that electron beam is relativistic and hence the slippage distance for the
reflected laser beam is very small compared to the slippage distance of the incident laser
beam and therefore contribution to AU from the reflected laser beam is small compared
to the contribution from the incident laser beam. Then

0 0
AU =q Jf, -7dz = q _[EO cos((cosa —1/ B)kz + @, )P, - 2dz 35

A

P, -Z=-sinacosp ~ acosp for small angles « , and therefore
0
= —qacos pE, I cos((cosa —1/ B)kz + ¢, )z 36

The integral is of the form

0

| = jcos(u +¢)du = lim | e cos(u + ¢)du =sin ¢ 37
0 0

Therefore the energy gain of the charged particle is

/'t/ﬂ

2

U =—-qacos pE Icos — @, )du =aq cos ,oE sin g,

38

3 gE, 4«

2

5-C0S psin g,
Toa +y

11
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Note that since ¢, =@, +7 from the Fresnel condition of reflection from a metallic

surface equation 29 and equation 38 are identical, illustrating the equivalence between
the ITR and the PIM pictures, at least in the highly relativistic limit.

So what about the energy gain predictions of these two methods in the low energy limit?
The assumptions listed in the introduction do not make any statement about the particle’s
velocities, and hence we should expect the ITR and the PIM methods to give identical
energy gain predictions.

V. General Solution including the low energy limit

In the low energy limit the previous assumptions for high y break down. In the PIM
picture we cannot neglect the energy gain contribution from the counter propagating laser
beam, and in the ITR picture we have to include the retarded fields of both charge and
image charge.

The ITR picture

The TR fields for the charge and image charge start to have significant overlap and the
contribution from both has to be included for the total transition radiation field in
equation 14. We had found that the transition radiation pattern had the form

| cosd
E_(Rg)= -T2t ™(_psinlr=£-0) __psind ) 39
(R, 4R \1-pcos(z—£—0) 1-pcosd _sing

The two terms in the brackets represent the angular distribution functions of the retarded
fields of the charge and image charge. At lower y the denominators of these two terms do
not approach zero at a particular angle and hence the radiation patterns do not form sharp
and large-value peaks but start to have significant overlap at all angles. This results in a
more pronounced asymmetry in the observed transition radiation cones Figure 5 shows a
polar plot of the intensity of the angular distribution of the transition radiation field of

equation 39, |ITR(R,9)/I | at four different beam energies: 0.1, 2, 10 and 50 MeV.

max

12
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Figure 5; polar plots of |1,;(R,8)/
(0°), and a metal foil at 45°

| for a metal foil at normal incidence

max

It can be seen that at the lower energies the TR distribution has a wider angular spread

and hence the cone asymmetry for the oblique angle surfaces is more pronounced.
Hence, for reflective surfaces at oblique angles we expect an asymmetry of the energy
gain depending with which side of the TR cone the reflected laser beam overlaps.
Equation 39 describes the TR pattern. To calculate the overlap integral we need to
express the far-field laser pattern given in terms of x’, y’in equation 22 in terms of 4.

E _ 28, S(r=£-0-a)5(g) i [ Slo-a " s
Eal0.9R 0) == o 2\ — 8(+ 0, 5 P.(6) 40

cosdcos p
where P,(9)=| sinp
—siné@cos p

Hence the energy gain from the overlap integral is

”( ))R sinadddgdw

0 —wS

-1 271E Z i o i ,
AU = = ﬂR 0 jﬂé RZEJ‘_OO(5(0)+%)9 "+ (- amp e Mo

xj( psin(z-£-6)  psing j Sz

2\1-Bcos(z—&E—-0) 1- Bcosd

6800 4)p P PTR sin Q.
sin

13
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cosé '\ cosédcosp

AU:—quzosmqo. (1ﬂ3':03 +1ﬁ5'£‘()(;_5_“) )J 0 sin
Via —pcosa 1-fcos(zr-¢ - —sin@ | —sin@dcos p
AU = GEosing, [ psina psin(¢ +a) cos p
o7 1-Bcosa 1+ fcos(é+a)
AU = _A9Egsing, ( sing sin(£+a) cos p
20T 1p—-cosa 1/ B+cos(é+a)

I will rewrite this expression as

_MEgsinp cosp(  sina sin(E+a) ), |
AU = 27 [cosa—]/ﬂ Cos(§+a)+]/ﬂJ—A Fla,&8) 41

Where F(a, &, ﬂ) is the angular dependence function of the energy gain.

The PIM picture

Can the PIM method account for the same predicted asymmetry of the energy gain as a
function of laser crossing angle? As stated earlier at lower y the assumption that
Z, >>Z . no longer holds: the slippage distance of the forward going laser beam Z,

reduces in length to a few A and the contribution from the reflected laser beam becomes
significant and in this limit both incident and reflected laser beam have to be taken into
account.

The electric fields from the incident and the reflected laser beam were described by

E,(F.t)=E,P, cos(lZ, -F—a)ot+go,)

i R 42
Ex(Ft)= EoPycos(Ky - F — gt + g )

where If’,and f’R indicate the polarization states. Now we need to find the total
longitudinal electric field E, = E;, + E, , at the coordinates of the particle 1 = (0,0,2).

|,z(0’0’ Z,t): P..Eo Cos(kl,zz — ot + ¢, )

43
~.(0,0,2,t)=P, ,E, cos(kR'Zz — gt + (oR)

E
E

the quantities P, ,, P ,,k, , and kg , can be found from the figure below

I,z

14
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P, =sinacos p
P., =-sin(a + &)cos
k,,=kcosa
Ke , = -k cos(a + &)
hence the energy gain from the incident and reflected beam is
0
U, =qE,sin acos,ofcos(k cosaz — a,t + @, )iz
- . 45
U, = —QE,sin(& +a)cos p '[cos(— k cos(& + )z — gt + g )dz
Since ¢, = ¢, + 7 (reflection from a metallic boundary) and t = z/c8
0
U, = gE,sin acos,o'[cos(kz[cow ~1/B]+ ¢, )z
s 46

0

U, =—QE,sin(& +a)cos p jcos(— kz[cos(& +a)+1/ B+ @, + )dz

—00

Using the formula of equation 37 to evaluate the cosine-integral the values of U, and U,
of equation 46 become

15
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U, :qusinacos,o jcosu+go,)d

1
k(cosa—1/8) 7.
_ AQE, sin a cos psin ¢,
~ 2x(cosa-1/p)

U, =QqE,sin(& + a)cos,o

47
1

k(cos(é +a)+1/ )2
_ gE,sin(£ +a)cos psing,
k(cos(& +a)+1/ )

J.COS

Hence the total energy gain is AU =U, +U,

AU =

inocos,osingo,( sine sin(¢+a)

2 cosa—-1/p cos(§+a)+1/ﬂ]zA.F(a,§;ﬂ) 48

where A and F(a,é;ﬂ) have the same values as the energy gain calculated by the ITR
method, shown in equation 41. Clearly for surfaces at oblique orientations & =0 the

energy gain|AU () # |AU (- &) is not symmetric with the laser-crossing angle.

boundary angle &/2 = 0° boundary angle £/2 = 45°

o
©
T
o
©
T

o
o

o
=
T

o
>
T

normalized energy gain
I
=

o
S
normalized energy gain

o
N

laser crossing angle « (degrees) laser crossing angle o (degrees)

Figure 7: The angular distribution function |F(e,¢&; B)/|F (. & B)
normalized to its maximum value for different beam energies

Figure 7 illustrates the normalized energy gain function for the boundary at normal
incidence and at 45°. As expected, for the boundary oriented at 45° it can be observed
there is a clear asymmetry of the energy gain that is more pronounced at the lower
electron energies and furthermore there is a nonzero energy gain for an incident laser
crossing angle of « = 0. This is due to the electric field of the reflected laser beam being
parallel to the electron trajectory and doing work for a sub-wavelength slippage distance.
Although it would appear from Figure 7 that this effect is strongest at lower energies it is

16
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actually largest for the highly relativistic case since at that limit the slippage distance
approaches /2. A plot of |F(a,§;/3) versus the laser-crossing angle « shown in figure
8 illustrates this. The inset shows |F(a,§;ﬂ)| in the vicinity of « =0, and shows that at
a =0 the function |F(a,&; B) has the same small but nonzero value for the higher

particle energies. Only the instance for #=0.5 shows a significantly lower value at
a =0, due to the reduced slippage distance at lower electron speeds.

100
90| — ——
— B=05 s !
gof 2 Mev £ PoA —<P>E,-
—— 10MeV = : R
70t 50 MeV , e
— 60 ,'I 3 2 1 O //
], / (100 -
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6“ " B ks ol bl e sl bk ik ek e i
T ! electron
= 2l ; 1 A 4 trajectory
! // /
20 - .” s "77‘——,;,\7771 b
w0 i / B
e e 45° surface
-10 -8 -6 -4 -2 0 2 4 6 8 10

laser crossing angle (degrees)
Figure 8

Let’s explore this instance of having the incident laser beam at & =0 to the case where
the high reflector surface is rotated from normal incidence & =0 to almost at grazing

incidence for the electron beam, such that the reflected laser beam slippage distance is
significantly increased, or in the ITR picture the reflected laser beam is optimally

overlapped with the TR pattern.

energy gain angular dependence, normalized

energy gain angular dependence
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Figure 9 shows the function |F(a = O,f;ﬂ) as the boundary angle is swept from 0° to

180°, corresponding to sweeping the reflected laser beam from &= 0° to £=360°. As
expected the optimum energy gain at higher energies occurs at very shallow angles where
the reflected laser beam is almost co propagating with the electron beam and has a very
long slippage distance (the optimum angle now being |7r—§|:1/;/). At the lower

energies the maximum energy gain is smaller (due to the reduced slippage distance) but
at the same time it is less selective to the reflected laser beam angle ¢&.

It is interesting to note that the energy gain from sweeping of the angle of the reflected
laser beam (either by tilting of the reflective boundary or by sweeping of the input laser
beam angle is simply a probe of the transition radiation amplitude angular distribution. If
the electron beam is optically bunched even the phase of the TR pattern could be
determined.

V1. Laser acceleration in the downstream space of the reflective boundary

The examples involved the analysis of laser acceleration in the upstream space of a high
reflector. The analysis in the downstream space is not much different, either in the ITR or
in the PIM picture. The ITR energy gain equation 3 is general and also applies in this
instance, and the PIM energy gain equation 34 is the same except for a change of the path
integral limits to

AU:qu-df:qT(E,+ER)-2dz 49
c 0

The transition radiation pattern can be found in the same fashion as before; as the particle
emerges into the downstream space the fields in the downstream space can be analyzed in
terms of a charge and image charge overlapped and at rest abruptly moving at a velocity
pc into different directions depending on the tilt angle of the surface. Up to a phase

factor this results in the same type of TR field pattern as described in equation 11.

Assume again that the input and reflected laser field is a plane wave and the tilt angle of
the surface &/2 is small. The energy gain still has the same form, except that the incident

laser field E, and the reflected E; reversed roles. Now E is co propagating with the
electron and shows a long slippage distance while E, is counter propagating to the

electron beam and hence shows a very short slippage distance. The energy gain for laser
acceleration in the downstream space is

AU =

_ AgE, cos psin g, [ sin(é+a) sina

27 cos(§+a)_]/ﬁ_COSa+]/ﬂJzA.FR(a,f;,B) 50
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The main difference with the case for the acceleration upstream of the boundary is that
this time the optimum occurs at £+« =1/y . Also, sweeping the tilt angle of the surface

or of the incident laser beam probes the amplitude of the downstream transition radiation
pattern.

VII. Partially reflective boundary

As stated throughout the article the boundary was assumed to be a flat perfect reflector.
We may ask how equation 50 modifies for a partially reflective surface with a reflection
coefficient r <1. To gain a first answer we will use the PIM picture to find the energy
gain. With a less-than-perfect reflective boundary the amplitude of the reflected laser

beam becomes |E| = r|E, | and therefore for the upstream laser acceleration we have

AU _ MEcospsing, [ sina sin(é+a)
vpetteam 27 cosa—1f  cosE+a)rlf)

and for the downstream laser acceleration we get

AU __AgE,cospsing, [ sin(é+a)  sina -
dovnstream 21 cos(E+a)-1/B cosa+l/p

In the highly relativistic limit the counter propagating term becomes negligible and we
have

AU _quocos,osingol( sina j

upstream
2r cosa —
Vp £3

AQE, cos psing, [ sin(é+a)
AU downstream — 1
27 cos(&+a)-1/8

With the PIM picture and in the highly relativistic limit we expect to see no significant
effect from a poorly reflective boundary for laser acceleration in the upstream space

while in the downstream space we expect [AU

downstream | ocr
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Figure 10

The ITR picture would predict a different outcome, especially for the upstream
acceleration case, which from the PIM picture appears to be independent of the boundary
properties. The ITR picture would expect a reduction of the energy gain due to the
reduced reflected laser field component and from a reduced TR pattern from the lossy
medium. The discrepancy lies in the assumptions made in the ITR picture, where the
medium is assumed to have no ohmic loss and the only nonzero terms in Poynting’s
theorem are the electric field path integral of the traveling particle and the far-field
radiative terms. With a lossy medium Poynting’s Theorem would become

AU e + [ [ 3,0 - Edvdt = AU, _ﬂi [§(E xB)- Adsat 54
M 0rS

J,, is the current inside the medium M. If the medium is lossy the external electric field
penetrates the medium and ‘E‘ # 0 inside the medium, making the volume integral of the

currents and fields ij -Edv in the medium M in equation 54 nonzero. If the total

volume in equation 54 did not store electromagnetic energy during the transit of the
particleAU,, =0 and we would be left with

AU Lricie = —J. I J, - Edvdt —iH)(E X I§)- Adsdt 55
M

ILIOTS

Hence for a lossy medium the energy gain predicted by the inverse-radiation picture is
not correct.

AU e # L [ §(E x B )- Adsdt 56

0zS
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The inclusion of a laser-absorbing boundary is a simple extension to the planed set of
experiments with reflective boundaries and will provide an experimental opportunity to
both test for the failure of the ITR picture and for the validity of the PIM picture under a
more general boundary condition.

VIII. Conclusions

It has been shown that for perfect reflective flat boundaries the energy gain predicted by
the ITR and the PIM methods yield exactly the same value, regardless of the particle’s
initial energy, the orientation of the boundary, or the upstream or downstream
acceleration case. Hence we can rule out the hypothesis that the observed energy
fluctuations were due to random tilting of the boundary surface. A high reflector
boundary of the type used in the previous proof-of-principle experiment with laser
acceleration cannot distinguish between ITR and the PIM pictures. Given the perfect-
reflector assumption this finding should not be surprising at all, since for lossless media
Poynting’s Theorem collapses to equation 1, which puts the path integral energy gain and
the radiation overlap integral on an equal footing.

However, the brief analysis of the expected particle acceleration in the upstream space of
lossy boundaries (r <1) appears to show a case where the ITR picture clearly differs in
its energy gain predictions from the PIM picture. It is argued that the ITR picture does
not apply to these instances because of the appearance of an additional ohmic loss term of
the material that prevents Poynting’s Theorem from collapsing to the simple expression
of equation 1. This brief analysis is a motivation for a more detailed treatment of a more
generalized inverse-radiation picture that includes lossy materials.

Another interesting instance to be analyzed is the case of a lossless transparent boundary

of the appropriate thickness that could reset the laser phase and effectively double the
energy gain.

IX. Appendix
In the far field region the electric and magnetic fields have the relations ‘E,‘:C‘él‘,

‘ER‘:C‘ER‘ and ‘ETR‘:C‘&R‘. Also, the electric and magnetic field components are

mutually orthogonal and obey

1
1n Al

Eq xBg =1/C|Eq[ 1 A2
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Ere % Bre :]/C|ETR|2ﬁ

Note that the negative term for the incident field indicates an inward flux of energy. The

—

total electric and magnetic fields are E = E,+ E.+ E,, and
B = B, + B, + B, . Hence the integral of equation 1 reads

dU = —ﬂ%f(ﬁx B)- Ads = —ﬂ%f(ﬁ, +E, +Ep )x (é, +B, + ETR) Ads A3

which expands to

§(-1/c[E, A+ YolEL[ A +1/c|E[* ) Ads
S

dU =~ +§(E, x B, + E, xB, )-fids A4
S

Ho

+§(E, x By + Eq x Brg + Erg B, + Erg x By ) ids
S

For the very first surface integral in A4, if the medium is a perfect reflector the output
reflected power is equal to the input incident power, regardless of the shape of the
reflector, and we have

§(1/C|E,|2ﬁ)- Ads :§(1/C|ER|2ﬁ)- Ads A5

S S

and therefore the 1% surface integral reduces to the wake field radiation term

§lyclE R+ yc|E [ A+1c[EA) fds = flyclE[A) ids=aR, A6

S S

The second surface integral of A4 can be evaluated from the relations in Al. The cross
products have the form

E, x B, :‘E,HéR‘sinq)ﬁ :l/c‘E,HER‘COSgoﬁ ~1/c(E, -E.

A7
. xB, = —‘E, ”ER‘singoﬁ = —1/c‘|§, “ER‘COS(/)ﬁ = —l/c(E, : ER)ﬁ

m

The sign reversal of the second expression in A7 with respect to the first is due to the
opposite flux directions of the incident and reflected fields. Now we can see that the 2"
surface integral of A4 reduces to zero.
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§(E, xBn+EqxB, )-fids =0 A8

For the 3" surface integral in A4 we can find a similar set of values for the cross products

x By = |E,[Bre[sin g =1/c(E, - Er.

B, = -|E, |Bre[singi = -1/c(E, -E f
ER Bx ‘ ”BTR‘sman l/c(E ETR
E..xBg = ‘ HBTR‘San ]/c( )n

e m

A9

Note that for the pair of E,xB, and E. xB, there is no sign reversal since both

reflected field and the wake field have a flux of energy in the same (outward) direction.
Hence the 3" surface integral collapses to

§(Ex By + Exe x By ) fids = 2/c§ (E, - Ere Jis A10
S

S

Therefore the total energy gain is

AU=—I Q(E Eq Jdsdt — AU, All

Taking into account the assumptions listed in the introduction we can neglect AU, and
are left with

__2 H;(E )- En(t))dscit A12

0 —S

With the Fourier transform definition in equation 2
2 T - — N\pilo+a' ’
=—Z—j H[ j( ) Epn (@) Jed /dsclt A13

which can be rearranged to
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2( 1Y %%z, 2
AU :-Z[gj LLS E.(w)- Erq dsUe dt]dwda;

2( 1Y %%z, 2

:_Z_O(Ej U@S E.(@)- Erg(@)ds275(w+ o' Wt o' Al4
1 %~ ~

= _”70'[;? Eq(@)-Ep(-w)dsdw

For real functions of time E,,(— @)= E ‘() and therefore
j §Er(0) E'm(o)dsdo A15

OooS

This proves the particle energy gain formula shown in equation 3.
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