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This report discusses several topics in both top quark physics and QCD at an International Linear Collider (ILC). Issues

such as measurements at the tt̄ threshold, including both theoretical and machine requirements, and the determination

of electroweak top quark couplings are reviewed. New results concerning the potential of a 500 GeV e+e− collider

for measuring Wtb couplings and the top quark Yukawa coupling are presented. The status of higher order QCD

corrections to jet production cross sections, heavy quark form factors, and longitudinal gauge boson scattering, needed
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composite models, Little Higgs theories, and CPT violation, are studied.
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1. INTRODUCTION

The precision study of both new and already discovered particles will be a major component of the experimental
programs at both the Large Hadron Collider (LHC) and a future International Linear Collider (ILC). The past two
decades in particle physics established the importance of this precision physics program. The outstanding success
of the Z-pole program at LEP and SLC elevated the global fit to the precision electroweak data into the primary
experimental constraint on extensions of the Standard Model (SM). When combined with input from the Tevatron,
it probes energy scales far beyond the kinematic limits of current colliders.
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The enormous production rates for top quarks at future colliders, reaching 107 tt̄ pairs in a 10 fb−1 year at the
LHC and 105 in a 100 fb−1 year at a 500 GeV e+e− collider, will allow a similar program studying the top quark
to be pursued. Rare decays of the top quark, deviations from its chirality structure in the SM, and its electroweak
couplings will be studied. A high precision measurement of the top quark mass will greatly reduce the uncertainties
in important electroweak parameters. A variety of work is needed for this program to be successful, including the
precision calculation of top quark properties in the SM, the determination of experimental capabilities for performing
measurements, and finding the most likely deviations predicted by models of new physics. The calculation of higher-
order QCD corrections to top quark cross sections can have an important effect on top quark physics; for example,
the threshold corrections to the process e+e− → tt̄H increase its rate by a factor of two, drastically increasing the
sensitivity of a 500 GeV ILC to the top quark Yukawa coupling (see Section 2.5 of this report). The precision needed
for the tt̄ threshold scan imposes strong requirements on the monitoring of the luminosity spectrum, which are
discussed in Section 2.7. Detailed analyses can reveal surprising experimental possibilities, such as the measurement
of the Wtb coupling below the tt̄ threshold (see section 2.1 of this report). The study of the predictions coming
from models of new physics show that the top quark can be a powerful discriminator between different theories; for
example, composite theories such as the Randall-Sundrum model predict shifts in the coupling of right-handed top
quarks to the Z, while Little Higgs models generically predict shifts in the left-handed top couplings (see Sections 4.1
and 4.2 of this report).

In addition to the study of the top quark, precision programs studying the Higgs boson or Higgs mechanism, the
W and Z bosons, and other new particles discovered will be possible. To fully utilize the percent-level experimental
precisions for each of these programs, higher order electroweak and QCD corrections in the SM must be included.
For example, the two-loop QCD corrections to the g− 2 of the b-quark reach the 2− 3% level, and must be included
when studying b production during a Giga-Z phase at the ILC (see Section 2.3 of this report). Benchmark processes
for studying a strongly-interacting Higgs sector such as VLVL → tt̄ receive QCD corrections reaching 10−20%, which
can mask the effects of new physics if not taken into account (see Section 3.2 of this report). Finally, fundamental
properties of QCD such as the running of the strong coupling constant and the hadronic structure of the photon can
be studied with unprecedented precision (see Sections 3.1 and 3.3 of this report, respectively).

In this report we discuss several issues in top quark physics and precision QCD, with a focus on the physics
program at the ILC. Section 2 discusses precision studies of the top quark at the ILC. Important issues such as the
measurement of the tt̄ threshold cross section are reviewed, and new results such as the study of the Wtb coupling
below the tt̄ threshold and the measurement of the top quark Yukawa at

√
s = 500 GeV are presented. A preliminary

study on the precise determination of the average beam energy and luminosity spectrum at the ILC, required for the
tt̄ threshold scan, is presented in section 2.7. Section 3 discusses important QCD physics that can be performed at
the ILC. Higher order QCD corrections needed for several important measurements are discussed, and new results
for the determination of the hadronic structure of the photon are presented. Section 4 studies modifications of top
quark properties in several models of new physics, and analyzes the potential of the ILC to measure these shifts and
use them to discriminate between different extensions of the SM.

2. PRECISION STUDIES OF THE TOP QUARK AT THE ILC

2.1. Measuring the Wtb Coupling Below the tt̄ Threshold
P. Batra, T. Tait

A crucial test of the top quark’s electroweak interactions is the strength of the left-handed charged current inter-
action W -t-b. In the Standard Model, unitarity of the CKM matrix implies that gWtb ∼ gVtb ∼ g, but in extended
models, including the simple extension by a fourth generation of fermions, this interaction can differ significantly
from the SM expectation. Currently, it is known that the W -t-b vertex is sufficiently strong that the dominant top
decay is t → Wb, but even an imprecise measurement is lacking. Single top production at the Tevatron and LHC
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Figure 1: Inclusive rates for e+e− → W +bW−b̄ as a function of the center-of-mass energy for gWtb = gSM (black solid),

gWtb = 2gSM (blue dashed), and gWtb = gSM/2 (red dotted).

will help fill this gap in our knowledge, and is expected to lead to a measurement at the 10% level, dominated by
systematics [1].

Unlike other top measurements, a direct test of the W -t-b coupling is challenging at a 500 GeV e+e− collider.
A scan over the tt̄ threshold region is expected to yield precise measurements of many top parameters in the SM,
including the top mass, width and Yukawa coupling (see [2] and this report for projections), while above-threshold
measurements may constrain anomalous, non-SM Lorentz structures [3]. Nevertheless, only an indirect measurement
of the left-handed W -t-b coupling is offered from the tt̄ threshold region, by inferring its value from the SM relation
and a precise value of the top width. If, for example, there is a small non-standard decay mode of top, it will alter
the width and distort the inferred coupling. It would be more desirable to have a direct measurement of W -t-b, by
making use of a process which is directly proportional to it. Close to the tt̄ threshold, sensitivity to the coupling
is quite weak, because the rate is essentially the tt̄ production cross section times the branching ratios for t → Wb.
Since we expect that the BR is very close to one, it does not in fact depend strongly on the magnitude of the W -t-b
interaction. Meanwhile, single-top production above threshold, which is sensitive to the W -t-b coupling, is swamped
by the tt̄ background unless a γe collision mode is present [4].

Just below the tt̄ threshold, the reaction e+e− → W+bW−b̄ still occurs, through a mixture of non-resonant
Feynman diagrams as well as through off-shell top quarks. At center-of-mass energies far enough below 2mt but still
above mt, the rate is dominated by contributions from the virtual tt̄ diagrams in a kinematic configuration where
one top is on-shell and the other is off-shell. The rate becomes very sensitive to the W -t-b interaction, by virtue of
the off-shell top [5]. This is illustrated in Figure 1, which plots the cross section as a function of energy for several
values of gWtb, assuming a 175 GeV top mass and a 115 GeV Higgs mass. All analysis was performed using the
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MadEvent package [6] at tree level. The lines asymptote to the same value at both ends of the energy spectrum,
as on-shell tt̄ production dominates close to threshold and graphs not involving top dominate far below threshold.
Both of these extremes are independent of the W -t-b coupling. Thus, energies in between these two extremes are
suitable to measure gWtb. We avoid the region very close to 2mt (despite its large rate), because the details of the
transition from off-shell to on-shell do depend sensitively on the top width, which could obscure gWtb if there are
non-standard decay modes of the top. Instead, we focus on the energy

√
s = 340 GeV, where good leverage on this

coupling appears to be attained with small dependence on the width. We will explore the interplay between gWtb

and Γt below.
Here we restrict ourselves to simple cuts to model the acceptance. To that end, we require the jets to have

pT > 10 GeV and rapidities |y| < 2. We assume W bosons can be reconstructed with little background and for
simplicity assume perfect b-tagging efficiency and no mis-tags. We improve the purity by requiring that one of the
b quarks and one of the reconstructed W ’s reconstruct an invariant mass within mt ± 10 GeV, though we do not
assume the charge of either the b or the W can be determined. The dominant background that is independent of
the W -t-b coupling comes from diagrams with an intermediate Higgs, which can be eliminated by subtracting events
with bb̄ that have an invariant mass close to the Higgs mass, once the mass is known. However, we do not impose
such a cut in order to retain the most statistics possible.

The number of events will depend strongly on the top mass, the Higgs mass, the top width and gWtb. It is
expected that the ILC will determine the top and Higgs masses to order 100 MeV or better, which is enough to
render the uncertainty in the rates from these parameters much smaller than the expected statistical uncertainties.
The remaining dependence on the width and gWtb allows us to determine a combination of both these quantities.
To illustrate the results, we assume 100 fb−1 collected at

√
s = 340 GeV. In Figure 2 we present the contours of

constant event numbers in the plane of gWtb and Γt which reproduce the expected SM event rate of ∼ 1500 events.
Also shown are the contours corresponding to 1σ and 2σ deviations from such a measurement (assuming that the
SM rate is observed and considering purely statistical uncertainties). The result is the expected bound one would
obtain on gWtb and Γt, which can be combined with the Γt from the above-threshold scan to extract gWtb itself (or
alternately, one can go to lower energies where the sensitivity to Γt is less, though at the price of the loss of some
statistics). From Figure 2, we see that assuming the width is measured with an uncertainty of 100 MeV, gWtb can
be measured to the 2% level, which would represent better than a factor of 5 improvement compared to the LHC,
and a major improvement in our understanding of the W -t-b interaction.

Many improvements on these rough estimates are possible. Certainly a more detailed and exhaustive study of the
background would be interesting, as well as more sophisticated study of the signal, including higher order corrections
and theory uncertainties, and detailed modelling of the W decays and the observability of the b quarks. In particular,
higher order QCD and EW corrections to the signal will be essential to include in a realistic analysis in order to
obtain the desired accuracy in gWtb, but are not likely to strongly change our conclusions as to how accurately one
will be able to measure the coupling. Finally, since the cross section is strongly energy dependent, it could also be
beneficial to consider the utility of a number of smaller data sets at several different energies below threshold. We
leave such refinements for future work.

2.2. Probing Electroweak Top Quark Couplings at the ILC and the LHC
U. Baur

Although the top quark was discovered almost ten years ago [7, 8], many of its properties are still only poorly
known [9]. In particular, the couplings of the top quark to the electroweak (EW) gauge bosons have not yet been
directly measured. Current data provide only weak constraints on the couplings of the top quark with the EW gauge
bosons, except for the ttZ vector and axial vector couplings which are rather tightly but indirectly constrained by
LEP data; and the right-handed tbW coupling, which is severely bound by the observed b→ sγ rate [10].

At an e+e− linear collider with
√
s = 500 GeV and an integrated luminosity of 100 − 200 fb−1 one can hope to

measure the ttV (V = γ, Z) couplings in top pair production with a few-percent precision [11]. However, the process
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Figure 2: Curve corresponding to the SM rate and its 1σ and 2σ deviations in the plane of gWtb and Γt. Also overlaid is an

expected measurement of Γt from the on-shell threshold scan with an uncertainty of 100 MeV.

e+e− → γ∗/Z → tt̄ is sensitive to both ttγ and ttZ couplings and significant cancellations between the various
couplings can occur. At hadron colliders, tt̄ production is so dominated by the QCD processes qq̄ → g∗ → tt̄ and
gg → tt̄ that a measurement of the ttγ and ttZ couplings via qq̄ → γ∗/Z∗ → tt̄ is hopeless. Instead, the ttV couplings
can be measured in QCD tt̄γ production, radiative top quark decays in tt̄ events (tt̄ → γW+W−bb̄), and QCD tt̄Z

production [12]. tt̄γ production and radiative top quark decays are sensitive only to the ttγ couplings, whereas tt̄Z
production gives information only on the structure of the ttZ vertex. This obviates having to disentangle potential
cancellations between the different couplings. In this section we briefly review the measurement of the ttV couplings
at the LHC and compare the expected sensitivities with the bounds which one hopes to achieve at an e+e− linear
collider.

The most general Lorentz-invariant vertex function describing the interaction of a neutral vector boson V with
two top quarks can be written in terms of ten form factors [13], which are functions of the kinematic invariants. In
the low energy limit, these correspond to couplings which multiply dimension-four or -five operators in an effective
Lagrangian, and may be complex. If V is on-shell, or if V couples to effectively massless fermions, the number of
independent form factors is reduced to eight. If, in addition, both top quarks are on-shell, the number is further
reduced to four. In this case, the ttV vertex can be written in the form

ΓttVμ (k2, q, q̄) = −ie
{
γμ
(
FV1V (k2) + γ5F

V
1A(k2)

)
+
σμν
2mt

(q + q̄)ν
(
iFV2V (k2) + γ5F

V
2A(k2)

)}
, (1)

where e is the proton charge, mt is the top quark mass, q (q̄) is the outgoing top (anti-top) quark four-momentum,
and k2 = (q + q̄)2. The terms FV1V (0) and FV1A(0) in the low energy limit are the ttV vector and axial vector form
factors. The coefficients F γ2V (0) and F γ2A(0) are related to the magnetic and (CP -violating) electric dipole form
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Figure 3: The differential cross sections as a function of the photon transverse momentum for γ�ν�bb̄jj production at the LHC.

Part a) shows the SM signal and the various contributions to the background. Part b) shows the SM signal and background,

and the signal for various anomalous ttγ couplings.

factors.
In tt̄V production, one of the top quarks coupling to V is off-shell. The most general vertex function relevant for

tt̄V production thus contains additional couplings, not included in Eq. (1). These additional couplings are irrelevant
in e+e− → tt̄, where both top quarks are on-shell.

In e+e− → tt̄ one often uses the following parameterization for the ttV vertex:

ΓttVμ (k2, q, q̄) = ie

{
γμ

(
F̃V1V (k2) + γ5F̃

V
1A(k2)

)
+

(q − q̄)μ
2mt

(
F̃V2V (k2) + γ5F̃

V
2A(k2)

)}
. (2)

Using the Gordon decomposition, it is easy to show that Eqs. (1) and (2) are equivalent for on-shell top quarks and
that the form factors F̃ ViV,A and FViV,A (i = 1, 2) are related by

F̃V1V = − (FV1V + FV2V
)
, F̃V2V = FV2V , F̃V1A = −FV1A , F̃V2A = −iFV2A . (3)

The most promising channel for measuring the ttγ couplings at the LHC is pp→ γ�ν�bb̄jj which receives contribu-
tions from tt̄γ production and ordinary tt̄ production where one of the top quarks decays radiatively, t → Wbγ. In
order to reduce the background, it is advantageous to require that both b-quarks are tagged. We assume a combined
efficiency of ε2b = 40% for tagging both b-quarks.

The non-resonant pp → W (→ �ν)γbb̄jj background and the single-top backgrounds, (tb̄γ + t̄bγ) + X , can be
suppressed by imposing invariant and transverse mass cuts which require that the event is consistent either with tt̄γ
production, or with tt̄ production with radiative top decay [12]. Imposing a large separation cut of ΔR(γ, b) > 1
reduces photon radiation from the b quarks. Photon emission from W decay products can essentially be eliminated
by requiring that m(jjγ) > 90 GeV and mT (�γ; p/T ) > 90 GeV, where m(jjγ) is the invariant mass of the jjγ system,
and mT (�γ; p/T ) is the �γp/T cluster transverse mass, which peaks sharply at mW . After imposing the cuts described
above, the irreducible backgrounds are one to two orders of magnitude smaller than the signal.

The potentially most dangerous reducible background is tt̄j production where one of the jets in the final state fakes
a photon. In Fig. 3a we show the photon transverse momentum distributions of the tt̄γ signal and the backgrounds
discussed above. The tt̄j background is seen to be a factor 2 to 3 smaller than the tt̄γ signal for the jet-photon
misidentification probability (Pj→γ = 1/1600 [14]) used.

The photon transverse momentum distributions in the SM and for various anomalous ttγ couplings, together with
the pT (γ) distribution of the background, are shown in Fig. 3b. Only one coupling at a time is allowed to deviate
from its SM prediction.
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Figure 4: a) The differential cross sections at the LHC as a function of pT (Z) for �′+�′−�νbb̄jj final states. Shown are the

SM predictions for tt̄Z production, for several non-standard ttZ couplings, and for various backgrounds. Only one coupling

at a time is allowed to deviate from its SM value. b) The differential cross sections as a function of the missing transverse

momentum for p/T bb̄+4j production at the LHC. Shown are the SM predictions for tt̄Z production and for various backgrounds.

The process pp → tt̄Z leads to either �′+�′−�νbb̄jj or �′+�′−bb̄ + 4j final states if the Z-boson decays leptonically
and one or both of the W bosons decay hadronically. If the Z boson decays into neutrinos and both W bosons decay
hadronically, the final state consists of p/T bb̄ + 4j. Since there is essentially no phase space for t → WZb decays
(BR(t→ WZb) ≈ 3 · 10−6 [15]), these final states arise only from tt̄Z production.

In order to identify leptons, b quarks, light jets and the missing transverse momentum in dilepton and trilepton
events, the same cuts as for tt̄γ production are imposed. One also requires that there is a same-flavor, opposite-sign
lepton pair with invariant mass near the Z resonance, mZ − 10 GeV < m(��) < mZ + 10 GeV.

The main backgrounds contributing to the trilepton final state are singly-resonant (tb̄Z + t̄bZ)+X (tb̄Zjj, t̄bZjj,
tb̄Z�ν and t̄bZ�ν) and non-resonant WZbb̄jj production. In the dilepton case, the main background arises from
Zbb̄+ 4j production. To adequately suppress it, one additionally requires that events have at least one combination
of jets and b quarks which is consistent with the bb̄+ 4j system originating from a tt̄ system. Once these cuts have
been imposed, the Zbb̄+ 4j background is important only for pT (Z) < 100 GeV.

The Z boson transverse momentum distribution for the trilepton final state is shown in Fig. 4a for the SM signal
and backgrounds, as well as for the signal with several non-standard ttZ couplings. Only one coupling at a time
is allowed to deviate from its SM prediction. The backgrounds are each more than one order of magnitude smaller
than the SM signal. Note that varying FZ1V,A leads mostly to a cross section normalization change, hardly affecting
the shape of the pT (Z) distribution.

For the p/T bb̄ + 4j [16] final state at least 3 jets with pT > 50 GeV and p/T > 5 GeV1/2
√∑

pT are required. The
largest backgrounds for this final state come from tt̄ and bb̄ + 4j production where one or several jets are badly
mismeasured, from pp → tt̄jj with tt̄ → �±ν�bb̄jj and the charged lepton being missed, and from tt̄j production,
where one top decays hadronically, t → Wb → bjj, and the other via t → Wb → τντ b with the τ -lepton decaying
hadronically, τ → hντ .

In Fig. 4b we show the missing transverse momentum distributions of the SM tt̄Z → p/T bb̄+4j signal (solid curve)
and various backgrounds. The most important backgrounds are tt̄jj and tt̄j production. However, the missing
transverse momentum distribution from these processes falls considerably faster than that of the signal, and for
p/T > 300 GeV, the SM signal dominates.

The shape and normalization changes of the photon or Z-boson transverse momentum distribution can be used to
derive quantitative sensitivity bounds on the anomalous ttγ and ttZ couplings. For tt̄Z production with Z → �′+�′−,



8

Table I: Sensitivities achievable at 68.3% CL for the anomalous ttV (V = γ, Z) couplings F̃ V
1V,A and F̃ V

2V,A of Eq. (2) at the

LHC for integrated luminosities of 300 fb−1, and the ILC with
√

s = 500 GeV (taken from Ref. [11]). Only one coupling at a

time is allowed to deviate from its SM value.

coupling LHC, 300 fb−1 e+e− [11] coupling LHC, 300 fb−1 e+e− [11]

ΔF̃ γ
1V

+0.043
−0.041

+0.047
−0.047 , 200 fb−1 ΔF̃ Z

1V
+0.24
−0.62

+0.012
−0.012 , 200 fb−1

ΔF̃ γ
1A

+0.051
−0.048

+0.011
−0.011 , 100 fb−1 ΔF̃ Z

1A
+0.052
−0.060

+0.013
−0.013 , 100 fb−1

ΔF̃ γ
2V

+0.038
−0.035

+0.038
−0.038 , 200 fb−1 ΔF̃ Z

2V
+0.27
−0.19

+0.009
−0.009 , 200 fb−1

ΔF̃ γ
2A

+0.16
−0.17

+0.014
−0.014 , 100 fb−1 ΔF̃ Z

2A
+0.28
−0.27

+0.052
−0.052 , 100 fb−1

the ΔΦ(�′�′) distribution provides additional information [12]. In the following we assume a normalization uncertainty
of the SM cross section of ΔN = 30%.

Even for a modest integrated luminosity of 30 fb−1, it will be possible to measure the ttγ vector and axial vector
couplings, and the dipole form factors, with a precision of typically 20% and 35%, respectively. For 300 fb−1, the
limits improve to 4 − 7% for F γ1V,A and to about 20% for F γ2V,A. At the SLHC, assuming an integrated luminosity
of 3000 fb−1, one can hope to achieve a 2 − 3% measurement of the vector and axial vector couplings, and a 10%
measurement of F γ2V,A, provided that particle identification efficiencies are not substantially smaller, and the reducible
backgrounds not much larger, than what we have assumed.

To extract bounds on the ttZ couplings, we perform a simultaneous fit to the pT (Z) and the ΔΦ(�′�′) distributions
for the trilepton and dilepton final states, and to the p/T distribution for the p/T bb̄ + 4j final state. We calculate
sensitivity bounds for 300 fb−1 and 3000 fb−1 at the LHC; for 30 fb−1 the number of events expected is too small
to yield meaningful results. For an integrated luminosity of 300 fb−1, it will be possible to measure the ttZ axial
vector coupling with a precision of 10− 12%, and FZ2V,A with a precision of 40%. At the SLHC, these bounds can be
improved by factors of about 1.6 (FZ2V,A) and 3 (FZ1A). The bounds which can be achieved for FZ1V are much weaker
than those projected for FZ1A. As mentioned in Sec. 4, the pT (Z) distributions for the SM and for FZ1V,A = −FZ,SM1V,A

are almost degenerate. This is also the case for the ΔΦ(�′�′) distribution. In a fit to these two distributions, therefore,
an area centered at ΔFZ1V,A = −2FZ,SM1V,A remains which cannot be excluded, even at the SLHC. For FZ1V , the two
regions merge, resulting in rather poor limits.

It is instructive to compare the bounds for anomalous ttV couplings achievable at the LHC with those projected
for the ILC. The most complete study of tt̄ production at the ILC for general ttV (V = γ, Z) couplings so far is that
of Ref. [11]. It uses the parameterization of Eq. (2) for the ttV vertex function. In order to compare the bounds of
Ref. [11] with those anticipated at the LHC, the limits on FV1V,A and FV2V,A have to be converted into bounds on F̃V1V,A
and F̃V2V,A. Table I compares the bounds we obtain for F̃V1V,A and F̃V2V,A with those reported for the ILC in Ref. [11].
Note that only one coupling at a time is allowed to deviate from its SM value [11]. We show LHC limits only for
an integrated luminosity of 300 fb−1. For the SLHC, with 3000 fb−1, we obtain bounds which are a factor 1.3 − 3
more stringent than those shown in Table I. Thus, even if the SLHC operates first, and the p/T bb̄ + 4j final state
is taken into account, a linear collider will still be able to significantly improve the ttZ anomalous coupling limits,
with the possible exception of F̃Z1A. The ILC will also be able to considerably strengthen the bounds on F̃ γ1A and
F̃ γ2A. It should be noted, however, that this picture could change once correlations between different non-standard
ttZ couplings, and between ttγ and ttZ couplings, are taken into account. Unfortunately, so far no realistic studies
for e+e− → tt̄ which include these correlations have been performed1.

The LHC will be able to perform first tests of the ttV couplings. Already with an integrated luminosity of

1However, see Ref. [17] for limits on the CP -violating couplings.
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30 fb−1, one can probe the ttγ couplings with a precision of about 10− 35% per experiment. With higher integrated
luminosities one will be able to reach the few percent region. With the exception of FZ1A, the ttZ couplings can only
be measured with a precision of 15−50%, even at the SLHC. The ILC will be able to further improve our knowledge
of the ttV couplings, in particular in the ttZ case.

2.3. Two-loop Corrections to Heavy Quark Form Factors
T. Gehrmann

The international linear collider will produce large numbers of top-antitop quark pairs, thus allowing for precision
studies of the properties of the top quark. These experimental precision studies require equally precise theoretical
predictions, i.e. higher order corrections in perturbation theory. Up to now, the theoretical effort was focused on a
precise description of top quark production at threshold (see [18] for a review), where QCD corrections to next-to-
next-to-leading order (NNLO) in perturbation theory are known, while observables other than the total production
cross section in the continuum are known only to next-to-leading order (NLO) accuracy. In this section, we present
results on the virtual two-loop corrections to vertex functions involving heavy quarks, which are an important
ingredient to the NNLO corrections to top quark observables in the continuum.

The vertex function coupling an on-shell heavy quark antiquark pair to an external current can be decomposed
into so-called form factors, whose coefficients follow from Lorentz invariance and symmetry properties of the current.
For the vector and axial vector current (electroweak gauge boson), the vertex function contains, within QCD, four
form factors (F1,2, G1,2):

�γ∗, Z0

p2

p1

= (−i)
(
vQF1(s,m2)γμ + vQ

1
2m

F2(s,m2)iσμν(p1 + p2)ν

+aQG1(s,m2)γμγ5 + aQ
1

2m
G2(s,m2)γ5(p1 + p2)μ

)
.

The coupling of heavy quarks to Higgs bosons of positive and negative parity contains the scalar and pseudoscalar
form factors:

�H, A

p2

p1

= −i m
v

[
SQFS(s,m2) + iPQFP (s,m2)γ5

]
.

Here s is the invariant momentum squared of the external current and m the heavy quark mass.
The two-loop corrections to the form factors are obtained by applying appropriate projections to the Feynman

diagrams displayed in Figure 5. As a result, the form factors are expressed in terms of hundreds of different scalar
integrals. These integrals are reduced to a small set of master integrals by means of the so-called Laporta algorithm
[19] with the help of integration-by-parts identities [20] and Lorentz-invariance identities [21]. The master integrals
themselves were evaluated with the method of differential equations [21–24] in [25, 26]. The master integrals, and thus
the form factors are represented as series in the regularization parameter ε and expressed in terms of 1-dimensional
harmonic polylogarithms up to weight 4 [27, 28].

We obtained the complete two-loop corrections for the renormalized vector [29], axial-vector [30, 31], scalar and
pseudoscalar [32] form factors. Agreement was found with earlier partial results and with expansions around special
kinematical points.

An immediate physical application of the QCD corrections to the heavy quark form factors for arbitrary momentum
transfer are predictions for form factors at zero recoil, the so-called static form factors.

Measurements of these static form factors for heavy quarks could allow indirect constraints on new physics sce-
narios. Recently, there has been considerable effort to determine the feasibility of such experimental measurements.
Specifically, the couplings to photons and Z bosons have been studied in detail – both for heavy quark produc-
tion at hadron colliders [12, 16, 33] and at a future high-luminosity high-energetic linear electron-positron collider
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Figure 5: Feynman diagrams contributing to the two-loop QCD corrections to heavy quark form factors

[11, 16, 34, 35]. At this workshop, this issue was revisited in great depth especially in view of discriminating new
physics scenarios (see sections 4.1 and 4.2).

The most prominent static form factor is the electromagnetic spin-flipping form factor: the anomalous magnetic
moment, which is finite in the zero-recoil limit, and can be obtained from the results of the previous section [37]. It
reads

F2,Q(s = 0) =
αs
2π

CF +
(αs

2π

)2

F
(2l)
2,Q ,

with

F
(2l)
2,Q = C2

F

(
−31

4
+ 2 ζ2 (5 − 6 ln(2)) + 3 ζ3

)
+ CF CA

(
317
36

+ 3 ζ2 (−1 + 2 ln(2)) − 3
2
ζ3

)
+CF TF

(
119
9

− 8 ζ2

)
− 25

9
CF TF Nl + CF β0 ln(μ2/m2

Q),

from which we can derive the static magnetic and weak magnetic form factor of a quark Q. We consider(
g − 2

2

)γ,Z
Q

≡ F γ,Z2,Q (0) = vγ,ZQ F2,Q (0) ,

which correspond to the anomalous magnetic (MDM) and weak magnetic (WMDM) moments of Q. (Notice that in
the literature the WMDM is often associated with FZ2,Q(s = m2

Z).) Numerical values for t and b quarks are given in
Table II.

For the b quark an upper bound on its magnetic moment was derived in [38] from an analysis of LEP1 data,
which, in our convention, reads |δ(g − 2)γb /2| < 1.5 × 10−2 (68 % C.L.). Comparing it with Table II we see that
the QCD-induced contributions to the b quark magnetic moment saturate this bound, which implies that there is
limited room for new physics contributions having the same sign as the QCD contributions to this quantity. At a
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t (μ = mt) b (μ = mb) b (μ = mZ)

(g − 2)
γ,(1l)
Q /2 1.53 · 10−2 −1.52 · 10−2 −8.4 · 10−3

(g − 2)
γ,(2l)
Q /2 4.7 · 10−3 −1.00 · 10−2 −6.6 · 10−3

(g − 2)γ
Q/2 2.00 · 10−2 −2.52 · 10−2 −1.50 · 10−2

(g − 2)
Z,(1l)
Q /2 5.2 · 10−3 −1.87 · 10−2 −1.03 · 10−2

(g − 2)
Z,(2l)
Q /2 1.6 · 10−3 −1.24 · 10−2 −8.1 · 10−3

(g − 2)Z
Q/2 6.8 · 10−3 −3.11 · 10−2 −1.85 · 10−2

Table II: One- and two-loop QCD contributions, and their sums, to the anomalous magnetic and weak magnetic moments of

the top and bottom quark, for different values of the renormalization scale μ.

future linear collider [11, 35], when operated at the Z resonance, the sensitivity to this variable could be improved
substantially, either by global fits or by analyzing appropriate angular distributions in bb̄ and bb̄γ events.

As to the static form factors of the top quark, no such tight constraints exist so far on possible contributions
from new interactions (see Ref. [12] for a review). These quantities are particularly sensitive to the dynamics of
electroweak symmetry breaking. For instance, in various models with a strongly coupled symmetry breaking sector
one may expect contributions from this sector to the static t quark form factors at the 5 - 10% level [118]. The
QCD-induced anomalous magnetic moment and the QCD corrections to the axial charge of the top quark are of the
same order of magnitude. Future colliders have the potential to reach this level of sensitivity.

The form factors presented here have a number of applications, which will be addressed in future work. The vector
and axial vector form factors contribute to the NNLO corrections to the forward-backward asymmetry for heavy
quarks; they can also be used to compute the differential top quark pair production cross section at the ILC in the
continuum, where top quark mass effects are still non-negligible. The scalar and pseudoscalar form factors enter
the NNLO corrections to the decay of a Higgs boson into heavy quarks. These would become especially important
for a very heavy Higgs boson, decaying into top quark pairs, where the form factors could be used for a differential
description of the decay final state.

2.4. Electroweak Effects at the tt̄ Threshold
A. Hoang

The proper treatment of electroweak effects plays an important role in high precision measurements at the tt̄

threshold. In the calculation of the total cross section, one can categorize electroweak effects into three classes.

(a) ”Hard” electroweak effects: This class includes electroweak effects related to the tt̄ production mechanism itself
or factorizable corrections to various matching conditions of the effective theory that is used to describe the
nonrelativistic QCD dynamics of the top pair. In general these corrections are modifications to the hard QCD
matching conditions of the effective field theory operators. They can be determined by standard methods and
are real numbers.

(b) Electromagnetic effects: Electromagnetic effects are relevant for the luminosity spectrum of an e+e− initial
state (beam energy spread, beamstrahlung, initial state radiation) and the tb̄ final state (modification to the
Coulomb attraction, contributions to hard electroweak effects).

(c) Effects related to the finite top quark lifetime: Apart from the top decay (into Wb for the Standard Model)
this class also includes interference contributions with processes having the same final state (W+W−bb̄) but
only one or even no top quark at intermediate stages. This class also accounts for interactions involving the
top decay products (”non-factorizable” effects).

For processes involving highly energetic top quarks, where the momentum transfer typically involves scales much
larger than Γt, the class (c) effects are small corrections. On the other hand, for the top threshold dynamics all three
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classes have to be accounted for at leading order, because the typical kinetic energy of the nonrelativistic top quarks
is of the same order as the top quark width,

Ekin ∼ mtv
2 ∼ mtα

2
s ∼ Γt ∼ mtαem . (4)

The relation in Eq. (4) gives the power-counting that has to be employed to systematically account for electroweak
effects within the nonrelativistic expansion:

v2 ∼ α2
s ∼ αem . (5)

Several analyses concerning electroweak effects belonging to the various classes have been carried out in the past.
However, no coherent and comprehensive treatment that systematically accounts for all these electroweak effects
beyond leading order currently exists. In the following a brief status report is given concerning top threshold
production in e+e− annihilation.

The leading order (LL) electroweak effects belonging to class (a) describe the production mechanisms of the
nonrelativistic top quark pair in e+e− annihilation in the various possible spin and angular momentum states. Due
to the power-counting, the one-loop hard electroweak corrections already contribute at next-to-next-to-leading order
(NNLL) and involve the standard (real parts of the) one-loop electroweak corrections to the e+e− → tt̄ process [39, 40].
There are also hard electroweak corrections that modify the QCD potentials [41], but due to gauge cancellations
these corrections do not contribute at NNLL order. The dominant corrections caused by an exchanged Higgs boson
through a Yukawa potential can also be considered as a class (a) contribution.

The most important contribution belonging to the electromagnetic effects in class (b) is the luminosity spectrum
that affects the c.m. energy available in the e+e− collision. While beamstrahlung and the beam energy spread are
machine-dependent and will have to be measured experimentally, the initial state radiation component is calculable.
The luminosity spectrum leads to sizable smearing of the cross section and contributes at LL order. Electromagnetic
effects also modify the QCD potential through photon exchange between the top pair and can lead to hard electroweak
corrections belonging to class (a). In present analyses QED effects are only accounted for through the luminosity
spectrum. In particular there is no coherent treatment of the calculable QED effects that systematically accounts
for the effects of initial state radiation, the Coulomb corrections and the hard QED effects.

The leading order effect belonging to class (c) is the top decay width, which makes the perturbative treatment
to the strong tt̄ dynamics at all possible [42, 43]. Within the nonrelativistic effective theory used to describe QCD
effects the top quark width can be implemented through an imaginary mass shift in the top quark propagator

i

k0 − p2

mt
+ δmt + i

2Γt
, (6)

where δmt is related to the top quark mass definition that is used. This effect can be incorporated into the forward
e+e− → e+e− scattering amplitude results for stable top quarks by simply shifting the c.m. energy into the complex
plane:

√
s → √

s+ iΓt. Using the optical theorem one can obtain the total cross section. Beyond leading order the
electroweak effects belonging to class (c) can be systematically incorporated into the effective theory by accounting for
absorptive parts related to the top decay final states in the matching conditions [44] of the effective theory. This leads
to well known effects such as the time dilatation correction [41], but can also account for interference contributions
with processes where no top pairs are produced, but which have the same final state [44] (see Fig. 6). The gauge
cancellation already mentioned for class (a) also applies here and leads to the cancellation of interactions among the
top quarks and their decay products caused by ultrasoft gluons for the total cross section at NLL order [45, 46] and
even at NNLL order [44]. In Ref. [44] it was also shown that within the nonrelativistic effective theory the imaginary
matching conditions can lead to ultraviolet phase space divergences that require additional renormalization. A
complete treatment of all the class (c) electroweak effects at NLL has not yet been achieved.

A crucial prediction of the Higgs mechanism is that the Higgs Yukawa coupling to quarks λq is related to the quark
masses by mq = λqV . At the e+e− Linear Collider the top quark Yukawa coupling can be measured from top quark
pair production associated with a Higgs boson, e+e− → tt̄H . This process is particularly suited for a light Higgs
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Figure 6: (a) Cuts in Standard Model diagrams contributing to absorptive parts in the matching conditions for the tt̄ effective

theory currents. Within the effective theory the absorptive parts describe the interference of the diagrams shown in (b).
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Figure 7: Typical constellation of momenta for the process e+e− → tt̄H in the large Higgs energy endpoint region.

boson since the cross section can then reach the 1-2 fb level. Assuming an experimental precision at the percent level,
QCD and electroweak radiative corrections need to be accounted for in the theoretical predictions. The Born cross
section was already determined some time ago in Ref. [47]. For the O(αs) QCD one-loop corrections a number of
references in various approximations exist [48–50]. On the other hand, the full set of one-loop electroweak corrections
was obtained in Refs. [51, 52] and also in Ref. [53]. In Ref. [52] a detailed analysis of various differential distributions
of the cross section σ(e+e− → tt̄H) can be found. For high energies these fixed order predictions are sufficient to
reach the required theoretical precision.

In Ref. [54] the phase space region where the Higgs energy is large and the tt̄ pair becomes collinear to balance the
large Higgs momentum was analyzed (see Fig. 7). It was found that since in this kinematic region the tt̄ invariant
mass approaches 2mt, it is governed by nonrelativistic dynamics in analogy to the physics relevant for the tt̄ threshold.
Thus, the usual fixed-order treatment breaks down and the nonrelativistic effective theory description known from
the tt̄ threshold has to be applied. For high c.m. energies above about 700 GeV the large Higgs energy endpoint
region is very small, and a usual fixed-order treatment is sufficient for the theoretical determination of the total
cross section. However, for smaller c.m. energies (as available at the first phase of the ILC running), or for larger
Higgs masses, the endpoint region increases with respect to the full available phase space and an effective theory
treatment for the endpoint region becomes mandatory. In Ref. [54] a QCD endpoint analysis in the framework of
the effective theory vNRQCD [55] was carried out. The results sum singular terms in the endpoint region ∝ (αs/v)n

and (αs ln v)n at NLL order, where v is the c.m. velocity of the top quarks in the tt̄ c.m. frame. Typical results for
the Higgs energy spectrum for small c.m. energies showing the fixed-order QCD predictions and the LL and NLL
order nonrelativistic effective theory predictions in the large Higgs energy region are shown in Fig. 8. The vertical
lines mark the Higgs energy where the top velocity v = 0.2, which roughly divides the regions where fixed-order and
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Figure 8: Higgs energy spectrum at LL (dotted lines) and NLL (solid lines) order in vNRQCD for the soft renormalization

scales μS = (0.1, 0.2, 0.4)mt and at the Born level and at O(αs) for μ =
√

s,
√

s|v| for the parameters (a)
√

s = 500 GeV,

mH = 120 GeV and (b)
√

s = 550 GeV, mH = 140 GeV. The top 1S mass has been set to m1S
t = 180 GeV and the other

parameters are Γt = 1.55 GeV, MZ = 91.1876 GeV, MW = 80.423 GeV, cw = MW /MZ and α−1 = 137.034.

√
s [GeV] mH [GeV] σ(Born) [fb] σ(αs) [fb] σ(NLL) [fb] σ(NLL)

σ(Born)
σ(NLL)
σ(αs)

500 120 0.151 0.263 0.357(20) 2.362 1.359

550 120 0.984 1.251 1.342(37) 1.364 1.073

550 160 0.134 0.207 0.254(12) 1.902 1.226

600 120 1.691 1.939 2.005(30) 1.185 1.034

600 160 0.565 0.700 0.745(18) 1.319 1.065

700 120 2.348 2.454 2.485(13) 1.058 1.012

700 160 1.210 1.303 1.328(11) 1.098 1.020

Table III: Cross sections and K factors for σtot(e
+e− → tt̄H) for various c.m. energies and Higgs masses and top quark mass

m1S
t = 180 GeV.

effective theory computations are valid. In Table III the impact of the summation of the Coulomb singularities and
the logarithms of the top quark velocity in the endpoint region is analyzed numerically for various choices of the
c.m. energy and the Higgs mass. For all cases the top quark mass m1S

t = 180 GeV is used and the other parameters
are fixed as in Fig. 8. Here, σ(Born) refers to the Born cross section and σ(αs) to the O(αs) cross section in fixed-
order perturbation theory using μ =

√
s as the renormalization scale. The term σ(NLL) refers to the sum of the

O(αs) fixed-order cross section for v > 0.2 using μ =
√
sv and the NLL nonrelativistic cross section for |v| < 0.2 with

the soft vNRQCD renormalization parameter μS = 0.2mt. The summation of endpoint singularities is particularly
important for smaller c.m. energies, since it leads to an additional significant enhancement of the total cross section
in a region where the cross section is rather small. This enhancement could improve the prospects of top-Yukawa
coupling measurements at the first phase of the ILC (see section 2.5).

2.5. Towards a Precise Measurement of the Top Quark Yukawa Coupling at the ILC [56]
A. Juste

The top quark Yukawa coupling (λt) is the largest coupling of the Higgs boson to fermions. A precise measure-
ment of it is very important since it may help unravel the secrets of the Electroweak Symmetry Breaking (EWSB)
mechanism, in which the top quark could possibly play a key role. For mh < 2mt, a direct measurement of λt is
possible via associated tt̄h production, both at the LHC and a future ILC. At the LHC, the expected accuracy [57]
is δλt/λt ∼ 12 − 15% for mh ∼ 120 − 200 GeV, assuming an integrated luminosity of 300 fb−1. Existing feasibility
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studies at the ILC [58] predict an accuracy of δλt/λt ∼ 6 − 10% for mh ∼ 120 − 190 GeV, assuming
√
s = 800 GeV

and 1000 fb−1. However, currently the baseline design for the ILC only contemplates a maximum center-of-mass
energy of 500 GeV. Therefore, it is very relevant to explore the prospects of this measurement during the first phase
of the ILC, especially in view of the limited accuracy expected at the LHC; for a number of years, the combination
of results from the LHC and ILC will yield the most precise determination of λt.

A preliminary feasibility study at
√
s = 500 GeV was performed in Ref. [59], which we briefly overview here.

Indeed, the measurement of λt at
√
s = 500 GeV is more challenging than at

√
s = 800 GeV. On the one hand,

the reduced phase-space leads to a large reduction in σtt̄h (e.g. σBorntt̄h � 0.16(2.5) fb at
√
s = 500(800) GeV, for

mh = 120 GeV). On the other hand, the cross section for many background processes is significantly increased. This
analysis assumed mh = 120 GeV and focused on the tt̄h→ (�νb)(jjb)(bb̄) decay channel (BR ∼ 30%). The dominant
background is tt̄jj, followed by tt̄Z, although other non-interfering backgrounds (e.g. W+W−) were also considered.
Signal and backgrounds were processed through a fast detector simulation. After basic preselection cuts, the signal
efficiency was found to be � 50% and the S : B � 1 : 100. In order to increase the sensitivity, a multivariate analysis
using a Neural Network (NN) with 23 variables was performed. The final selection consisted of an optimized cut
on the NN distribution. Assuming an integrated luminosity of 1000 fb−1, the expected total numbers of signal and
background events were 11 and 51, respectively, resulting in (δλt/λt)stat � 33%. Based on previous experience [58],
the addition of the fully hadronic decay channel was expected to ultimately lead to (δλt/λt)stat � 23%. While this
analysis is already rather sophisticated, significant improvements are expected from the usage of a more efficient
b-tagging algorithm or a more optimal treatment of the kinematic information. In the next sections we discuss
additional sources of improvement which are currently under investigation.

The precise measurement of λt requires accurate theoretical predictions for σtt̄h. Currently, one-loop QCD and
electroweak corrections are available. However, at

√
s = 500 GeV and for mh ≥ 120 GeV, the kinematic region

where the tt̄ system is non-relativistic dominates. As discussed in Ref. [54] and Section 2.4, in this regime Coulomb
singularities are important and need to be resummed within the framework of the vNRQCD effective theory, leading
to large enhancements factors in the cross section relative to the Born level. At the ILC, because of ISR and
beamstrahlung (BS), the event-by-event center-of-mass energy (

√
ŝ) will be lower than the nominal one, thus bringing

the tt̄ system deeper into the non-relativistic regime. In order to compute the expected σtt̄h including these effects,
the 11-fold Born differential cross section for e+e− → tt̄h → W+bW−b̄h was multiplied by a K-factor defined as
K(Eh,

√
ŝ) = (dσNLLtt̄h /dEh)/(dσBorntt̄h /dEh), where Eh stands for the Higgs boson energy in the e+e− rest-frame,

and then folded with ISR and BS structure functions. The NLL differential cross section was kindly provided by
the authors of Ref. [54]. Fig. 9 (left and center) compares the Born (for off-shell top quarks) and NLL differential
cross sections for different values of

√
ŝ, assuming m1S

t = 180 GeV and mh = 120 GeV. The ratio of these two
curves defines K(Eh,

√
ŝ) and can be significantly larger than 1, especially for low values of

√
ŝ. Since the NLL

prediction is only valid for Eh ≤ Emaxh (where Emaxh effectively corresponds to a cut on the top quark velocity in the
tt̄ rest-frame of βt < 0.2), we currently set K(Eh,

√
ŝ) = 1 for Eh > Emaxh , although in practice, it should be possible

to use K(Eh,
√
ŝ) = (dσO(αs)

tt̄h /dEh)/(dσBorntt̄h /dEh). Table IV compares the predicted Born and “NLL-improved”
σtt̄h for different scenarios, illustrating the large impact of radiative effects in the initial state. This underscores the
importance of being able to predict these effects to the percent level. While the impact of ISR cannot be reduced, it
might be possible to find an optimal operating point of the accelerator, as far as this measurement is concerned, in
terms of BS and total integrated luminosity. Finally, it is found that, for mh = 120 GeV, resummation effects can
increase σtt̄h by a factor of ∼ 2.4 with respect to the Born cross section used in the previous feasibility study.

So far, all feasibility studies of this measurement have assumed unpolarized beams. Currently, the baseline design
for the ILC only includes longitudinal electron beam polarization (|Pe− | � 0.8). Positron beam polarization (|Pe+ | �
0.6) is considered as an option. The ratio of the polarized cross section (for arbitrary longitudinal beam polarization)
(σP

e−Pe+ ) to the unpolarized cross section (σ0) is given by σP
e−Pe+ /σ0 = (1 − Pe−Pe+)(1 − PeffALR), where

Peff = (Pe− − Pe+)/(1− Pe−Pe+) denotes the “effective polarization” and ALR is the “left-right asymmetry” of the
process of interest [60]. Therefore, two potential enhancement factors can in principle be exploited: the first one
requires having both beams polarized, the second one requires ALR �= 0 and a judicious choice of the signs of Pe− and



16

Table IV: Comparison of the Born and NLL σtt̄h for different scenarios regarding radiative effects in the initial state.

(ISR,BS) σtt̄h (fb) (Born) σtt̄h (fb) (“NLL-improved”) Enhancement factor

(off,off) 0.157(1) 0.357(2) 2.27

(off,on) 0.106(1) 0.252(3) 2.38

(on,on) 0.0735(8) 0.179(2) 2.44
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Figure 9: Left and center: comparison of the Born (dashed) and NLL (solid) dσtt̄h/dEh for different values of
√

s, assuming

m1S
t = 180 GeV and mh = 120 GeV. The dotted line indicates the value of Emax

h . Right: ratio of polarized to unpolarized

cross section for different values of (Pe− , Pe+).

Pe+ in order to have PeffALR < 0. In the case of SM tt̄h production, ALR � 0.44, essentially independent of
√
s in the

range ∼ 0.5 − 1.0 TeV. Assuming (ALR)SM , Fig. 9 (right) shows the cross section enhancement factor as a function
of Pe+ , for different values of Pe− . The optimal (realistic) operating point would be (Pe− , Pe+) = (−0.8,+0.6),
achieving an increase in σtt̄h by a factor of � 2.1 with respect to the unpolarized case. Unfortunately, this choice
does not help reduce the dominant background, which is increased by a similar factor. Nevertheless, the net result is
still an improvement in the statistical precision on λt by ∼ 45%, which would be an argument in favor of including
positron polarization in the baseline design. For (Pe− , Pe+) = (−0.8, 0), only a modest increase in σtt̄h by a factor of
∼ 1.3 would be achieved. It is important to realize that, in order to choose the sign of Pe− and Pe+ , it is necessary
to know the sign of ALR. Anomalous couplings in the ttγ and ttZ vertices could possibly lead to deviations in ALR
from the SM prediction. Unfortunately, due to the limited precision in the measurement of the ttZ couplings [12, 16],
the LHC is not expected to provide any useful constraints on the sign of ALR. Therefore, at the ILC the first step
should be to perform measurements of the polarized σtt̄ in order to determine the sign of ALR, and thus fix the
signs of Pe− and Pe+ (the magnitudes should be the largest possible). On the other hand, the measurement of λt
requires a percent-level and model-independent determination of the tt̄γ and tt̄Z couplings, which typically benefits
from changing the beam polarization. Therefore, it would be desirable to optimize the running strategy to maintain
the largest possible σtt̄h, needed for a precise measurement of λt, while meeting the precision goals for measurements
of top quark couplings.

We have studied the prospects of a precise measurement of the top quark Yukawa coupling during the first phase
of the ILC. Taking into consideration an existing feasibility study, and the additional enhancement factors to σtt̄h
discussed here, we anticipate a precision of (δλt/λt)stat ∼ 10% for mh = 120 GeV, assuming

√
s = 500 GeV and

1000 fb−1.
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2.6. The tt̄ Threshold at an e+e− Collider
Y. Kiyo

It is well known that QCD corrections to tt̄ production near threshold develop a Coulomb singularity. The structure
of the cross section is

σtot(e+e− → tt̄) = σBorn

[
1 + c(1)

(
αs
v

)
+ c(2)

(
αs
v

)2

+ c(3)
(
αs
v

)3

+ · · · + c(n)

(
αs
v

)n
+ · · ·

]
, (7)

where σBorn is the Born cross section and v =
√

1 − 4m2
t/s is the velocity of the top quarks. In Eq. 7, we have

pulled out the Coulomb singularity (αs/v)n explicitly so that the nth coefficient starts with O(v0),

c(n) = c(n,0) + c(n,1) v + c(n,2) v2 + · · · . (8)

Near threshold the kinematics of the top quarks is non-relativistic and v ∼ αs holds. To get a meaningful cross
section we thus have to sum up the Coulomb singularities ∼ αs/v ∼ 1. The leading order (LO) cross section then
contains the Coulomb singularities ∼ (αs/v)n to all orders of the coupling expansion,

σLOtot = σBorn
∑
n=0

c (n,0)

(
αs
v

)n
. (9)

The cn,1 terms are suppressed by v compared with the LO and result in next-to-leading order (NLO) corrections.
These terms are known since long. Next-to-next-to leading order (NNLO) calculations have been completed some
time ago by several groups [61]. They sum up all the corrections of c(n,2) v2 (αs/v)n to all orders n.

Figure 10: Typical QCD loop diagram which yields the Coulomb singularity ∼ (αs/v)n, n = the number of gluon exchanges.

The Coulomb singularity originates from potential gluons, which have a typical momentum kμ ∼ mt(v2, �v), ex-
changed between almost on-shell top and anti-top quarks in Fig. 10. For the kinematics of potential gluons, the
corresponding propagator reduces to the Coulomb potential

ṼC = −4πCFαs
q2

, (10)

where CF = 4/3. In the gluon propagator, the energy component of q was set to zero because of the potential gluon’s
kinematics. Using this gluon propagator in place of normal gluon propagators in the figure, one may reproduce the
c(i,0) coefficients to all orders in Eq. 8. This procedure can be systematically extended to higher orders using effective
field theory (EFT) techniques. The constructed effective field theories are versions of non-relativistic QCD called
pNRQCD/vNRQCD [55]. We do not go into details of the EFT but summarize several features.

• The tt̄ pair at threshold is created by the production current �J = CJ [t�σt̄] + · · · in the EFT, where CJ is the
Wilson coefficient of the corresponding current in the EFT, and the dots denote subleading operators.

• The produced top quark pair forms bound state resonances by exchanging potential gluons; the binding Coulomb
potential is Ṽ0 = V0ṼC(q), where V0 = 1 + O(αs) includes QCD corrections to the leading order Coulomb
potential from loop diagrams.

• There are subdominant potentials, e.g. Ṽ1 = V1g
2
s/|q|, which have to be taken into account if one wants to go

beyond the NLO cross section.
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• A yet new type of corrections is known at next-to-next-to-next-to leading order (NNNLO), which is referred to
as ultra-soft corrections because of the typical gluon momentum of k0 ∼ |�k| ∼ mv2.

An important point here is that the EFT scheme is a systematic way to sum up higher order corrections, and it
makes practical calculations easier compared to those of full QCD. Currently complete NNLO total cross sections
are known in both (semi-) analytical and numerical ways. The results are summarized in Ref. [61].

In the following we briefly survey recent attempts in going beyond NNLO and in resumming potentially large
logarithms for the threshold cross section in the EFT framework.

In the EFT calculation of the tt̄ cross section, higher order QCD corrections enter through the higher order
coefficients Vi of potentials and through subdominant potentials, e.g. Ṽ1(q). Furthermore, there are corrections from
ultra-soft gluons, starting to contribute at NNNLO. They cannot be written in form of potentials, as they include a
noninstantaneous, dynamical propagation in time, while the potentials are all instantaneous. The first correction to
V0 is referred to as a Coulomb correction,

V(n)
0 = 1 +

αs
4π
(
β0L(q) +

43
9
)

+ · · · + (αs
4π
)n · (group factors, L(q), etc.

)
, (11)

where β0 = 11 − (2/3)nf is the coefficient of the QCD β−function, L(q) = ln(μ2/q2), and μ is the QCD renor-
malization scale. The QCD corrections to all the coefficients can be found in Ref. [62] up to O(α3

s), except the
third order constant term, so-called a3 in the literature. Using Ṽ (3)

0 = V(3)
0 ṼC , the Coulomb correction to the total

cross section was computed in Ref. [63]. The other corrections to the tt̄ cross section at NNNLO due to subleading
potentials and ultra-soft gluons are not known yet. In Fig. 11 we show the tt̄ threshold total cross section including
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Figure 11: Normalized cross section R ≡ σ(e+e− → tt̄)/σ(e+e− → μ+μ−) in the threshold regime including the resummation

of Coulomb corrections. Figure from Ref. [63].

the Coulomb corrections as calculated in Ref. [63]. The curves are obtained using analytical results of successive
Coulomb corrections from LO to NNNLO, and the line denoted by ”NNNLO exact” is obtained by numerically
solving the Schrödinger equation using V(3)

0 at NNNLO. The difference between NNNLO and ”NNNLO exact” is
yet of higher order as the numerical method contains rigid NNNLO plus additional contributions which come from
iterations of the potential Ṽ0. Studying the renormalization scale dependence of these predictions, the theoretical
uncertainty for the NNNLO Coulomb corrections was estimated to be about 5% of the cross section. Although the
full corrections at NNNLO are not known, the 1S energy of the tt̄ resonance, which corresponds to the peak position
of the cross section, is known analytically at NNNLO from Refs. [62, 64]. The result shows that the uncertainty in
the choice of the scale is small and the perturbative series for the 1S energy is stabilized (see Ref. [65]).

In higher order calculations there appear potentially large logarithms of ratios of scales. In the threshold regime
we have large logarithms of v in the coefficients c(n,i), arising from ratios of the largely different scales of the problem,
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namely the energy of the top quarks, Et ∼ mv2, the momentum p ∼ mtv of almost on-shell top quarks, and the
c.m. energy

√
s ∼ 2mt. The origin of these logarithms is related to UV divergences in the EFT. They can be

resummed using renormalization group (RG) arguments [55, 66], resulting in RG improved cross section predictions,
σLL, σNLL, etc. The RG improvement was extensively studied recently, and the next-next-leading-log (NNLL) cross
section was calculated in Ref. [67] (apart from the NNLL running of a current for which the anomalous dimension
is only fully known at NLL, see also Ref. [68, 69]). The RG improved cross section then contains all terms of order∑

n,m(αs/v)n(αs ln v)m. The resummation of the logarithms leads to a reduction of the scale dependence of the
normalization from 20% to about 6% (at NNLL), especially at energies around the 1S peak. This is illustrated in
Fig. 12, where the scale dependence of the fixed order (left panel) and RG improved (right panel) cross sections are
shown for different orders.

The different studies discussed above strengthen our confidence that the estimate of the uncertainty of the top
quark mass determination from Ref. [61], Δmt < 100 MeV, is realistic and will not be spoiled by uncalculated higher
order corrections. There is even hope to believe that, if different approaches turn out to converge, the estimated error
may shrink. For determinations of the top quark total width, the top Yukawa coupling yt and the strong coupling
constant from the threshold scan theoretical uncertainties are comparable to the expected experimental errors. An
ultimate theoretical normalization error of at most 3% is desirable.
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Figure 12: Scale dependence of the fixed order cross section (a) and the RG improved cross section predictions (b) in different

orders. Each band of curves is obtained by varying the vNRQCD renormalization scale, choosing ν = 0.15, 0.2, 0.3. Figures

from Ref. [68].

2.7. Differential Distributions and Experimental Aspects of the tt̄ Threshold Scan
T. Teubner

The most precise determination of the top quark mass will come from a dedicated threshold scan at
√
s ∼ 2mt.

This is mainly a consequence of the fact that by performing a counting experiment of color singlet tt̄ pairs one
can avoid most of the systematic uncertainties inherent in a kinematic reconstruction of the decay products of the
colored quarks. These uncertainties, which are closely related to the problem of the mass definition, will ultimately
limit the determination of mt as done at the Tevatron and soon at the LHC. Detailed studies have shown that via
a threshold scan, measurements with very small statistical and systematic errors will be possible at the ILC [2].
A multi-parameter fit for the top quark mass mt, width Γt, the strong coupling αs and the top Yukawa coupling
resulted in experimental errors of about Δmt ∼ 20 MeV, ΔΓt ∼ 30 MeV, Δαs ∼ 0.0012, depending on details of
the fit. (At threshold, the top Yukawa coupling can only be measured for a light Higgs and even then with less than
30% accuracy.) Such a precision will only be achieved if the accuracy of the theoretical predictions can match the
experimental one, and recently a lot of effort has been invested in further improvements of the theory (see sections
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2.4 and 2.6). Although most of the information in the fit will come from the precise measurement of the total tt̄ cross
section, differential distributions are needed for several reasons.

• Experimentally, cuts are needed to discriminate the signal form backgrounds, so the measured cross section
can never be the fully inclusive total cross section.

• Distributions are required to build realistic (higher order) Monte Carlo generators for the signal process.

• Using additional observables beyond σtot adds information, helping to disentangle correlations among the
parameters determined from a threshold scan, and increases the sensitivity to possible New Physics in top
production and decay.

Differential distributions used so far are the top quark momentum distribution dσ/dpt and the forward-backward
asymmetry AFB of the cross section, but theoretical studies exist also for the polarization of the top quarks. In the
following we will briefly discuss these observables and their role in the threshold scan, and comment also on the
issue of rescattering corrections.
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Figure 13: Top quark momentum distribution in the threshold regime.

The top quark momentum distribution dσ/dpt is available in the framework of the next-to-next-to leading order
(NNLO) calculations [70] (see also Ref. [71]). Close to threshold its form resembles a 1S Coulomb-like wave function,
becoming more symmetric well above threshold. Fig. 13 shows dσ/dpt at a fixed c.m. energy of 349 GeV for two
different masses mt = 174.5, 175.5 GeV, where the width of the band is obtained by varying αs between 0.115 and
0.121. The peak position of dσ/dpt is not much dependent on αs but is very sensitive to mt, and a change of
αs mainly affects the normalization of the distribution. This is in contrast to σtot, where mt and αs are strongly
correlated parameters when fitting theoretical predictions to (simulated) data.

Interference of the leading vector current (through γ and Z exchange) with the suppressed axial vector contribution
(from Z only) leads to a forward-backward asymmetry AFB. The size of the asymmetry depends on how much the
corresponding S and P wave resonance contributions overlap and hence on the top quark width Γt, but less on αs
(and mt), see Fig. 14.

As already demonstrated in experimental studies [2], the two observables dσ/dpt and AFB can be used together
with σtot to make best use of the available information and to disentangle the correlations between the parameters
mt,Γt, αs(, yt) in a multi-paramter fit. However, the latest theoretical developments such as NNNLO corrections,
renormalization group improvement by summing large logarithms at NNLL order (see section 2.6) or the effect of
EW corrections (see section 2.4) are dealing with the total cross section, whereas distributions are available at fixed
NNLO only. This situation is quite common, as higher order corrections are increasingly difficult for differential
cross sections, and not many distributions are known beyond NLO. Nevertheless, from a pragmatic point of view
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Figure 14: Dependence of the forward-backward asymmetry AFB on the top quark width (left) and the strong coupling αs

(right panel).

and for use in Monte Carlos, it is legitimate to use the best available prediction for the total cross section together
with distributions available at lower order. By rescaling the distributions using the total cross section, their scale
dependence will decrease and a consistent normalization will be ensured.

W+

W-

b

b

Figure 15: Feynman diagram responsible for rescattering corrections between the top and the b̄ from the t̄ decay.

All recent NNLO, NNNLO as well as the renormalization group improved calculations are not taking into account
the so-called “rescattering corrections”, i.e. interactions between the t, t̄ quarks and the b, b̄ quarks from the top
decays, or between b and b̄ (see Fig. 16 for a typical Feynman diagram). However, such corrections were calculated
numerically in Refs. [72, 73] to NLO accuracy. They are strongly suppressed (vanishing at NLO) in the inclusive σtot

but generally important for distributions and typically of order 10%. They therefore should be included in a realistic
Monte Carlo description.

In addition to differential distributions, also the top quark polarization has been studied in the threshold
regime [72–74]. Predictions are available at NLO accuracy for all three polarization components, including rescatter-
ing corrections. Even for unpolarized e+, e− beams the top quarks are (longitudinally) polarized to 40%, and for the
foreseen beam polarization the top quarks will be highly polarized. Due to the short life-time the top polarization will
be transmitted undisturbed to the decay b’s and W ’s and allow very interesting studies. Making use of the polariza-
tion, observables can be defined which are sensitive to the top’s electric dipole moment (probing CP-violation beyond
the Standard Model) or to anomalous top couplings like V +A admixtures to the weak interaction. However, more
realistic experimental studies are needed in order to fully explore the potential of polarization in the threshold regime.
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Experimental aspects of the threshold scan2

Precision measurements from a tt̄ threshold scan require a very precise knowledge of both the average c.m. energy
〈√s〉 and of the luminosity spectrum dL/d

√
s [75]. This is not an easy task, as the beam dynamics at a linear collider

is not as constrained as it was e.g. at LEP, and only a single measurement of bunches before collision will be possible.
The average c.m. energy can be determined by energy (up- and downstream) spectrometers in dedicated beam line
inserts, discussed in Working Group 4 of the Snowmass Workshop. A possible problem here could be a bias between
the spectrometer measurements and the collision c.m. energy. Another possibility to measure the beam energy is
the use of physics processes like Z pair production, or radiative return (through photon radiation) calibrated to the
Z peak [76].

The luminosity spectrum is determined by (a) the beam spread, (b) beamstrahlung, and (c) initial state radiation
(ISR). All three effects will lead to a smearing of the tt̄ threshold cross section, resulting in a significant reduction of
the effective luminosity and hence the observed cross section,

σobs(
√
s) =

1
L0

∫ 1

0

L(x)σ(x
√
s) dx . (12)

The influence of the three effects is demonstrated in Fig. 16. The beam spread will typically be ∼ 0.1% at the
ILC and will cause comparably little smearing (though additional beam diagnostics may be required to measure and
monitor the beam spread), but beamstrahlung and ISR are very important. The luminosity spectrum dL/d

√
s will

lead to a systematic shift in the extracted top mass which must be well understood; otherwise it could become the
dominant systematic error. In the past, tt̄ threshold studies were carried out under the assumption that the spectrum
is basically known. However it has turned out that the precise determination of dL/d

√
s is a challenging task. The

proposed method is to analyse the acollinearity of (large angle) Bhabha scattering events, which is sensitive to a
momentum mismatch between the beams but insensitive to the absolute energy scale [77]. For this, the envisioned
high resolution of the forward tracker will be very important to achieve the required accuracy.3
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Figure 16: Left: Smearing of the theoretical tt̄ cross section (‘default’) by beam effects and initial state radiation. Right panel:

Simulation of beam spread, beamstrahlung and ISR as distributions of x =
√

s/
√

s0 (where
√

s0 is the nominal c.m. energy

of the machine).

In the simulation of the luminosity spectrum beamstrahlung is the main unknown. Integrated ILC accelerator
simulations for these machine dependent effects are becoming available, including effects from the linac beam spread,
the beam diagnostics and delivery system and the simulation of the collision dynamics using the package Guinea-pig.
At this workshop Stewart Boogert presented first results of spectrum parameterizations (using the package CIRCE),

2This section can only provide a brief review and the reader interested in more details is referred to the presentations of Stewart
Boogert at this workshop.

3An additional complication is, that in Bhabha scattering ISR is not completely factorizable from final state radiation.
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based on new simulations from G. White for
√
s = 350 GeV. The new parameterizations show variations from

earlier results which were based on beam simulations at higher energies only. The parameterizations will be used
as input in the simulation of the Bhabha scattering (based on the package BHWIDE) for the acollinearity analysis.
These involved simulations are required to extract dL/d

√
s and to understand the uncertainties of the reconstructed

spectrum. Only then can one quantify in physics analyses like the tt̄ threshold scan, to which extent the uncertainties
in the luminosity spectrum affect the accuracy of the intended measurements like the top quark mass, width, etc.

The effects due to ISR are in principle machine independent and calculable to high precision in QED. Nevertheless,
ISR effects complicate the measurement of beamstrahlung and accelerator energy spread, and one has to ensure that
the precision of the theoretical formulae used in the Monte Carlo codes is sufficient. Similarly, the accuracy of
differential distributions from programs used for the simulation of the wide angle Bhabha events must be assessed,
and recent theoretical results [78] may have to be included.

The recent developments discussed here make it clear that much work remains to be done before the sophisticated
analysis techniques for the tt̄ threshold scan are understood at the required level of accuracy. For a complete study,
which should take into account the total cross section, distributions, full beam effects including asymmetric boosts
and detector effects, a full Monte Carlo generator will be needed, and a project for this has been started at Snowmass.
With a more detailed experimental study it will also be possible to optimize the scan strategy, i.e. how the available
luminosity should be distributed among different energy scan points.

The analysis of beamstrahlung and its impact on the physics program at different energies will also be relevant for
the optimization of the machine design. Concerning detectors, the demands of the top pair counting experiment are
most probably not problematic for the existing detector designs. However, the requirements for Bhabha scattering and
radiative Z return might set the requirements of the low angle tracking system and the electromagnetic calorimeter.
Finally, it should also be noted, that the understanding of other physics processes like the WW or SUSY thresholds
will largely benefit from the top case, and tt̄ at threshold should be regarded as the benchmark.

3. QCD EFFECTS IN ILC PHYSICS

3.1. Precision QCD at the ILC: e+e− → 3 Jets
A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover

The production of light quark-antiquark pairs in electron-positron annihilation gives rise to final states containing
QCD jets. Depending on the amount of additional hard QCD radiation, one obtains final states with a certain
number of jets: if only quark and antiquark are hard, two-jet final states are produced, one additional hard gluon
yields a three-jet final state, two extra gluons or a secondary quark-antiquark pair can give rise to four-jet final
states and so on. Studying these multi-jet final states, one can probe many aspects of perturbative QCD. Three-jet
final states and related event shape observables were studied extensively at LEP in order to determine the strong
coupling constant αs, which controls the probability of radiating a hard gluon in these events. The measurement of
four-jet-type observables at LEP established the gauge group structure of QCD. Five-jet and higher multiplicities
were sometimes considered in new physics searches, where QCD-induced processes form a theoretically calculable
background.

The LEP measurements of three-jet observables are of a very high statistical precision. The extraction of αs from
these data sets relies on a comparison of the data with theoretical predictions. Comparing the different sources of
error in this extraction [79], one finds that the purely experimental error is negligible compared to the theoretical
uncertainty. There are two sources of theoretical uncertainty: the theoretical description of the parton-to-hadron
transition (hadronization uncertainty) and the theoretical calculation of parton-level jet production (perturbative
or scale uncertainty). Although the precise size of the hadronization uncertainty is debatable and perhaps often
underestimated, it is certainly appropriate to consider the scale uncertainty as the dominant source of theoretical
error on the precise determination of αs from three-jet observables. This scale uncertainty arises from truncating the
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perturbative QCD expansion of jet observables at the next-to-leading order (NLO) and can be improved considerably
by computing next-to-next-to-leading order (NNLO) corrections.

Given the planned luminosity of the ILC, one expects that this collider will deliver jet-production data of a statis-
tical quality similar to LEP. An attractive perspective of such a measurement at the ILC would be to determine the
evolution of αs over a wide energy range, which is potentially sensitive to new physics thresholds. Concerning uncer-
tainties on such a determination, it is worthwhile to note that the hadronization corrections become less important
at higher energies, thus leaving the scale uncertainty as dominant source of theoretical error. Experimental aspects
of such measurements, especially issues related to the beam energy profile (which were irrelevant at LEP) were not
studied up to now, and certainly deserve further attention.

In the recent past, many steps towards the NNLO calculation of e+e− → 3 jets have been accomplished (see
Ref. [80] and references therein). Foremost, the relevant two-loop 1 → 3 matrix elements are now available. One-loop
corrections to 1 → 4 matrix elements have been known for longer and form part of NLO calculations of e+e− → 4 jets.
These NLO matrix elements naturally contribute to e+e− → 3 jets at NNLO if one of the partons involved becomes
unresolved (soft or collinear). In this case, the infrared singular parts of the matrix elements need to be extracted
and integrated over the phase space appropriate to the unresolved configuration to make the infrared pole structure
explicit. As a final ingredient, the tree level 1 → 5 processes also contribute to e+e− → 3 jets at NNLO. These contain
double real radiation singularities corresponding to two partons becoming simultaneously soft and/or collinear. To
compute the contributions from single unresolved radiation at one-loop and double real radiation at tree-level, one
has to find subtraction terms which coincide with the full matrix elements in the unresolved limits and are still
sufficiently simple to be integrated analytically in order to cancel their infrared pole structure with the two-loop
virtual contributions. In the following, we present a new method, named antenna subtraction, to carry out NNLO
calculations of jet observables and discuss its application to e+e− → 3 jets.

In electron-positron annihilation, anm-jet cross section at NLO is obtained by summing contributions from (m+1)-
parton tree level and m-parton one-loop processes:

dσNLO =
∫

dΦm+1

(
dσRNLO − dσSNLO

)
+

[∫
dΦm+1

dσSNLO +
∫

dΦm

dσVNLO

]
.

The cross section dσRNLO is the (m+1)-parton tree-level cross section, while dσVNLO is the one-loop virtual correction
to the m-parton Born cross section dσB . Both contain infrared singularities, which are explicit poles in 1/ε in dσVNLO,
while becoming explicit in dσRNLO only after integration over the phase space. In general, this integration involves
the (often iterative) definition of the jet observable, such that an analytic integration is not feasible (and also not
appropriate). Instead, one would like to have a flexible method that can be easily adapted to different jet observables
or jet definitions. Therefore, the infrared singularities of the real radiation contributions should be extracted using
infrared subtraction terms. One introduces dσSNLO, which is a counter-term for dσRNLO, having the same unintegrated
singular behavior as dσRNLO in all appropriate limits. Their difference is free of divergences and can be integrated
over the (m+1)-parton phase space numerically. The subtraction term dσSNLO has to be integrated analytically over
all singular regions of the (m+ 1)-parton phase space. The resulting cross section added to the virtual contribution
yields an infrared finite result. Several methods for constructing NLO subtraction terms systematically were proposed
in the literature [81–84]. For some of these methods, extension to NNLO was discussed [86] and partly worked out.
We focus on the antenna subtraction method [81, 82], which we extend to NNLO.

The basic idea of the antenna subtraction approach at NLO is to construct the subtraction term dσSNLO from
antenna functions. Each antenna function encapsulates all singular limits due to the emission of one unresolved
parton between two color-connected hard partons (tree-level three-parton antenna function). This construction
exploits the universal factorization of phase space and squared matrix elements in all unresolved limits, depicted in
Fig. 17. The individual antenna functions are obtained by normalizing three-parton tree-level matrix elements to the
corresponding two-parton tree-level matrix elements.

At NNLO, the m-jet production is induced by final states containing up to (m+2) partons, including the one-loop
virtual corrections to (m+1)-parton final states. As at NLO, one has to introduce subtraction terms for the (m+1)-
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Figure 18: Illustration of NNLO antenna factorization representing the factorization of both the squared matrix elements and

the (m + 2)-particle phase space when the unresolved particles are color connected. The term in square brackets represents

both the antenna function and the antenna phase space.

and (m+ 2)-parton contributions. Schematically the NNLO m-jet cross section reads,

dσNNLO =
∫

dΦm+2

(
dσRNNLO − dσSNNLO

)
+
∫

dΦm+2

dσSNNLO

+
∫

dΦm+1

(
dσV,1NNLO − dσV S,1NNLO

)
+
∫

dΦm+1

dσV S,1NNLO

+
∫

dΦm

dσV,2NNLO ,

where dσSNNLO denotes the real radiation subtraction term coinciding with the (m+2)-parton tree level cross section
dσRNNLO in all singular limits [87]. Likewise, dσV S,1NNLO is the one-loop virtual subtraction term coinciding with the
one-loop (m + 1)-parton cross section dσV,1NNLO in all singular limits [88]. Finally, the two-loop correction to the
m-parton cross section is denoted by dσV,2NNLO.

Both types of NNLO subtraction terms can be constructed from antenna functions. In dσSNNLO, we have to distin-
guish four different types of unresolved configurations: (a) One unresolved parton but the experimental observable
selects only m jets; (b) Two color-connected unresolved partons (color-connected); (c) Two unresolved partons that
are not color connected but share a common radiator (almost color-unconnected); (d) Two unresolved partons that
are well separated from each other in the color chain (color-unconnected). Among those, configuration (a) is prop-
erly accounted for by a single tree-level three-parton antenna function like used already at NLO. Configuration (b)
requires a tree-level four-parton antenna function (two unresolved partons emitted between a pair of hard partons)
as shown in Fig. 18, while (c) and (d) are accounted for by products of two tree-level three-parton antenna functions.

In single unresolved limits, the one-loop cross section dσV,1NNLO is described by the sum of two terms [88]: a
tree-level splitting function times a one-loop cross section and a one-loop splitting function times a tree-level cross
section. Consequently, the one-loop single unresolved subtraction term dσV S,1NNLO is constructed from tree-level and
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elements (represented by the white blob) and the (m+1)-particle phase space when the unresolved particles are color connected.

one-loop three-parton antenna functions, as sketched in Fig. 19. Several other terms in dσV S,1NNLO cancel with the
results from the integration of terms in the double real radiation subtraction term dσSNNLO over the phase space
appropriate to one of the unresolved partons, thus ensuring the cancellation of all explicit infrared poles in the
difference dσV,1NNLO − dσV S,1NNLO.

Finally, all remaining terms in dσSNNLO and dσV S,1NNLO have to be integrated over the four-parton and three-parton
antenna phase spaces. After integration, the infrared poles are rendered explicit and cancel with the infrared pole
terms in the two-loop squared matrix element dσV,2NNLO.

The subtraction terms dσSNLO, dσSNNLO and dσV S,1NNLO require three different types of antenna functions corre-
sponding to the different pairs of hard partons forming the antenna: quark-antiquark, quark-gluon and gluon-gluon
antenna functions. In the past [81, 82], NLO antenna functions were constructed by imposing definite properties
in all single unresolved limits (two collinear limits and one soft limit for each antenna). This procedure turns out
to be impractical at NNLO, where each antenna function must have definite behaviors in a large number of single
and double unresolved limits. Instead, we derive these antenna functions in a systematic manner from physical ma-
trix elements known to possess the correct limits. The quark-antiquark antenna functions can be obtained directly
from the e+e− → 2j real radiation corrections at NLO and NNLO [89]. For quark-gluon and gluon-gluon antenna
functions, effective Lagrangians are used to obtain tree-level processes yielding a quark-gluon or gluon-gluon final
state. The antenna functions are then obtained from the real radiation corrections to these processes. Quark-gluon
antenna functions were derived [90] from the purely QCD (i.e. non-supersymmetric) NLO and NNLO corrections to
the decay of a heavy neutralino into a massless gluino plus partons [91], while gluon-gluon antenna functions [92]
result from the QCD corrections to Higgs boson decay into partons [93].

All tree-level three-parton and four-parton antenna functions and three-parton one-loop antenna functions are
listed in Ref. [80], where we also provide their integrated forms, obtained using the phase space integration techniques
described in Ref. [94].

In Refs. [80, 95] we derived the 1/N2-contribution to the NNLO corrections to e+e− → 3 jets. This color factor
receives contributions from γ∗ → qq̄ggg and γ∗ → qq̄qq̄g at tree-level [96], γ∗ → qq̄gg and γ∗ → qq̄qq̄ at one-loop [97]
and γ∗ → qq̄g at two-loops [98]. The four-parton and five-parton final states contain infrared singularities, which
need to be extracted using the antenna subtraction formalism.

In this contribution, all gluons are effectively photon-like, and couple only to the quarks, but not to each other.
Consequently, only quark-antiquark antenna functions appear in the construction of the subtraction terms.

Starting from the program EERAD2 [81], which computes the four-jet production at NLO, we implemented the
NNLO antenna subtraction method for the 1/N2 color factor contribution to e+e− → 3j. EERAD2 already contains
the five-parton and four-parton matrix elements relevant here, as well as the NLO-type subtraction terms.

The implementation contains three channels, classified by their partonic multiplicity: (a) in the five-parton channel,
we integrate dσRNNLO − dσSNNLO; (b) in the four-parton channel, we integrate dσV,1NNLO − dσV S,1NNLO; (c) in the three-
parton channel, we integrate dσV,2NNLO+dσSNNLO+dσV S,1NNLO. The numerical integration over these channels is carried
out by Monte Carlo methods.
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By construction, the integrands in the four-parton and three-parton channel are free of explicit infrared poles.
In the five-parton and four-parton channel, we tested the proper implementation of the subtraction by generating
trajectories of phase space points approaching a given single or double unresolved limit. Along these trajectories,
we observe that the antenna subtraction terms converge locally towards the physical matrix elements, and that the
cancellations among individual contributions to the subtraction terms take place as expected. Moreover, we checked
the correctness of the subtraction by introducing a lower cut (slicing parameter) on the phase space variables, and
observing that our results are independent of this cut (provided it is chosen small enough). This behavior indicates
that the subtraction terms ensure that the contribution of potentially singular regions of the final state phase space
does not contribute to the numerical integrals, but is accounted for analytically.

As a final point, we noted in Ref. [80] that the infrared poles of the two-loop (including one-loop times one-loop)
correction to γ∗ → qq̄g are canceled in all color factors by a combination of integrated three-parton and four-parton
antenna functions. This highly non-trivial cancellation clearly illustrates that the antenna functions derived here
correctly approximate QCD matrix elements in all infrared singular limits at NNLO. They also outline the structure
of infrared cancellations in e+e− → 3j at NNLO, and indicate the structure of the subtraction terms in all color
factors.

In this talk, we discussed the theoretical prerequisites for performing precision QCD studies on existing LEP data
and at the ILC. In particular, the precise extraction of the strong coupling constant αs requires improved theoretical
predictions to reduce the scale error inherent to calculations in perturbative QCD. At present, this extraction relies
on the calculation of e+e− → 3 jets at NLO accuracy, and we reported on progress towards the NNLO calculation.

This calculation requires a new method for the subtraction of infrared singularities which we call antenna sub-
traction. We introduced subtraction terms for double real radiation at tree level and single real radiation at one
loop based on antenna functions. These antenna functions describe the color-ordered radiation of unresolved partons
between a pair of hard (radiator) partons. All antenna functions at NLO and NNLO can be derived systematically
from physical matrix elements.

Using this method, we implemented the NNLO corrections to the subleading color contribution to e+e− → 3 jets
into a flexible parton level event generator program, and are currently proceeding with the implementation [99] of
the full set of color factors relevant to the NNLO corrections to e+e− → 3 jets.

3.2. Study of VLVL → tt̄ at the ILC Including O(α2
s) Corrections [100]

S. Godfrey

Understanding the mechanism of electroweak symmetry breaking (EWSB) is a primary goal of the LHC and ILC
[57]. While much effort has been devoted to the weakly interacting weak sector scenario the strongly interacting weak
sector (SIWS) remains a possibility. Because the t-quark mass is the same order of magnitude as the scale of EWSB
it has long been suspected that t-quark properties may provide hints about the nature of EWSB and the subprocess
VLVL → tt̄ has been suggested as a probe. While VLVL → tt̄ can be studied at both hadron colliders and e+e−

colliders, the overwhelming QCD backgrounds will likely make it impossible to study the VLVL → tt̄ subprocess at
the LHC [101]. In contrast, the ILC offers a much cleaner environment. But to be able to attach meaning to precision
measurements it is necessary to understand radiative corrections, both electroweak and QCD. Here we show O(αs)
corrections to the tree level electroweak VLVL → tt̄ process in the SM at the ILC. Due to space limitations we point
the interested reader to Ref. [102] for a more detailed account and a more complete set of references.

We are interested in the subprocesses V V → tt̄ which occur in the processes e+e− → �1�2 +V V → �1�2 + tt̄ where
�1�2 is νν̄ for the W+W− → tt̄ subprocess and e+e− for the ZZ → tt̄ subprocess. The vector bosons are treated
as partons inside the e+ and e− using the effective boson approximation [103, 104]. The total cross section is then
obtained by integrating the W (or Z) luminosities with the subprocess cross section [105].

The O(αs) corrections for the processes W+W− → tt̄ ZZ → tt̄ are calculated using the FeynArts, FormCalc and
LoopTools packages [106]. The QCD corrections to W+W− → tt̄ are shown in Fig. 20 (left side). The infrared
singularity in the vertex corrections are canceled by the soft contributions from the process W+W− → tt̄g which
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Figure 20: O(αs) QCD corrections to W+W− → tt̄. (a) Virtual QCD contributions to W +W− → tt̄. (b) Feynman diagrams

for W +W− → tt̄ + g.

0.9

1

1.1

1.2

1.3

0.5 1 1.5 2 2.5 3
√see (TeV)

K
W

W

0.9

1

1.1

1.2

1.3

1.4

200 400 600 800 1000
mH (GeV)

K
Z

Z

Figure 21: (left side) The K-factors as a function of
√

se+e− for e+e− → νν̄tt̄ (via W +
L W−

L fusion). The solid line is

for MH = 120 GeV, the dashed line for MH = 500 GeV, the dotted line for MH = 1 TeV, and the dot-dashed line for

MH = ∞ (LET). (right side) The K-factor as a function of MH for e+e− → νν̄tt̄ (via W +
L W−

L fusion). The solid line is for√
se+e− = 500 GeV, the dashed line for

√
se+e− = 1 TeV, the dotted line for

√
se+e− = 2 TeV, and the dot-dashed line for√

se+e− = 3 TeV. See text for an explanation of the K-factor.

are shown in Fig. 20 (right side). We regulate the IR-singularity by introducing a gluon mass which is equivalent
to standard dimensional regularization for processes with no triple gluon vertex present. This approach has the
additional benefit that varying the value of the gluon mass acts as a check of the numerical cancellations between
the different contributions.

We include in our results the kinematic cuts mtt̄ > 400 GeV and pt,t̄T > 10 GeV. Since the longitudinal scattering
cross section is much larger than the TT and TL cases and it is the longitudinal gauge boson processes which
corresponds to the Goldstone bosons of the theory we will henceforth only include results for VLVL scattering.

The QCD corrections to longitudinal scattering are often presented as a K-factor, normally defined as the ratio
of the NLO to LO cross sections. Because the O(αs) QCD corrections we calculated are LO corrections to a tree
level electroweak result we take the K-factor to be the ratio of the cross section with the O(αs) QCD corrections and
the tree level electroweak cross sections. The K-factors for σ(e+e− → νν̄tt̄) which goes via W+

LW
−
L fusion and for

σ(e+e− → e+e−tt̄) is shown in Fig. 21 (left side) as a function of
√
se+e− . The O(αs) QCD corrections are largest

for MH = 500 GeV with K-factors ranging from over 1.2 for
√
se+e− = 500 GeV to 1.15 for

√
se+e− = 1 TeV. The

corrections decrease as
√
se+e− increases. The variation of the K-factor with MH is shown in Fig. 21 (right side).
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Figure 22: (a) Breakdown of contributions to the bb-dijet cross section vs. dijet invariant mass Mbb. (b) Range of theoretical

predictions for bb-dijet cross section vs. dijet invariant mass Mbb.

The fact that the K-factor is largest for MH = 500 GeV in Fig. 21 (left side) and that it peaks at MH � 400 GeV
in Fig. 21 (right side) is a threshold effect which is an artifact of the kinematic cut we imposed on the tt̄ invariant
mass. The important point is that the QCD corrections are not insignificant compared to the effects we might wish
to study such as top Yukawa couplings or anomalous V V tt̄ couplings.

3.3. QCD at a Photon Collider [107]
Z. Sullivan

A terascale photon collider will provide a unique opportunity to understand the resolved hadronic structure of light
beyond a few GeV. This structure completely dominates the QCD cross section if the invariant mass of hadronic final
state particles is less than ∼Wmax/3. This is clear from Fig. 22(a), where we see the cross section for bb production
as a function of invariant mass Mbb. The first calculation of the uncertainty in this cross section is presented in
detail in the Proceedings of this workshop [107]. The result, the dashed band surrounding the upper solid curve in
Fig. 22(b), is that the cross section cannot be predicted to better than a factor of 5. There is no way to improve
this prediction without measuring the gluon, charm, and bottom parton distributions for the photon in situ at this
collider.

Loosening the cuts used for Fig. 22(a) will provide an extremely clean sample of events with a gluon in the initial
state. Hence, the gluon structure should be quickly well-measured. The peak near 90 GeV is from a Z resonance,
for which 40% of the events come from a cc̄ initial state. Therefore, a clean extraction of the charm structure can be
made by reconstructing the Z peak in multiple channels (particularly Z → μ+μ−). Finally, the long resolved-resolved
tail above the Z peak is almost entirely due to bb+ b̄b̄+ bb̄ collisions. Therefore, given enough data, even the bottom
structure may be accessible.

The study [107] focused on a photon-photon collider, but another option being considered is a photon-electron
collider. In general, it is more difficult to cleanly extract the gluon PDF in a γ–e collision than a γ–γ collision,
because the cross section at high invariant mass (> 20 GeV) is smaller, the decay products tend to be boosted more
forward into less-well instrumented regions of the detector, and an additional deconvolution must be performed to
remove the effect of extracting an almost-real photon from the electron. Nevertheless, this option should be examined
in more detail as it may be simpler to construct a γ–e collider.
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4. NEW PHYSICS EFFECTS ON TOP QUARK PROPERTIES

4.1. Top Compositeness at Colliders
K. Agashe

Consider the Randall-Sundrum (RS1) model [108] which is a compact slice of AdS5,

ds2 = e−2k|θ|rcημνdxμdxν + r2cdθ
2, −π ≤ θ ≤ π, (13)

where k is the curvature scale and the extra-dimensional interval is realized as an orbifolded circle of radius rc. The
two orbifold fixed points, θ = 0, π, correspond to the “UV” (or “Planck) and “IR” (or “TeV”) branes respectively.
In warped spacetimes the relationship between 5D mass scales and 4D mass scales (in an effective 4D description)
depends on location in the extra dimension through the warp factor, e−k|θ|rc . This allows large 4D mass hierarchies
to naturally arise without large hierarchies in the defining 5D theory, whose mass parameters are taken to be of order
the observed Planck scale, MPl ∼ 1018 GeV. For example, the 4D massless graviton mode is localized near the UV
brane while the Higgs sector is taken to be localized on the IR brane. In the 4D effective theory one then finds

Weak Scale ∼MPle
−kπrc . (14)

A modestly large radius, i.e., kπrc ∼ log (MPl/TeV) ∼ 30, can then accommodate a TeV-size weak scale. Kaluza-
Klein (KK) graviton resonances have masses m ∼ ke−kπrc . These masses are at the TeV-scale, since their wave
functions are also localized near the IR brane.

In the original RS1 model, it was assumed that the entire SM was localized on the TeV brane, and that only
gravity propagated in the full 5D space. Thus, the effective UV cut-off for gauge and fermion fields and hence the
scale suppressing higher-dimensional operators is at a TeV, the same scale which sets the Higgs sector. However,
bounds from electroweak precision tests (EWPT) on this cut-off are approximately 5-10 TeV, while those from flavor
changing neutral currents (FCNCs) such as K − K̄ mixing are around 1000 TeV. Stabilizing the electroweak scale
thus requires fine-tuning; even though RS1 explains the big hierarchy between the Planck and electroweak scales, it
has a “little” hierarchy problem between the weak scale and the TeV scale cut-off.

An attractive solution to this problem is to allow the SM gauge [109] and fermion [110, 111] fields to propagate in
the extra dimensional bulk. We first explain how bulk fermions enable us to evade flavor constraints. The localization
of the wavefunction of the massless chiral mode is controlled by the 5d mass term for each fermion, which in units of
k is denoted by the c-parameter. In the warped scenario, for c > 1/2 (c < 1/2) the zero mode is localized near the
Planck (TeV) brane, whereas for c = 1/2, the wave function is flat. We therefore choose c > 1/2 for light fermions so
that the effective UV cut-off at the location of the light fermions is much greater than a TeV, suppressing dangerous
FCNCs. This naturally results in a small 4D Yukawa coupling to the Higgs on the TeV brane without any hierarchies
in the fundamental 5D Yukawa couplings [110–112]. Similarly, we choose c � 1/2 for the top quark to obtain an
O(1) Yukawa coupling. We can also show that in this scenario with bulk gauge fields high-scale unification of gauge
couplings can be accommodated.

Since gauge fields are also in the bulk, their excited KK modes induce additional effects in flavor physics and
in EWPT, which are calculable in the 5D effective field theory. For example, the couplings of KK modes to light
fermions are flavor-dependent, giving FCNCs. However, this flavor dependence is small. KK modes, just like the
Higgs, are localized near the TeV brane, whereas the light fermions are near the Planck brane. The FCNCs are
therefore proportional to the Yukawa couplings, resulting in a suppression of flavor violation. This scenario has an
analog of the Glashow-Iliopoulos-Maiani (GIM) mechanism of the SM, resulting in the suppression of the calculable
FCNCs [111, 112].

Early studies showed that the corrections to EWPT from gauge KK modes are too large, unless the KK mass is
greater than 10 TeV [113]. Such a large KK scale results in a little hierarchy problem between the weak and KK
scales. The localization of the light fermions near the Planck brane reduces the contribution of gauge KK modes to
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Figure 23: Shift in the coupling of tR to Z as a function of KK mass in GeV on horizontal axis and cR on vertical axis for the

choice cL = 0.4. The solid, long-dashed and short-dashed lines correspond to shifts of 5%, 10% and 15%, respectively.

two observables – the S parameter and 4-fermion operators, but the observable called the T parameter still gives
stringent constraints.

In Ref. [114], it was shown that this problem can be avoided by extending the electroweak gauge group in the
bulk to SU(2)L × SU(2)R × U(1)B−L. Such an extension provides a custodial isospin symmetry to protect the T
parameter from large corrections. Thus, KK masses as low as 3 TeV are allowed by oblique EW data, significantly
ameliorating the little hierarchy problem.

We now consider the top and bottom quarks. It is clear that we prefer c � 1/2 for tL to obtain a top Yukawa
coupling of O(1) without too large a 5D Yukawa coupling, but this implies a large shift in coupling of bL to the
Z-boson unless the KK scale is larger than a TeV. This shift occurs due to the large coupling of bL to the KK Z

modes, which mix with the zero-mode Z via the Higgs vev [114]:

δ
(
gtRZ
)

gtRZ

∣∣∣
KK gauge

≈ m2
Z

(0.41mKK)2
1 − 2cR
3 − 2cR

(
−kπrc

2
+

5 − 2cR
4(3 − 2cR)

)
. (15)

Here, mKK ≈ 2.45 ke−kπrc is defined to be the mass of the lightest gauge KK mode. Thus, there is a tension
between obtaining the top Yukawa and not shifting the coupling of bL to Z. As a compromise, KK masses ∼ 5 TeV
are consistent with a shift in gbL

Z of approximately 0.25% for cL ∼ 0.4. The tR must therefore be localized near the
TeV brane: cR

<∼ 0. Such a profile for tR leads to sizable shift in its coupling to the Z via exchange of KK Z-bosons,
and also via KK tL modes. The additional contribution from KK tL exchange is due to zero-mode tR mixing with
KK tL via a Higgs vev which then couples to the Z, giving the shift

δ
(
gtRZ
)

gtRZ

∣∣∣
KK fermion

≈
∑
n

1/2
−2/3 sin2 θW

(
mt

√
1/2 − cL
m
t
(n)
L

)2

. (16)

Here mt

√
1/2 − cl is the mass term coupling zero-mode and KK top quarks, and the KK tL masses are given by

m
t
(n)
L

≈ π ke−kπrc(n− cL/2) ≈ 0.78 mKK (n− cL/2).
The total shift in the coupling of tR is plotted in Fig. 23. As seen in the figure, we obtain an 10% shift for KK

masses of a few TeV. Smaller KK masses are not allowed by EWPT, and larger masses lead to large fine-tuning.
Observability of an effect of this size might be difficult at the LHC since the sensitivity of the LHC is only at the
20% level for a shift in the axial coupling of the top quark to the Z. It should be possible at the ILC, which has
sensitivity at the few percent level for shifts in both axial and vector couplings of the top quark to Z [11]. There are
similar shifts in couplings of Higgs to W/Z due to its profile being localized near TeV brane just like for tR.
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Figure 24: The corrections to the tt̄Z axial and vector couplings in the original Littlest Higgs model (left panel) and its

extension with T-parity (right panel). The regions in which the ILC would observe no deviation from the SM are shaded.

Finally, an intriguing aspect is that via the AdS/CFT correspondence [115], such a scenario is conjectured to be
dual to a purely 4D theory with a composite Higgs boson [116], with the light fermions being elementary and tR
being composite. This provides an intuitive understanding for the large shifts in the couplings of tR and Higgs to Z.
Hence, these signals might be valid for general composite Higgs models as well.

4.2. Top quark properties in Little Higgs Models [118]
C.F. Berger, M. Perelstein, F. Petriello

In this section, we study the corrections to the top quark properties in “Little Higgs” models of electroweak
symmetry breaking [117], and compare the expected deviations from the SM predictions with expected sensitivities
of experiments at the LHC and the ILC. In the Little Higgs models, electroweak symmetry is driven by the radiative
effects from the top sector, including the SM-like top and its heavy counterpart, a TeV-scale “heavy top” T . Probing
this structure experimentally is quite difficult. While the LHC should be able to discover the T quark, its potential
for studying its couplings is limited [119, 120]. Direct production of the T will likely be beyond the kinematic reach
of the ILC. However, we will show below that the corrections to the gauge couplings of the SM top, induced by
its mixing with the T , will be observable at the ILC throughout the parameter range consistent with naturalness.
Measuring these corrections will provide a unique window on the top sector of the Little Higgs.

Little Higgs models contain a light Higgs boson which is a composite of more fundamental degrees of freedom. A
generic composite Higgs model must become strongly coupled at an energy scale around 1 TeV, leading to unaccept-
ably large corrections to precision electroweak observables. In contrast, Little Higgs models remain perturbative until
a higher energy scale, around 10 TeV. The hierarchy between the Higgs mass and the strong coupling scale is natural
and stable with respect to radiative corrections. Because of the special symmetry structure of the theory, the Higgs
mass vanishes at tree level, as do one-loop quadratically divergent diagrams. The mass term is dominated by the
logarithmically divergent one-loop contribution from the top quark, which triggers electroweak symmetry breaking.

Many Little Higgs models have been proposed in the literature. We will consider two examples in this study, the
“Littlest Higgs” model [121], and its variation incorporating T parity [122]. We will study the effects on the tt̄Z
vertex in these models; for a more detailed study, see Ref. [118].

Corrections to the gauge couplings of the top quark in Little Higgs model arise from two sources: the mixing
of the (left-handed) top with the heavy top T , and the mixing of the SM gauge bosons W±, Z0 with their heavy
counterparts, W±

H and W 3
H . Using the superscripts “t” and “g” to denote the contributions from these two sources,
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the corrections to the tt̄Z coupling can be written as

δgZt
R = 0, δgZg

R =
v2

4f2

c2ψs
2
ψ

c2W − s2W
gZR,

δgZt
L =

λ2
T v

2gZA
m2
T

, δgZg
L =

v2

4f2

[
2gZAs

4
ψ + gZR

c2ψs
2
ψ

c2W − s2W

]
. (17)

Here, gZL,R are the SM left- and right-handed tt̄Z couplings, gZV = (gZR + gZL )/2 and gZA = (gZR − gZL )/2 are their
vector and axial combinations, cW , sW are respectively the cosine and sine of the weak mixing angle, and sψ ≡ sinψ,
cψ ≡ cosψ. In the original Littlest Higgs model [121], both the gauge sector shift and the top sector shift occur;
in the T-parity model [122], only the top sector shift is present. The predicted shifts in the tt̄Z axial and vector
couplings for mT = 0.5, 1.0, and 2.0 TeV, and λT = 0.5, 1, 2, are plotted in Fig. 24 (left panel), along with the
experimental sensitivities expected at the LHC [12] and the ILC [11]. The mixing angle ψ is varied between 0 and
π/2. Note that the shifts have a definite sign. While only a rather small part of the parameter space is accessible at
the LHC even with 3000 fb−1 integrated luminosity, the ILC experiments will be able to easily observe the shifts in
most of the parameter space preferred by naturalness considerations (however, the prospects for observation at the
LHC improve when additional final states such as bb̄+ 4 j are included; see Ref. [124]). Similarly, shifts in the Wtb

coupling can be probed via deviations in the top quark width at the ILC [118].

4.3. Testing CPT Symmetry with Top Quark Physics [125]
J.A.R. Cembranos

The viability to observe evidence of CPT violation in the top sector has been analyzed through the measurement
of a mass difference between top and anti-top [125]. This study has been focused on the CPT violating ratio of the
top quark, RCPT (t) ≡ 2(mt −mt̄)/(mt + mt̄). The present constraints from the Tevatron are approximately 10%,
and they could be reduced by one order of magnitude at the LHC or ILC. The most promising studied channel is the
lepton plus jets channel for top anti-top production. However, other techniques to reconstruct the top mass could
also be very interesting, such as the analysis of the J/psi from b decay at the LHC, which improves the systematic
uncertainties. Single top production could also be studied, since a combination of different measurements would be
necessary in order to consider CPT violation as the explanation of any exotic data.

Di-lepton channel: Di-lepton events originating predominantly from tt̄→W+(→ �+ν) bW−(→ �−ν̄) b̄, with � = e

or μ, have been used in Tevatron to measure the top quark pole mass supposing an identical mass for the top and
anti-top quarks. The same data can be used to study CPT violation through a double peak in the reconstructed
invariant mass associated to the lepton and b quark coming from the single decay of the top or anti-top [125]. By
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Figure 25: Schematics of the top and anti-top decays in the dilepton channel.

using the Tevatron data accumulated at Fermilab from 1992 through 1995 [126], it is possible to find the bound
|RCPT (t)| < 0.13 at the 95% C.L. [125]. On the other hand, the sensitivity of the LHC can be estimated as
RCPT (t) = 0.03 at the 95% c.l. following an analogous analysis [125].

Lepton plus jets channel: A more promising signal is provided when one of the W decays leptonically while the
other one decays hadronically: tt̄ → W+(→ �+νb) bW−(→ qq̄′) b̄. In fact, the inclusive lepton plus jets channel
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provides a larger and cleaner sample of top quarks, whose mass can be reconstructed directly using the hadronic part
of the decay. The invariant mass of the three jets coming from the top (mjjb ≡ mjqjq̄jb) or anti-top (mjjb ≡ mjqjq̄jb̄)
presents a peak at the top (mt) or anti-top (mt̄) mass respectively.

The estimate combining the CDF [127] and DØ data [128] gives a more constraining bound of RCPT (t) < 9.2×10−2.
The sensitivity of the LHC is also better in this channel since both statistical and systematic uncertainties are expected
to be improved. Indeed, the LHC will be able to test the CPT violation of the top quark to almost one order of
magnitude better than the present constraints: |RCPT (t)| � 0.014 at the 95% C.L. or equivalently, mt −mt̄ � 2.4
GeV [125].
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Figure 26: Schematic example of the top and anti-top decays in the lepton plus jets channel.

The same analyses can be performed with the ILC, where an increase of the statistical uncertainties but a decrease
of the systematic ones is expected [129]. The importance of these last uncertainties leads to a small improvement of
the sensitivity in relation to the LHC.
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