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Abstract

We show that the Fourier transform of the Deeply Virtual Compton Scattering (DVCS) am-

plitude with respect to the skewness variable ζ provides a unique way to visualize the light-front

wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate space

variable (σ = P+y−

2 ). The results are analogous to the diffractive scattering of a wave in optics in

which the dependence of the amplitude on σ measures the physical size of the scattering center of

a one-dimensional system. If one combines this longitudinal transform with the Fourier transform

of the DVCS amplitude with respect to the transverse momentum transfer ∆⊥, one can obtain a

complete three-dimensional description of hadron optics at fixed light-front time τ = t + z/c. As

a specific example, we utilize the quantum fluctuations of a fermion state at one loop in QED to

obtain the behavior of the DVCS amplitude for electron-photon scattering. We then simulate the

wavefunctions for a hadron by differentiating the above LFWFs with respect to M 2 and study the

corresponding DVCS amplitudes in σ space.
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Introduction

Deeply virtual Compton scattering γ∗(q)p→ γ(k)p′ provides a remarkable tool for study-

ing the fundamental structure of the proton at the amplitude level. When the incoming

photon is highly virtual Q2 = −q2 >> Λ2
QCD , the underlying scattering process mea-

sures Compton scattering on bound quarks, convoluted with the fundamental microscopic

wavefunctions of the initial- and final-state proton. In addition, the initial-state photon

can scatter on virtual qq̄ pairs in the target which are then annihilated by the final-state

photon, thus probing the particle-number quantum fluctuations of the hadron wavefunction

required for Lorentz invariance. Measurements of the DVCS cross sections with specific

proton and photon polarizations can provide comprehensive probes of the spin as well as

spatial structure of the proton at the most fundamental level of QCD.

The theoretical analysis of DVCS is particularly clear and compelling when one utilizes

light-front quantization at fixed τ = y+ = t + z/c. If we neglect radiative corrections to

the struck quark propagator (i.e., set the Wilson line to 1), then the required DVCS quark

matrix elements can be computed from the overlap of the boost-invariant light-front Fock

state wavefunctions of the target hadron [1, 2]. The longitudinal momentum transfer to the

target hadron is given by the “skewness” variable ζ = Q2

2p·q
. Since the incoming photon is

spacelike (q2 < 0) and the final photon is on-shell (k2 = 0), the skewness is never zero in

a physical experiment. The DVCS process involves off-forward hadronic matrix elements

of light-front bilocal currents; accordingly, there is a diagonal parton-number conserving

n → n overlap in the kinematical regime ζ < x < 1 and ζ − 1 < x < 0 and an off-diagonal

n + 1 → n− 1 overlap for 0 < x < ζ, where the parton number is decreased by two. Thus,

given the LFWFs one then obtains a complete specification of all of the generalized parton

distributions measurable in DVCS, including their phase structure. The sum rules of DVCS,

such as Ji’s sum rule for angular momentum [3] and the integral relations to electromagnetic

and gravitational form factors are all explicitly satisfied in the LF formalism [1, 2].

In this paper we shall show how one can use measurements of the dependence of the DVCS

amplitude on the skewness variable ζ to obtain a novel optical image of a hadron target, in

analogy to the way in which one scatters optical waves to form a diffraction pattern. The

Fourier transform of the DVCS amplitude with respect to ζ allows one to determine the

longitudinal structure of the target hadron in terms of the variable σ = 1
2
y−P+, the boost-
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invariant longitudinal spatial coordinate conjugate to the light-front longitudinal momentum

variable, ζ. (We use the standard LF coordinates P± = P 0 ± P 3, y± = y0 ± y3. Since the

proton is on-shell, P+P− − P 2
⊥ = M2

p ). If one combines this longitudinal transform with

the Fourier transform of the DVCS amplitude with respect to the transverse momentum

transfer ∆⊥ [4, 5], one can obtain a complete three-dimensional description of hadron optics

at fixed LF time.

In principle, the LFWFs of hadrons in QCD can be computed using a nonperturbative

method such as Discretized Light Cone Quantization (DLCQ) where the LF Hamiltonian

is diagonalized on a free Fock basis [6]. This has been accomplished for simpler confining

quantum field theories such as QCD(1 + 1) [7]. Models for the LFWFs of hadrons in

(3 + 1) dimensions displaying confinement at large distances and conformal symmetry at

short distances have been obtained using the AdS/CFT method [8]. The y− structure of

topological objects has been studied in [9] in DLCQ.

In order to illustrate our general framework, we will present here an explicit calculation

of the σ transform of virtual Compton scattering on the quantum fluctuations of a lepton in

QED at one-loop order [10], the same system which gives the Schwinger anomalous moment

α/2π. One can generalize this analysis by assigning a mass M to the external electrons and

a different mass m to the internal electron lines and a mass λ to the internal photon lines

with M < m+λ for stability. In effect, we shall represent a spin- 1
2

system as a composite of

a spin-1
2

fermion and a spin-1 vector boson [11–13]. We also will present numerical results

for a composite hadron by taking a derivative of the LFWFs with respect to the hadron’s

mass M2. This simulates the behavior of a bound-state hadron by improving the fall-off

the end points of x. The summary of our main results will be given in this letter. A more

detailed analysis will be given in a forthcoming article [14].

DVCS in the LF Formalism

The kinematics of the DVCS process has been given in detail in [1, 2]. One can work in a

frame where the momenta of the initial and final proton has a ∆ → −∆ symmetry [2]; with

∆ = P − P ′ and t = ∆µ∆µ. However, in this frame, the kinematics in terms of the parton

momenta becomes more complicated. Here, we shall use the frame choice of Ref. [1].

The virtual Compton amplitude Mµν(~q⊥, ~∆⊥, ζ), i.e., the transition matrix element of

the process γ∗(q) + p(P ) → γ(q′) + p(P ′), can be defined from the light-cone time-ordered
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product of currents

Mµν(~q⊥, ~∆⊥, ζ) = i
∫

d4y e−iq·y〈P ′|TJµ(y)Jν(0)|P 〉 , (1)

where the Lorentz indices µ and ν denote the polarizations of the initial and final photons

respectively. In the limit Q2 → ∞ at fixed ζ and t the Compton amplitude is thus given by

M IJ(~q⊥, ~∆⊥, ζ) = εIµ ε
∗J
ν Mµν(~q⊥, ~∆⊥, ζ) = −e2

q

1

2P̄+

∫ 1

ζ−1
dx (2)

×
{

tIJ(x, ζ) Ū(P ′)
[

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

]

U(P )
}

,

where P̄ = 1
2
(P ′ + P ) and we take a frame in which q+ = 0. For DVCS, when Q2 is large

compared to the masses and −t, we have,

Q2

2P · q = ζ (3)

up to corrections in 1/Q2. Thus ζ plays the role of the Bjorken variable in deeply virtual

Compton scattering. For a fixed value of −t, the allowed range of ζ is given by

0 ≤ ζ ≤ (−t)
2M2





√

√

√

√1 +
4M2

(−t) − 1



 . (4)

For simplicity we only consider one quark with flavor q and electric charge eq. We here

consider the contribution of only the spin-independent GPDs H and E. Throughout our

analysis we will use the “handbag” approximation where corrections to the hard quark

propagator are neglected.

For circularly polarized initial and final photons (I, J are ↑ or ↓)) contributions only

come from

t ↑↑(x, ζ) = t ↓↓(x, ζ) =
1

x− iε
+

1

x− ζ + iε
. (5)

For a longitudinally polarized initial photon, the Compton amplitude is of order 1/Q and

thus vanishes in the limit Q2 → ∞. At order 1/Q there are several corrections to the simple

structure in Eq. (2). We do not consider them here.

The generalized parton distributions H, E are defined through matrix elements of the

bilinear vector and axial vector currents on the light-cone:

Fλ,λ′ =
∫

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+ ψ(y) |P, λ〉

∣

∣

∣

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

[

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

]

U(P, λ) , (6)
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The off-forward matrix elements given by Eq. (6) can be expressed in terms of overlaps of

LFWFs of the state [1, 2]. For this, we take the state to be an electron in QED at one loop

and consider the LFWFs for this system.

The light-front Fock state wavefunctions corresponding to the quantum fluctuations of a

physical electron can be systematically evaluated in QED perturbation theory. The state is

expanded in Fock space and there are contributions from | e−γ〉 and | e−e−e+〉, in addition

to renormalizing the one-electron state. The two-particle state is expanded as,

∣

∣

∣Ψ↑
two particle(P

+, ~P⊥ = ~0⊥)
〉

=
∫ dx d2~k⊥

√

x(1 − x) 16π3
(7)

[

ψ↑

+ 1

2
+1

(x,~k⊥)
∣

∣

∣

∣

+
1

2
+ 1 ; xP+ , ~k⊥

〉

+ ψ↑

+ 1

2
−1

(x,~k⊥)
∣

∣

∣

∣

+
1

2
− 1 ; xP+ , ~k⊥

〉

+ ψ↑

− 1

2
+1

(x,~k⊥)

∣

∣

∣

∣

−1

2
+ 1 ; xP+ , ~k⊥

〉

+ ψ↑

− 1

2
−1

(x,~k⊥)

∣

∣

∣

∣

−1

2
− 1 ; xP+ , ~k⊥

〉 ]

,

where the two-particle states |sz
f , s

z
b; x,

~k⊥〉 are normalized as in [1]. The variables sz
f and

sz
b denote the projection of the spins of the constituent fermion and boson along the quan-

tization axis, and the variables x and ~k⊥ refer to the momentum of the fermion. The light

cone momentum fractions xi =
k+

i

P+ satisfy 0 < xi ≤ 1,
∑

i xi = 1. We employ the light-cone

gauge A+ = 0, so that the gauge boson polarizations are physical. The three-particle state

has a similar expansion. Both the two- and three-particle Fock state components are given

in [1]. We list here the two-particle wavefunctions for the spin-up electron [1, 10, 15]










































ψ↑

+ 1

2
+1

(x,~k⊥) = −
√

2 −k1+ik2

x(1−x)
ϕ ,

ψ↑

+ 1

2
−1

(x,~k⊥) = −
√

2 k1+ik2

1−x
ϕ ,

ψ↑

− 1

2
+1

(x,~k⊥) = −
√

2 (M − m
x
)ϕ ,

ψ↑

− 1

2
−1

(x,~k⊥) = 0 ,

(8)

ϕ(x,~k⊥) =
e√

1 − x

1

M2 − ~k2
⊥

+m2

x
− ~k2

⊥
+λ2

1−x

. (9)

Similarly, the wavefunction for an electron with negative helicity can also be obtained.

At x = 1, there are contributions from the overlap of one particle states which depend on

the wavefunction renormalization constant Z. We have imposed a cutoff on x near this point.

Also, in order to regulate the ultraviolet divergences, we use a cutoff Λ on the transverse

momentum k⊥.

In the domain ζ < x < 1, there are diagonal 2 → 2 overlap contributions to Eq. (6), both

helicity flip, F 22
+− (λ′ 6= λ) and helicity non-flip, F 22

++ (λ′ = λ) [1]. The GPDs H(2→2)(x, ζ, t)
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and E(2→2)(x, ζ, t) are zero in the domain ζ − 1 < x < 0, which corresponds to emission

and reabsorption of an e+ from a physical electron. Contributions to H(n→n)(x, ζ, t) and

E(n→n)(x, ζ, t) in that domain only appear beyond one-loop level.

The matrix elements F 22
++ and F 22

+− are calculated using the two-particle LFWFs given

in Eq. (8). The contributions in the domain, 0 < x < ζ, namely, F 31
+− and F 31

++ come from

overlaps of three-particle and one-particle LFWFs [1]. Z is taken to be 1 here. These are

calculated using the three-particle wavefunction. Explicit expressions of all the above matrix

elements will be given in [14].

We calculate the DVCS amplitude given by Eq. (2) using the off-forward matrix ele-

ments calculated above. The real and imaginary parts are calculated separately using the

prescription

1

r − iε
= P

(1

r

)

+ iπδ(r). (10)

Here P
(

1
r

)

denotes the principal value. Note that for an electron state, x = 0 is an endpoint

and the principal value prescription cannot be used. We take a small cutoff at x = 0.

The imaginary part of the amplitude when the electron helicity is not flipped is then

given by

Im[M++](ζ,∆⊥) = −iπe2
[

∫ ζ

0
dx F 31

++ [ δ(x− ζ) ] +
∫ 1

ζ
dx F 22

++ [ δ(x− ζ) ]
]

= −iπe2
[

F 31
++(x = ζ,∆⊥) + F 22

++(x = ζ,∆⊥)
]

. (11)

A similar expression holds in the case when the electron helicity is flipped (Im[M+−](ζ,∆⊥))

in which F++ are replaced by F+−. The helicity-flip DVCS amplitude is proportional to

(∆1 − i∆2) [14]. The results for these amplitudes will be presented with this kinematic

factor removed. The imaginary part receives contributions at x = ζ. The other regions

of x contribute to the real part. It is to be emphasized that we are using the handbag

approximation of the DVCS amplitude. Contributions from the Wilson lines are in general

not zero, and they can give rise to new phase structures as seen in single-spin asymmetries

[16].

The real part of the DVCS amplitude in our model is given by

Re [M++] (ζ,∆⊥) = −e2
∫ ζ−ε1

ε
dx F 31

++(x, ζ,∆⊥)
[ 1

x
+ P

( 1

x− ζ

)]

−e2
∫ 1−ε

ζ+ε1
dx F 22

++(x, ζ,∆⊥)
[ 1

x
+ P

( 1

x− ζ

)]

. (12)
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A similar expression holds for the helicity flip DVCS amplitude. The divergence at x = ζ

gets canceled between the 2 → 2 and 3 → 1 contributions.

Calculation of the σ Fourier Transform

In order to obtain the DVCS amplitude in y− space, we take a Fourier transform in ζ as,

A++(σ,∆⊥) =
1

2π

∫ 1−ε2

ε2
dζ eiσζ M++(ζ,∆⊥),

A+−(σ,∆⊥) =
1

2π

∫ 1−ε2

ε2
dζ eiσζ M+−(ζ,∆⊥), (13)

where σ = 1
2
P+y− is the (boost invariant) longitudinal distance on the light-cone. We have

imposed cutoffs at ε = ε1 = ε2/2 = 0.001 for the numerical calculation. A detailed discussion

of the cutoff scheme will be given in [14].

All Fourier transforms (FT) have been performed by numerically calculating the Fourier

sine and cosine transforms and then calculating the resultant by squaring them, adding and

taking the square root. In Fig. 1, we have shown the Fourier spectrum of the imaginary part

of the DVCS amplitude with respect to ζ for M = 0.5 MeV, m = 0.8 MeV and λ = 0.02

MeV. (a) is the helicity non-flip and (b) is the helicity flip part of the amplitude. For all the

plots, we have divided the amplitude by the normalization constant e4/(16π3) and have taken

Λ = Q = 10 MeV. The helicity non-flip amplitude depends on the scale Λ logarithmically

and the scale dependence is suppressed in the helicity-flip part. As seen in Fig. 1 (a),

for lower values of t, Im[A++] is almost flat, at higher values of | t |, the helicity non-flip

amplitude displays a diffraction pattern in σ. Similar behavior is observed for other values

of Q [14]. The peak becomes narrower and higher as | t | increases. This can be explained

because the moment with respect to x of the helicity non-flip GPDs gives the Dirac form

factor of the electron which increases logarithmically with | t |. The number of minima

increases with | t | for fixed Q. In contrast, we see in Fig. 1 (b) that there is no diffraction

pattern in the FT of the helicity-flip amplitude. This is due to the different behavior with

respect to ζ of the respective amplitudes [14]. The peak of the Im[A+−] increases with | t |,
attains a maximum for higher | t |, and then decreases. This is because the helicity-flip DVCS

amplitude is related to the Pauli form factor of the electron which falls with | t | for large | t |.
The increasing behavior of the helicity flip amplitude γ∗e↑(Se

z = 1/2) → γe↓(Se
z = −1/2) at

small | t | reflects the fact that one needs to transfer one unit of orbital angular momentum

∆Lz = ±1 to the electron to conserve Jz. This assumes that the initial and final photon
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FIG. 1: Fourier spectrum of the imaginary part of the DVCS amplitude of an electron vs. σ for

M = 0.5 MeV, m = 0.8 MeV, λ = 0.02 MeV, (a) when the electron helicity is not flipped; (b)

when the helicity is flipped. The parameter t is in MeV2.

have transverse polarization, which is what we use. A similar behavior is expected for

γ∗p↑(Sp
z = 1/2) → γp↓(Sp

z = −1/2) amplitude. The helicity-flip amplitude vanishes when t

is zero.

In Fig. 2 we have plotted the Fourier Spectrum of the real part of the DVCS amplitude

vs. σ for M = 0.51 MeV, m = 0.5 MeV and λ = 0.02 MeV. For the same | t |, the behavior

is independent of Q when | t |< m2. For each Q, the peak at σ = 0 is sharper and higher

as | t | increases, the number of minima within the same σ range also increases. As seen in

Fig. 2, both the helicity flip and helicity non-flip parts show a diffraction pattern. The real

part of the helicity flip amplitude in σ also decreases with t for higher t.

The DVCS amplitude for an electron-like state at one loop has potential singularities at

x = 0, 1 and at ζ = 0. As mentioned above, we have used cutoffs at these points. The

helicity-flip part of the amplitude is not divergent at x = 0, 1 and is independent of the

cutoffs but the real part of the helicity non-flip amplitude depends on these cutoffs. In the

2− and 3-body LFWFs, the bound-state mass squared M 2 appears in the denominator.

Differentiation of the LFWFs with respect to M 2 increases the fall-off of the wavefunctions

near the end points x = 0, 1 and mimics the hadronic wavefunctions. Differentiating once

with respect toM 2 simulates a meson-like wavefunction and another differentiation simulates
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FIG. 2: Fourier spectrum of the real part of the DVCS amplitude of an electron vs. σ for M = 0.51

MeV, m = 0.5 MeV, λ = 0.02 MeV, (a) when the electron helicity is not flipped; (b) when the

helicity is flipped. The parameter t is in MeV2.

a proton wavefunction. Convolution of these wavefunctions in the same way as we have done

for the dressed electron wavefunctions will simulate the corresponding DVCS amplitudes for

bound state hadrons. One has to note that differentiation of the single particle wave function

yields zero and thus there is no 3 − 1 overlap contribution to the DVCS amplitude in this

hadron model. It is to be noted that in recent holographic models from AdS/CFT as well

[8] only valence LFWFs are constructed.

The equivalent but easier way is to differentiate the DVCS amplitude with respect to the

initial and final state masses. Here we calculate the quantity M 2
F

∂
∂M2

F

M2
I

∂
∂M2

I

Aij(MI ,MF )

where MI ,MF are the initial and final bound state masses. For numerical computation, we

use the discrete version of the differentiation

M2 ∂A

∂M2
= M̄2A(M2

1 ) − A(M2
2 )

δM2
(14)

where M̄2 =
(M2

1
+M2

2
)

2
and δM2 = (M2

1 − M2
2 ). We have taken MI1,MF1 = 150 + 1,

MI2,MF2 = 150− 1 MeV and fixed parameters M = 150 and m = λ = 300 MeV. In Figs. 3

and 4 we have shown the DVCS amplitude of the simulated hadron model, both as a function

of ζ and after taking the FT in ζ. In Fig. 4 (c), we have plotted the structure function F2(x)

in this model. The wave function is normalized to 1. There is another interesting aspect of

this model. The γ∗p→ γp DVCS amplitude has both real [17] and imaginary parts [18]. If
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FIG. 3: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity flip amplitude vs. ζ, (b) Fourier spectrum of the

same vs. σ. The parameter t is in MeV2.

we consider a dressed electron, the imaginary part from the pole at x = ζ survives because

of the numerator 1
x−ζ

factor in the electron’s LFWF. This numerator behavior reflects the

spin-1 nature of the constituent boson. The x − ζ → 0 singularity is shielded when we

differentiate the final state LFWFs with respect to M 2 and, as a result, the imaginary

part of the amplitude vanishes in this model. We thus have constructed a model where the

DVCS amplitude is purely real. It is interesting that the forward virtual Compton amplitude

γ∗p→ γ∗p (whose imaginary part gives the structure function) does not have this property.

The pole at x = ζ is not shielded since the initial and final n = 2 LFWFs are functions of x.

If instead we consider the differentiation with respect to the internal fermion mass m2 rather

than the bound state mass M 2, although it does not improve the wavefunction behavior at

the endpoint x = 0, we can generate a model with both real and imaginary parts of the

DVCS amplitudes.

From the plots, we propose an optics analog of the behavior of the DVCS amplitude in σ.

In fact, the similarity of optics and quantum fields on the light cone was first explored long

ago in [19, 20]. In the case of DVCS, we are effectively looking at the interference pattern

between the plane wave of the initial virtual photon and the plane wave of the outgoing

real photon. The final-state proton wavefunction is modified relative to the incident proton
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FIG. 4: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction ζ can be Fourier

transformed to a boost-invariant distribution in the longitudinal light-front coordinate σ =

1
2
y−P+. In the case of the optical diffraction pattern obtained in a single-slit experiment,

the size of the central maximum is inversely proportional to the width of the slit. Deeply

virtual Compton scattering is analogous to the diffractive scattering of an electromagnetic

wave in optics, where the diffractive pattern in σ reflects the size of the scattering center in

units of the target’s Compton scale.
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We can study the diffraction pattern in σ as function of t or ∆2
⊥ in order to register

the effect of a change in transverse momentum resulting from the Compton scattering. In

the case of deeply virtual Compton scattering on the quantum fluctuations of a lepton

target in QED, and also in the corresponding hadronic model, one sees that the diffractive

patterns in σ sharpen and the positions of the first minima typically move in with increasing

momentum transfer. Thus the invariant longitudinal size of the parton distribution becomes

longer and the shape of the conjugate light-cone momentum distribution becomes narrower

with increasing | t |. If one Fourier transforms the change in transverse momentum ∆⊥ to

impact space b⊥ [4, 5], then one would have the analog of a three-dimensional scattering

center. In this sense, scattering photons in DVCS provides the complete Lorentz-invariant

optics of a hadron.
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