SLAC-PUB-11594 BABAR-PROC-05/130 hep-ex/0512008 December 2005

Measurements of $\sin 2\beta$ at BABAR with charmonium and penguin decays.

Katherine George University of Liverpool Department of Physics, Oxford Street, Liverpool L69 7ZE, United Kingdom. (for the BABAR Collaboration)

Abstract

This article summarises measurements of time-dependent CP asymmetries in decays of neutral B mesons to charmonium, open-charm and gluonic penguin-dominated charmless final states. Unless otherwise stated, these measurements are based on a sample of approximately 230 million $\Upsilon(4S) \rightarrow B\overline{B}$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B-factory.

Contributed to the Proceedings of PANIC05 - Particles and Nuclei International Conference, Santa Fe, NM - October 24-28, 2005

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC02-76SF00515.

1 Introduction

The Standard Model (SM) of electroweak interactions describes CP violation (CPV) as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. Measurements of CP asymmetries in the proper-time distribution of neutral B decays to CP eigenstates containing a charmonium and K^0 meson provide a precise measurement of $\sin 2\beta$ [2], where β is $\arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$ and the V_{ij} are CKM matrix elements. The SM also predicts the amplitude of CPV in $b \to c\bar{c}d$ and $b \to s\bar{q}q$ (q = d, s) decays, defined as $\sin 2\beta_{\rm eff}$, to be approximately $\sin 2\beta$. The $b \to c\bar{c}d$ loop amplitudes have a different weak phase than the $b \to c\bar{c}d$ tree amplitude and if there is a significant penguin amplitude in such $b \to c\bar{c}d$ decays, then one will measure a value of $\sin 2\beta_{\rm eff}$, that differs from $\sin 2\beta$ [3]. $b \to s\bar{q}q$ decays may also be especially sensitive to New Physics since they are dominated by one-loop transitions that can potentially accommodate large virtual particle masses and contributions from physics beyond the SM could invalidate this prediction [3]. However, many of these $b \to s\bar{q}q$ final states are affected by additional SM physics contributions that may obscure the measurement of $\beta_{\rm eff}$ [4]. Precise measurements of $\sin 2\beta_{\rm eff}$ in many $b \to c\bar{c}d$ and $b \to s\bar{q}q$ decays are therefore important either to confirm the SM picture or to search for the possible presence of New Physics.

2 Experimental Technique

The BABAR detector [5] is located at the SLAC PEP-II e^+e^- asymmetric energy B-factory. Its program includes the study of CPV in the B-meson system through the measurement of time-dependent CP-asymmetries, A_{CP} . At the $\Upsilon(4S)$ resonance, A_{CP} is extracted from the distribution of the difference of the proper decay times, $t \equiv t_{CP} - t_{tag}$, where t_{CP} refers to the decay time of the signal B meson (B_{CP}) and t_{tag} refers to the decay time of the other B meson in the event (B_{tag}) . The decay products of B_{tag} are used to identify its flavour at its decay time. A_{CP} is defined as:

$$A_{CP}(t) \equiv \frac{N(\overline{B^0}(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B^0}(t) \to f_{CP}) + N(B^0(t) \to f_{CP})} = S\sin(\Delta mt) - C\cos(\Delta mt), \tag{1}$$

where $N(\overline{B^0}(t) \to f_{CP})$ is the number of $\overline{B^0}$ that decay into the CP-eigenstate f_{CP} after a time t. A_{CP} can also be expressed in terms of the difference between the B mass eigenstates Δm , where the sinusoidal term describes the interference between mixing and decay and the cosine term is the direct CP asymmetry.

3 Measurements of $\sin 2\beta$ from charmonium decays

The SM predicts that direct CP violation in $b \to c\overline{c}s$ ($B^0 \to {\rm charmonium} + K^0$) decays is negligible. It follows that $A_{CP}(t) = -\eta_f \sin 2\beta \sin(\Delta m t)$ where η_f is the eigenvalue corresponding to the CP-eigenstate f_{CP} . $\sin 2\beta$ has been directly measured using B^0 decays to the final states $J/\psi K_S$, ψK_S , $\chi_{c1}K_S$, $\eta_c K_S$, J/ψ $K^*(K^* \to K_S\pi^0)$ and $J/\psi K_L$ [6]. An extended unbinned maximum-likelihood (ML) fit to the data gives $\sin 2\beta = 0.722 \pm 0.040 \pm 0.023^{-1}$, which is in agreement with SM expectation. A four-fold ambiguity in β that is obtained from this measurement is reduced to a two-fold ambiguity through the measurement of $\cos 2\beta$. Using 81.9 fb⁻¹ of integrated luminosity $\cos 2\beta$ is measured as $2.72^{+0.50}_{-0.79} \pm 0.27$ using $B^0 \to J/\psi$ K^* decays [7]. This determines the sign of

¹All results are quoted with the first error being statistical and the second being systematic.

 $\cos 2\beta$ to be positive at 86% C.L. and is compatible with the sign of $\cos 2\beta$ inferred from SM fits of the unitarity triangle.

4 Measurements of $\sin 2\beta$ from $b \to c\overline{c}d$ decays

The decay $B^0 \to D^{*+}D^{*-}$ is an admixture of CP-odd and CP-even components. By performing a transversity analysis [8], the CP-odd fraction is measured to be $0.125 \pm 0.044 \pm 0.007$. The time-dependent CP asymmetry parameters S and C are measured to be $-0.75 \pm 0.25 \pm 0.03$ and $0.06 \pm 0.17 \pm 0.03$ respectively. A preliminary analysis of the decay $B^0 \to J/\psi \pi^0$ also shows it to be consistent with the SM [9]. The signal yield, S and C are simultaneously extracted from a ML fit. 109 ± 12 events are measured with $C = -0.21 \pm 0.26 \pm 0.09$ and $S = -0.68 \pm 0.30 \pm 0.04$.

5 Searches for New Physics

Two $b \to s\overline{q}q$ (q=d,s) decays to CP eigenstates that have been noted as having small theoretical uncertainties in the measurement of $\beta_{\rm eff}$ are $B^0 \to \phi K^0$ and $B^0 \to K_S K_S K_S$ [10]. B^0 decays to ϕK_S and ϕK_L are reconstructed and a ML fit yields 114 \pm 12 ϕK_S and 98 \pm 18 ϕK_L B^0 candidates. $\sin 2\beta_{eff}$ is measured to be 0.50 \pm 0.25 $^{+0.07}_{-0.04}$ [11]. A ML fit of reconstructed $B^0 \to K_S K_S K_S$ candidates (where $K_S \to \pi^+\pi^-$), finds $C = -0.34 ^{+0.28}_{-0.25} \pm 0.05$ and $S = -0.71 ^{+0.38}_{-0.32} \pm 0.04$ [12]. A more recent analysis, where one K_S is reconstructed in the $K_S \to \pi^0\pi^0$ mode, was combined with [12] to give the preliminary results: $C = -0.10 \pm 0.25 \pm 0.05$ and $S = -0.63 ^{+0.32}_{-0.28} \pm 0.04$ [13]. The experimental challenge in [13] came from the absence of charged tracks originating from the B^0 decay vertex [14].

The decay $B^0 \to \eta' K^0$ is also interesting, since additional contributions estimated using SU(3) and QCD factorisation are expected to be small [15]. A ML fit to reconstructed $B^0 \to \eta' K_L$ and $B^0 \to \eta' K_S$ candidates yields the preliminary result of 1245 ± 67 candidates, $S = 0.36 \pm 0.13 \pm 0.03$ and $C = -0.16 \pm 0.09 \pm 0.02$. The value of $S = \sin 2\beta_{\rm eff}$ differs from the BABAR value of $\sin 2\beta$ as measured in charmonium $+ K^0$ decays by 2.8 standard deviations [16]. Other $b \to s\bar{q}q$ decays have been studied at BABAR. These include $B^0 \to f_0 K^0$, $B^0 \to \pi^0 K^0$, $B^0 \to \pi^0 \pi^0 K^0$, $B^0 \to \omega K^0$ and $B^0 \to K^+ K^- K^0$ [17, 18]. Small deviations from SM expectations are seen.

6 Conclusion

 $\sin 2\beta$ has been measured to 5% accuracy using $B^0 \to \text{charmonium} + K^0$ decays and is consistent with SM expectations. No deviation from the SM has been observed in $b \to c\bar{c}d$ decays. Future updates of the $b \to s\bar{q}q$ analyses on larger datasets will help to understand if the present pattern in the deviation of $b \to s$ penguins from SM predictions is a statistical effect or a sign of New Physics.

References

- N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963);
 M. Kobayashi and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).
- [2] A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567 (1981);
 I.I. Bigi and A.I. Sanda, Nucl. Phys. B 193, 85 (1981).

- [3] Y. Grossman and M. Worah, Phys. Lett. B **395**, 241 (1997).
- [4] Y. Grossman, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 68, 015004 (2003).
- [5] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
- [6] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 94, 161803 (2005).
- [7] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 71, 032005 (2005).
- [8] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 151804 (2005).
- [9] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0507074.
- [10] T. Gershon and M. Hazumi, Phys. Lett. B **596**, 163 (2004).
- [11] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 71, 091102(R) (2005).
- [12] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 011801 (2005).
- [13] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0507052.
- [14] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131805 (2004).
- [15] M. Gronau et. al., Phys. Lett. 596, 107 (2003);
 M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
- [16] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0507087.
- [17] http://www.slac.stanford.edu/xorg/hfag/triangle/summer2005/index.shtml#qqs
- [18] BABAR Collaboration, B. Aubert *et al.*, arXiv:hep-ex/0408095, arXiv:hep-ex/0503011, arXiv:hep-ex/0508017, arXiv:hep-ex/0503018, arXiv:hep-ex/0507016.