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Towards the NNLL precision in the decay B̄ → Xsγ
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The present NLL prediction for the decay rate of the rare inclusive process B̄ → Xsγ has a large

uncertainty due to the charm mass renormalization scheme ambiguity. We estimate that this

uncertainty will be reduced by a factor of 2 at the NNLL level. This is a strong motivation

for the on-going NNLL calculation, which will thus significantly increase the sensitivity of the

observable B̄ → Xsγ to possible new degrees of freedom beyond the SM. We also give a brief

status report of the NNLL calculation.
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The inclusive decay B̄ → Xsγ is well known as one of the most important flavour observables
within the indirect search for new physics [1]. The present experimental accuracy already reached
the 10% level, as reflected in the world average of the present measurements [2]:

BR[B̄ → Xsγ] = (3.39+0.30
−0.27)×10−4 . (1)

In the near future, more precise data on this mode are expected from the B-factories. Thus, it
is mandatory to reduce the present theoretical uncertainty accordingly. Non-perturbative effects
are naturally small within inclusive modes [1]; also additional non-perturbative corrections due to
necessary cuts in the photon energy spectrum are under control (see [3]). As was first noticed in
[4], there exists a large uncertainty in the theoretical NLL prediction related to the renormalization
scheme of the charm-quark mass on which we focus in this article. The reason is that the matrix
elements 〈sγ|O1,2|b〉, through which the charm-quark mass dependence dominantly enters, vanish
at the lowest order (LL) and, as a consequence, the charm-quark mass does not get renormalized in
a NLL calculation, which means that the symbol mc can be identified with mc,pole or with the MS
mass m̄c(µc) at some scale µc or with some other definition of mc. In a recent theoretical update
of the NLL prediction of this branching fraction the ratio mc/mb was varied in the conservative
range 0.18 ≤ mc/mb ≤ 0.31 that covers both the pole mass value (with its numerical error) and the
running mass m̄c(µc) value (with µc ∈ [mc,mb]), leading to [5]:

BR[B̄ → Xsγ] = (3.70±0.35|mc/mb
±0.02|CKM ±0.25|param. ±0.15|scale)×10−4 . (2)

The only way to resolve this scheme ambiguity in a satisfactory way is to perform a systematic
NNLL calculation. Working to next-to-next-to-leading-log (NNLL) precision means that one is
resumming all the terms of the form

(αs(mb))p αn
s (mb) logn(mb/M) , (p = 0,1,2). (3)

where M = mt or M = mW , n = 0,1,2, ... . Such a calculation is most suitably done in the frame-
work of an effective low-energy theory. The effective interaction Hamiltonian can be written as

Heff = −4GF/
√

2 VtbV ∗
ts ∑Ci(µ,M) Oi(µ) , (4)

where Oi(µ) are the relevant dimension 6 operators and Ci(µ,M) are the Wilson coefficients.
Parts of the three principal calculational steps leading to the NNLL result within the effective

field theory approach are already done: (a) The full SM theory has to be matched with the effective
theory at the scale µ = µW , where µW denotes a scale of order mW or mt . The Wilson coefficients
Ci(µW ) only pick up small QCD corrections, which can be calculated in fixed-order perturbation
theory. In the NNLL program, the matching has to be worked out at the order α2

s . The matching
calculation to this precision is already finished, including the most difficult piece, the three-loop
matching of the operators O7,8 [6]. (b) The evolution of these Wilson coefficients from µ = µW

down to µ = µb then has to be performed with the help of the renormalization group, where µb

is of the order of mb. As the matrix elements of the operators evaluated at the low scale µb are
free of large logarithms, the latter are contained in resummed form in the Wilson coefficients. For
the NNLL calculation, this RGE step has to be done using the anomalous–dimension matrix up to



order α3
s . While the three-loop mixing among the four-quark operators Oi (i = 1, . . . ,6) [7] and

among the dipole operators O7,8 [8] are already available, the four-loop mixing of the four-quark
into the dipole operators is still an open issue. (c) To achieve NNLL precision, the matrix elements
〈Xsγ|Oi(µb)|b〉 have to be calculated to order α2

s precision. This includes also bremsstrahlung
corrections. In 2003, the (α2

s n f ) corrections to the matrix elements of the operators O1,O2,O7,O8

were calculated [9]. Complete order α2
s results are available to the (O7,O7) contribution to the

decay width [10]. Recently, also order α2
s terms to the photon energy spectrum (away from the

endpoint Emax
γ ) were worked out for the operator O7 [11].

In ref. [12] a strong motivation for this complicated NNLL effort was given by calculat-
ing those NNLL terms that are induced by renormalizing the charm-quark mass in the NLL ex-
pressions, i.e. those terms that are sensitive to the definition of the charm-quark mass. These
terms correspond to δmc insertions in the diagrams related to the NLL order matrix elements
Mvirt

1,2 (mc) = 〈sγ|O1,2(µb)|b〉 and Mbrems
1,2 (mc) = 〈sγg|O1,2(µb)|b〉 (for an example, see the left di-

agram in Fig. 1).
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Figure 1: Left: Typical δmc insertion diagram. Right: Typical diagram with a self energy insertion.

The sum δMvirt(ε)
1,2 (mc) ·δmc of all these insertions can be obtained by replacing mc by mc +δmc

in the O(α1
s ) results Mvirt(ε)

1,2 (mc), followed by expanding in δmc up to linear order:

Mvirt(ε)
1,2 (mc + δmc) = Mvirt(ε)

1,2 (mc)+ δMvirt(ε)
1,2 (mc) ·δmc + O((δmc)2) . (5)

As δmc is ultraviolet-divergent, the matrix elements Mvirt(ε)
1,2 (mc) are needed in our application up to

order ε1, as indicated by the notation in eq. (5). In [12] the explicit analytical results for these matrix
elements are given in such a way that they can be used in a future complete NNLL calculation. The
explicit shift δmc depends of course on the renormalization scheme. When aiming at expressing
the results for Mvirt(ε)

1,2 (mc) in terms of m̄c(µb) or mc,pole, the shift reads (CF = 4/3)

δm̄c(µb) = −αs(µb)
4π

CF
3
ε

m̄c(µb) or δmc,pole = −αs(µb)
4π

CF

(
3
ε

+ 3ln
µ2

b

m2
c
+ 4

)
mc,pole .

The infinities induced by the 1/ε terms in δmc get cancelled in a full NNLL calculation, in particular
by self-energy diagrams depicted in the right diagram in Fig. 1. When implementing these self-
energy insertions, we only took into account the Σ1(p2 = m2

c) piece, i.e. that part of the one-
loop self-energy which only gets renormalized by the mass parameter. When used at the fixed
momentum p2 = m2

c , this piece is gauge-independent.



Our final estimates are given in Fig. 2 for three different values of µb, where µb represents the
usual renormalization scale of the effective field theory. Within each vertical string, the solid dot
represents the branching ratio using the pole mass mc,pole, while the open symbols correspond to
the MS mass m̄c(µc) for µc = 1.25 GeV (triangle), µc = 2.5 GeV (quadrangle) and µc = 5.0 GeV
(pentagon). For each µb the left string shows the value of the branching ratio at the NLL level,
while the right string shows the corresponding value where, in addition. δmc mass insertions and
Σ1(p2 = m2

c) insertions were taken into account. Because the combination of these insertions is
zero by construction for the pole scheme, the solid dots are at the same place in the left and the
right string for a given value of µb. We stress that all the statements made in the following are
independent of this absolute normalization introduced by the additional Σ1(p2 = m2

c) insertions,
because we refer to the reduction of the error only. From Fig. 2 we see that the error related to
the charm-quark mass definition is significantly reduced when the NNLL terms connected with
mass insertions are taken into account. Taking as an example the results for µb = 5 GeV, we find
that at the NLL level the branching ratio evaluated for m̄c(2.5 GeV) is 12.6% higher than the one
based on mc,pole. Including the new contributions, these 12.6% get reduced to 5.1%. One also
can read off an analogous significant reduction within the MS scheme itself. However, to obtain a
NNLL prediction for the central value of the branching ratio, it is of course necessary to calculate
all NNLL terms.

Figure 2: BR(b → Xsγ) for three values of µb (see text for more details).
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