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INTRODUCTION

In two years, a new window will open into physics at the shortest distance scales. The
Large Hadron Collider (LHC) will begin operation at CERN, providing proton-proton
collisions at 14 TeV center-of-mass energy, seven times greater than the 2 TeV currently
available in pp̄ collisions at Fermilab’s Tevatron. The LHC luminosity should be a factor
of 10 to 100 greater than the Tevatron’s. The combined rise in energy and luminosity
will lead to a huge increase in the production of particles with masses in the range 100–
1000 GeV, including electroweak vector bosons, top quarks, Higgs bosons, and of course
new particles, representing physics beyond the Standard Model.

There are a lot of ideas for physics beyond the Standard Model, many associated with
the puzzle of electroweak symmetry breaking, and with resolutions of the hierarchy
problem — why the weak scale is so much smaller than the Planck scale. Supersym-
metry, for example, predicts a host of new particles in the 100–1000 GeV mass range,
including (in most versions) a stable dark matter candidate. However, many other the-
ories — new dimensions of space-time, new forces, etc. — often make qualitatively
similar predictions. How can we sort out the predictions of these theories from each
other, and from the omnipresent Standard Model background at a hadron collider?

The short answer is that a thorough, quantitative understanding of both the new
physics signals and the Standard Model backgrounds is required. Much work has gone
into these problems, stretching back over many decades. This talk will focus on some
recent developments, novel methods to help compute the backgrounds in particular, that
have emerged since the Fall of 2003, when Witten introduced twistor string theory and
explained its relevance to perturbative QCD [1]. In truth, the new methods have not
yet had a direct phenomenological impact, in terms of producing more accurate cross
sections that have not previously been obtained in any other way. But they have a lot of
promise, and it should not be long before they do so.

1 Talk presented at the International Europhysics Conference on High Energy Physics, Lisbon, Portugal,
July, 2005. Research supported by the US Department of Energy under contract DE–AC02–76SF00515.

Invited Talk presented at EPS International Europhysics Conference On High Energy Physics (HEPP-EPS 2005), 

7/21/2005-7/27/2005, Lisbon, Portugal



χ0g̃

g q′

ν

χ+

W+

e
+

q

q̃

FIGURE 1. Typical cascade decay of a gluino to two quarks, a gluon, a W boson which decays to two
leptons, and a neutralino. Aside from the neutralino, all the final-state particles are essentially massless.

What are some generic properties of the new physics signals? Except for stable,
neutral dark matter candidates, the new massive particles typically decay into “old”
Standard Model particles: quarks, gluons, charged leptons and neutrinos, photons, W s
and Zs. For example, in supersymmetry the superpartner of the gluon, the gluino, may
be among the heavier superparticles, yet still be copiously produced at the LHC, due
to its large adjoint color charge. Figure 1 shows a typical decay cascade, initiated by
one of the two gluinos (g̃) in a pair-production event. The quarks and gluons emerge
as jets of hadrons. The lightest superpartner, a neutralino (χ 0), is stable and escapes
the detector. The kinematic signatures of such events are not always clean: There can
be a large number of observed particles (charged leptons or jets), and no invariant-
mass bumps, because of the escaping neutralinos and possibly neutrinos (although there
can be kinematic edges). The escaping neutralinos provide a missing transverse energy
signal, but Standard Model production of Z bosons, followed by Z decays to neutrinos,
can mimic this to some degree.

In order to maximize the potential for the discovery and interpretation of new physics
at the LHC, we need to quantify the Standard Model backgrounds for processes that
may contain several jets and (perhaps) a few electroweak bosons. These processes are
complex, so we should try to take into account any simplifying features. Notice that
the masses of the observed final-state particles in these reactions (e.g. in fig. 1) are
generally negligibly small in these reactions, except for the cases of the W , Z, or top
quark. Even these particles immediately decay to essentially massless quarks or leptons,
however. So if we include the decay processes in the description of the event, every
final-state particle is approximately massless. We can also (usually) neglect the masses
of the colliding partons (quarks and gluons). In general, then, the backgrounds (and
many signals) require a detailed understanding of scattering amplitudes for many ultra-
relativistic (massless) particles – especially the quarks and gluons of QCD.

Asymptotic freedom [2] allows us to compute such scattering amplitudes as a pertur-
bative expansion in the strong coupling constant αs(µ), evaluated at a large momentum
scale µ where it is small. For typical collider processes, µ could be of order 100–200
GeV, for which αs(µ) ≈ 0.1. One might expect that the leading-order terms in the ex-
pansion (tree amplitudes) would suffice to get a 10% uncertainty. However, this is not
the case for hadron collider cross sections; typical corrections from the next-to-leading
order (NLO) terms in the αs expansion are 30% to 100%. There are several possible rea-
sons for the large corrections, depending on the process: there may be different scales
involved, leading to large logarithms of the ratio(s) of scales; new partonic subprocesses



may first arise at NLO; the lowest-order process may have several factors of αs in it;
and so on. In any event, a quantitative description of collider events requires evaluation
of cross sections at NLO in QCD, which in turn requires, as input, one-loop amplitudes
as well as tree amplitudes. If a precise evaluation is needed (below 10% uncertainty),
then the next-to-next-to-leading order terms, involving two-loop amplitudes, may also
be required.

In principle, Feynman rules [3] are all we need to evaluate the tree and loop ampli-
tudes. In practice, however, although Feynman rules are very general, applying to any
local quantum field theory, by the same token they are not optimized for the problems
at hand. More efficient methods are available, which make use of the extra symmetries
(some hidden) of QCD.

TRANSFORMING TO TWISTOR SPACE

An easy way to see that there should be more efficient methods out there is to notice
that many QCD amplitudes are much simpler than expected. For example, the tree-level
amplitudes for the scattering of n gluons turn out to all vanish, if the helicities of the
gluons (considered as outgoing particles) are either a) all the same, or b) all the same,
except for one of opposite helicity. Using parity, we can take the bulk of the gluons to
have positive helicity, and write this vanishing relation as

Atree
n (1±,2+,3+, . . . ,n+) = 0 . (1)

This vanishing is somewhat mysterious from the point of view of Feynman diagrams. On
the other hand, it can be demonstrated simply using Ward identities arising from a secret
supersymmetry that tree-level QCD amplitudes possess [4]. This symmetry allows two
of the gluons to be replaced by their superpartners, gluinos, which can be taken to be
massless here. Helicity conservation for the gluinos then implies the vanishing of the
amplitudes.

The first sequence of nonvanishing tree amplitudes has two gluons with negative
helicity, labelled by j and l, say, and the rest of positive helicity. This sequence of
maximally helicity-violating (MHV) amplitudes has an exceedingly simple form [5, 6],

AMHV , jl
n ≡ Atree

n (1+,2+, . . . , j−, . . . , l−, . . . ,n+) = i
〈 j l〉4

〈12〉〈23〉 · · · 〈n1〉 , (2)

in terms of spinor products 〈i j〉 we shall define shortly. Equation (2) is the expression
for, not the full amplitude, but rather a piece of it where the n gluons have a definite
cyclic ordering. The full amplitude can be built out of permutations of such partial
amplitudes, as reviewed for example in ref. [7]. Some of the structure of eq. (2) follows
from supersymmetry, but not all.

To see much more of the structure, Witten [1] transformed the amplitudes (2) from
the traditional momentum-space variables, into a twistor space invented by Penrose [8].
The twistor transform is a kind of Fourier transform. There are many examples where
transforming a problem into the right variables can expose its simplicity. For example,
if we measure the time dependence of the electric field E(t) associated with the light



emerging from some glowing sample of gas, we find a fairly unenlightening waveform.
However, if we use a spectrometer to measure instead the frequency (energy) spectrum
of the light, that is, E(ω) =

∫

dteiωtE(t), we find spectral lines, which are clues toward
decoding the structure of the emitting gas. In in an analogous way, the twistor trans-
form exposes certain lines on which QCD amplitudes are localized or supported, thus
revealing more of their structure, and giving rise to new, more efficient ways to compute
them.

Before describing the twistor transform, however, we should discuss the spinor vari-
ables used in eq. (2), because they are well-suited for describing scattering amplitudes
for massless particles with spin, and are the starting point for the twistor transform. Let
i = 1,2, . . . ,n label the particles being scattered. Usually, the four-momentum vectors kµ

i
,

which transform under the spin-1 representation of the Lorentz group, are used as the ar-
guments of the amplitude, A = A(ki). The relativistic invariants constructed out of these
vectors are the Lorentz inner products, or invariant masses, si j = 2ki · k j = (ki + k j)

2,

which are equivalent in the massless case, k2
i = 0. However, for massless particles with

spin, it is better to “take the square root” and use, instead of kµ
i

, objects transforming
as the spin-1/2 representation of the Lorentz group, namely the massless Dirac spinors
associated with momentum ki, u±(ki), where the ± sign labels the helicity. A shorthand
notation for the two-component (Weyl) versions of these spinors is,

(λi)α ≡
[

u+(ki)
]

α , (λ̃i)α̇ ≡
[

u−(ki)
]

α̇ . (3)

We can always reconstruct the momenta from the spinors, using the positive-energy
projector for massless spinors, u(k)ū(k) = /k, or in two-component notation,

kµ
i (σµ)αα̇ = ( /ki)αα̇ = (λi)α(λ̃i)α̇ . (4)

Equation (4) shows that a massless momentum vector, written as a bi-spinor, is the
product of a left-handed spinor with a right-handed one.

Instead of Lorentz inner products of momenta, si j = 2ki · k j, we use spinor products,
defined by

〈 j l〉 = εαβ (λ j)α(λl)β = ū−(k j)u+(kl) , [ j l] = ε α̇β̇ (λ̃ j)α̇(λ̃l)β̇
= ū+(k j)u−(kl) ,

(5)
where εαβ and ε α̇β̇ are antisymmetric tensors for SU(2). These products satisfy

〈i j〉 [ j i] =
1
2

Tr[ /ki /k j] = 2ki · k j = si j . (6)

So they are just the square roots of the Lorentz inner products, up to a phase φ ,

〈 j l〉 =
√

s jle
iφ jl , [ j l] = ±√

s jle
−iφ jl . (7)

The utility of spinor variables for QCD amplitudes was recognized already in the
1980s [9, 6]. They precisely capture the “square-root-plus-phase” behavior of gauge
theory amplitudes as the momenta of two of the particles, i and j, become collinear.



FIGURE 2. Contrasting collinear behavior of amplitudes in (a) massless scalar φ 3 theory, where there
is no angular-momentum mismatch, and (b) massless gauge theory, for example a gluon splitting into two
gluons, where there is always a mismatch.

This behavior arises because the sum of the helicities of the final-state particles is never
equal to the helicity of the almost-on-shell intermediate particle, as illustrated in fig. 2(b)
for the case of a gluon splitting into two gluons, for which ±1±1 6=±1. This mismatch
in angular momentum along the collinear direction lessens the singularity, from 1/si j
(the behavior of the scalar theory shown in fig. 2(a)) to 1/√si j. It also introduces a
phase depending on the azimuthal angle, which is conjugate to the angular momentum.
Equation (7) shows that both characteristics are captured by putting a spinor product
in the denominator of the amplitude, explaining why the spinor products are natural
variables to use. In other words, we should write A = A(λi, λ̃i) instead of A = A(ki).

Now we can describe the twistor transform [8, 1]. It is a “half” Fourier transform, in
which the right-handed spinors λi are left untouched, but each left-handed spinor λ̃i is
exchanged for its Fourier conjugate variable µi, defined by

λ̃α̇ = i
∂

∂ µ α̇ , µ α̇ = i
∂

∂ λ̃α̇
. (8)

(These relations are completely analogous to the standard Fourier relation between mo-
mentum and position, x = i∂/∂ p, p = −i∂/∂x.) Since the spinors and their conjugates
each have two components, twistor space has four coordinates (for each external par-
ticle), (λ1,λ2,µ 1̇,µ 2̇). However, because amplitudes are only defined up to a phase
associated with external states, two points in twistor space are equivalent if the four
coordinates differ by a constant multiple ξ (the complexification of the phase),

(λ1,λ2,µ 1̇,µ 2̇) ≡ (ξ λ1,ξ λ2,ξ µ 1̇,ξ µ 2̇). (9)

So in fact (projective) twistor space is three-dimensional.
What do amplitudes look like in this space? We can compute them by Fourier trans-

forming, just as we would to take a wave-function from position-space to momentum-
space [1],

A(λi, λ̃i) ⇒ A(λi,µi) ≡
∫ n

∏
i=1

dλ̃i eiµiλ̃iA(λi, λ̃i) . (10)

The simplest cases to consider are the MHV amplitudes (2), which contain only an-
gle brackets (〈i j〉), and so depend almost exclusively on the right-handed spinors λi,
AMHV

n (λi, λ̃i) ≡ AMHV
n (λi). Their only dependence on the left-handed spinors is through



FIGURE 3. Tree amplitudes for n gluons are supported on networks of intersecting lines in twistor
space. The number of lines is one fewer than the number of negative-helicity gluons.

the usual momentum-conserving δ -function (which was implicit in eq. (2)). This factor
can be written, using the identity

δ 4(k) =
∫

d4x exp[ik · x] (11)

and eq. (4), as

δ 4
( n

∑
i=1

ki

)

=
∫

d4x exp
[

ixαα̇
n

∑
i=1

(λi)α(λ̃i)α̇

]

. (12)

Then the transformed amplitudes are

AMHV
n (λi,µi) =

∫ n

∏
i=1

dλ̃i exp[iµiλ̃i]
∫

d4x AMHV
n (λi)exp[ixλiλ̃i]

=
∫

d4x AMHV
n (λi)

∫ n

∏
i=1

dλ̃i exp[i(µi + xλi)λ̃i]

= AMHV
n (λi)

∫

d4x
n

∏
i=1

δ (µi + xλi) . (13)

The product of all the linear δ -function constraints simply means that the amplitude is
supported on a line in twistor space, as shown in fig. 3(a).

More complicated amplitudes can also be inspected. The first nonvanishing, non-
MHV n-gluon amplitudes are the six-gluon amplitudes with three positive and three
negative helicities, first computed, from 220 Feynman diagrams, in 1988 [6]. The sim-
plest case, where the three positive helicities are adjacent, is given by,

Atree
6 (1+,2+,3+,4−,5−,6−) = i

[

([12]〈45〉
〈

6−
∣

∣(1+2)
∣

∣3−
〉

)2

s61s12s34s45s612

+
([23]〈56〉

〈

4−
∣

∣(2+3)
∣

∣1−
〉

)2

s23s34s56s61s561

+
s123 [12] [23]〈45〉〈56〉

〈

6−
∣

∣(1+2)
∣

∣3−
〉〈

4−
∣

∣(2+3)
∣

∣1−
〉

s12s23s34s45s56s61

]

. (14)



where sabc ≡ (ka + kb + kc)
2 and

〈

a−
∣

∣(b+ c)
∣

∣d−〉

≡ ū−(ka)( /kb + /kc)u−(kd).
The seven-gluon amplitudes were also computed around this time [10], using off-

shell recursive methods [11] to avoid dealing directly with the 2,485 Feynman diagrams.
The explicit results in this case fill several pages. Computing the twistor transform via
eq. (10) is rather difficult. However, suppose one has a guess for how the amplitudes are
supported in twistor space, for example that they are localized on some curve described
by a polynomial equation C(Zi) = 0, where Z = (λ1,λ2,µ 1̇,µ 2̇). Then it is relatively easy
to check such a guess back in spinor-space, where C(Zi) becomes a differential operator,
since µi = i∂/∂ λ̃i. Applying C(Zi) to A(λi, λ̃i), if the result vanishes identically then the
amplitude is supported on the curve; that is, either C = 0 or else A = 0.

This method was used last year by Cachazo, Svrček and Witten [1, 12, 13] to build up
evidence for the picture illustrated in fig. 3. Scattering amplitudes for n gluons, of which
n− have negative helicity, are localized in twistor space on networks of intersecting
lines, where the number of intersecting lines is n−− 1. The MHV case, n− = 2, was
discussed above. The next-to-MHV (NMHV) amplitudes with n− = 3, for example the
six-gluon example in eq. (14), are sums of terms, each of which is supported on a pair of
intersecting lines, as shown in fig. 3(b). The partitioning of points among the lines can
vary from term to term. Three intersecting lines are needed to describe the next-to-next-
to-MHV (NNMHV) amplitudes with n− = 4 (fig. 3(c)), and so on.

MHV RULES

While the twistor structure shown in fig. 3 is extremely appealing, it does not directly
yield the numerical values of the amplitudes. However, Cachazo, Svrček and Witten [12]
also wrote down a set of diagrammatic “MHV” rules, which can be used in place of
Feynman rules to compute the amplitudes, and which make the twistor structure in
fig. 3 manifest. Each MHV diagram generates a term in the amplitude which has one
of the possible twistor structures, taking into account the possible partitionings of points
among the (n−− 1) lines. For example, the MHV diagram in fig. 4, for an amplitude
with n− = 4, corresponds to the twistor structure in fig. 3(c). The helicities of internal,
as well as external, gluons are labeled by ± in the diagram. Each vertex must have
exactly two negative-helicity gluons attached to it, but it can have an arbitrary number
of positive-helicity gluons, just like the MHV amplitude (2). In fact, the rule for this
MHV vertex (the complex number associated with it) is given by eq. (2), with a simple
prescription for continuing intermediate legs off shell. The rule for an internal line is
a factor of i/p2, much like a scalar propagator. For processes with a large number of
gluons, there are considerably fewer MHV diagrams than Feynman diagrams, because
many Feynman subdiagrams get lumped into single MHV vertices. Also, the algebra
required to evaluate each diagram is considerably simpler than for the typical Feynman
diagram, because there is no tangle of Lorentz indices to follow.

Because the MHV rules are so efficient, they were quickly generalized to a more
general set of processes of interest in the context of LHC signals and backgrounds: tree-
level QCD amplitudes containing massless external fermions as well as gluons [14];
those with a Higgs boson, which couples to gluons via HTr(GµνGµν) in the large
mt limit [15]; and amplitudes including one or more electroweak vector bosons in



FIGURE 4. Example of an MHV diagram, corresponding to fig. 3(c).

addition to massless quarks and gluons [16]. A set of scalar-type rules for QCD with
massive quarks (e.g. the top quark) was also produced, starting directly from the QCD
Lagrangian [17].

TWISTOR STRUCTURE AT ONE LOOP

In parallel with the extension of tree-level MHV rules to different processes, the twistor
structure of one-loop amplitudes began to be investigated [13]. For multi-particle pro-
cesses, one-loop amplitudes are much more intricate than tree amplitudes. Their twistor
structure is also complicated by a “holomorphic anomaly” [18], in which derivatives
from µi = i∂/∂ λ̃i act near singular regions of the loop integration. For these reasons, it
has proven simpler to proceed by first representing amplitudes as linear combinations of
various types of basic one-loop integrals — boxes, triangles, bubbles, etc. — and then
examining the twistor structure of the coefficients of these integrals.

The simplest situation to consider is a “toy model” for perturbative QCD, namely
its maximally supersymmetric cousin, N = 4 super-Yang-Mills theory. In this theory,
the coefficients of the triangle and bubble integrals all vanish, reducing the problem
to that of determining the coefficients of box integrals [19]. These coefficients can be
found quite readily [18, 20, 21, 22] by inspecting either standard two-particle unitarity
cuts [23, 19, 24], or (more efficiently) generalized cuts [25, 26] where four propagators
are held open [21].

The resulting twistor structure [20, 22, 27] is illustrated in fig. 5. In the MHV case
shown in fig. 5(a), the only nonvanishing box coefficients are those where two of the
external momenta for the scattering amplitude, s1 and s2, are also momenta for the box
integral; the remaining external momenta are partitioned into two diagonally opposite
clusters, A and B. This integral is referred to as a two-mass box, because the clustered
momenta KA = ∑i∈A ki and KB = ∑i∈B ki are massive, K2

A,B 6= 0. The coefficient of the
two-mass box [19] is just the MHV tree amplitude (2), which is localized on a single
line in twistor space (see fig. 3(a)). In fig. 5(a), the single line has been redrawn as
a pair of lines intersecting in two points, s1 and s2, to make its appearance consistent
with an “MHV rules” approach to one-loop amplitudes [28], and with the pattern found
for more negative-helicity gluons. (Just as in Euclidean space, a pair of straight lines
intersecting in two points in twistor space is the same as a single line.) In the NMHV
case shown in fig. 5(b), the simplest nonvanishing box coefficients are generically those
of the three-mass box integral, for which three of the legs, A, B, and C, represent



FIGURE 5. Twistor structure of box integral coefficients for one-loop amplitudes in N = 4 supersym-
metric Yang-Mills theory. For each series of amplitudes, (a) MHV (n− = 2), (b) NMHV (n− = 3), and (c)
NNMHV (n− = 4), the type of box integral having the simplest nonvanishing coefficient is depicted at the
top, and the localization of those coefficients in twistor space is shown at the bottom.

clusters of momenta from the scattering amplitude, and only one, s, is an individual
scattering momentum. These coefficients have a planar twistor structure, consisting of
three intersecting lines, and the leg s sits at one of the intersections [20, 27, 22]. For
the NNMHV case in fig. 5(c), the four-mass box coefficients have the nonplanar ring
structure shown [22]. In general, as in the tree case, fig. 3, one-loop box coefficients
are supported on networks of lines, but the lines are joined into rings to match the
loop topology. Similar structures have been found for coefficients of integrals in gauge
theories with N < 4 supersymmetries [29].

WHAT IS A TWISTOR STRING?

I have been remiss in titling this talk “Twistor String Theory and QCD,” without say-
ing anything yet about what twistor string theory is, or how it is related to the more
phenomenological developments just outlined. In fact, I won’t describe twistor string
theory at any length, but I would like to briefly contrast it with ordinary string theory,
from the perspective of methods for computing gauge theory amplitudes.

An ordinary string is an extended object which moves in space-time. Different phys-
ical vibrations of the string are associated with different particle states. The higher the
harmonic, the more massive the particle; indeed, there is an infinite tower of ultra-heavy
particles, as well as a set of massless ones. One of the massless particles is always the
graviton. Because the one energy scale in gravity is the Planck mass, MP ≈ 1019 GeV,
this sets the scale for the ultra-heavy masses (unless certain extra dimensions happen to
have a large size), as shown in fig. 6(a). Also, the massless spectrum can be relatively
complicated — several gauge groups, matter fields transforming in various ways, and so
on.

In the early 1990s, this type of string theory was adapted by Bern and Kosower
into a tool to compute one-loop QCD amplitudes [30]. It worked pretty well. The



FIGURE 6. (a) Typical spectrum of particles in ordinary string theory. (b) Typical spectrum in (topo-
logical) twistor string theory.

first computations of the helicity amplitudes for four-gluon scattering in QCD used
this technique [30]. (The unpolarized cross sections were computed earlier via more
traditional methods [31].) The five-gluon helicity amplitudes were also computed via
the string-based method [32]. On the other hand, this string theory was not optimized
for QCD calculations. It did not possess all the symmetries of QCD. For example, QCD
is classically conformally invariant (independent of energy scale). But traditional string
theory depends on the scale MP, as reflected in the mass spectrum in fig. 6(a). Related to
this fact, a fair amount of analysis was required to decouple the unwanted massive states
from the loop amplitudes (as well as the massless states not corresponding to QCD).
The analysis would have had to be redone to incorporate external quarks, for example.
In the meantime it was found that “abstracting the lessons” from string theory was often
the most efficient way to proceed. The efficiency of the string-based rules for amplitudes
could be attributed to a background-field quantization of gauge theory [33] and a second-
order formulation for fermions, for instance [34]. These lessons could then be applied
to amplitudes with external quarks, without having to develop the full string-theoretic
machinery [35].

In contrast, the twistor string theory invented by Witten [1] is a topological one,
and the string moves in twistor-space, not the usual space-time. “Topological” means
that the energy of the string only depends on topological information, so that very
few of its degrees of freedom are dynamical. As a result, it does not have a tower
of massive states, only massless ones, as shown in fig. 6(b). Twistor string theory is
conformally invariant, like classical QCD. It makes much more manifest the symmetries
of classical QCD, which include not only conformal invariance, and the secret (N = 4)
supersymmetry mentioned in section , but a full superconformal group containing them.
So, from the point of view of calculating QCD amplitudes, twistor string theory seems
almost designed to do the job.

On the other hand, twistor string theory is still not precisely QCD. It possesses all
the N = 4 superpartners of the gluons, instead of quarks. It also contains gravitons,
but not those of Einstein’s theory of gravity; instead they belong to a non-unitary theory,
conformal supergravity. Both of these properties are not really an issue for computations
of tree-level amplitudes, but they can play havoc with a loop-level description. In fact,
there is no satisfactory one-loop formulation of twistor string theory at present. Once



again, however, from a computational point of view, abstracting the lessons is often the
best.

Even at tree level, such abstraction can be beneficial. Although the MHV n-gluon
amplitudes (2) could be evaluated directly from the twistor string [1], and the six-gluon
non-MHV amplitudes, such as eq. (14), were also produced in this way [36], the MHV
rules [12] have provided a much more efficient method for generic tree amplitudes.
They originated at least in part from abstracting the twistor structure which was found
by studying existing QCD amplitudes. (One could also say, however, that the MHV rules
follow from a different, “disconnected”, prescription for evaluating the relevant twistor-
string contributions.)

ON-SHELL RECURSIVE METHODS

Another process of abstraction and streamlining led, at the beginning of this year, to the
on-shell recursion relations of Britto, Cachazo, Feng and Witten [37, 38]. These relations
are even more efficient, and lead to more compact formulas, than the MHV rules. Also,
they can be proven in a very simple way, using only Cauchy’s theorem and factorization
properties. So it is very easy to extend these relations to more general processes, and
also to apply the same kinds of techniques to the computation of one-loop amplitudes in
QCD.

The path to the on-shell recursion relations was somewhat roundabout, proceeding
through the one-loop amplitudes in N = 4 super-Yang-Mills theory, whose box co-
efficients were sketched in section . These amplitudes have infrared divergences, repre-
sented in dimensional regularization as poles in ε = (4−D)/2. The residues of the poles
have to be proportional to the corresponding tree amplitude. This requirement gave new
formulas for tree amplitudes, in terms of sums of box coefficients [20, 22, 39], which
were more compact than previously-known expressions. Using generalized unitarity,
these formulas could be reinterpreted as quadratic recursion relations [37]

The basic on-shell recursion relation for tree amplitudes reads [37, 38],

Atree
n (1,2, . . . ,n) = ∑

h=±1

n−2

∑
k=2

Atree
k+1(1̂,2, . . . ,k,−K̂−h

1,k )
i

K2
1,k

Atree
n−k+1(K̂

h
1,k,k+1, . . . ,n−1, n̂).

(15)
It is depicted diagrammatically in fig. 7. The amplitude is represented as a sum of
products of lower-point amplitudes, evaluated on shell, but for complex, shifted values
of the momenta (see below). The helicity labels of the n external gluons have been
omitted, but they are the same on the left- and right-hand sides of eq. (15). For the
relation to be valid, the helicities of gluons n and 1 can be (hn,h1) = (−1,1), (1,1),
or (−1,−1), but not (1,−1). There are two sums. The first is over the helicity h of an
intermediate gluon propagating (downward) between the two amplitudes. The second
sum is over an integer k, which labels the different ways the set {1,2, . . . ,n} can be
partitioned into two cyclicly-consecutive sets, each containing at least 3 elements, where
labels 1 and n belong to different sets. A hat on top of a momentum label denotes that
the corresponding momentum is not that of the original n-point amplitude, but is shifted
to a different value.



FIGURE 7. Diagrammatic representation of an on-shell recursion relation for tree amplitudes.

To describe the shifted momenta, first note that, from eq. (4), kµ
i

= σ µ
αα̇λ α

i λ̃ α̇
i is a

massless four-vector because of the antisymmetry of the spinor products,

k2
i = εβαε

α̇β̇
( /ki)

αα̇( /ki)
β̇β = εβαλ α

i λ β
i ε

α̇β̇
λ̃ α̇

i λ̃ β̇
i = −〈i i〉 [i i] = 0 . (16)

It will continue to be massless even if one of the two spinors is shifted so that it is no
longer the complex conjugate of the other spinor, for example

k̂µ
i (σµ)αα̇ = ( /̂ki)αα̇ = (λ̂i)α(λ̃i)α̇ , (17)

where λ̂i is shifted away from λi.
The momentum shift in the kth term in eq. (15) can now be described as,

λ1 → λ̂1 ≡ λ1 + zkλn, λ̃1 → λ̃1,

λn → λn, λ̃n → ˆ̃λ n ≡ λ̃n − zkλ̃1 , (18)

where

zk = −
K2

1,k

〈n−| /K1,k|1−〉
. (19)

This shift keeps /̂k1 = (λ1 + zkλn)λ̃1 and /̂kn = λn(λ̃n − zkλ̃1) massless, as discussed

above. It preserves overall momentum conservation, because /̂k1 + /̂kn = λ1λ̃1 + λnλ̃n =

/k1 + /kn. And the intermediate gluon momentum, defined by /̂K1,k = /K1,k +zkλnλ̃1, is also
massless (on shell), because

K̂2
1,k = ( /K1,k + zkλnλ̃1)

2 = K2
1,k + zk〈n−| /K1,k|1−〉 = 0 . (20)

The derivation of eq. (15) is very simple [38]. The momentum shift (18) is considered
for an arbitrary complex number z, instead of the discrete values zk in eq. (19). This
shift defines an analytic function of z, Atree

n (z). It has poles in z whenever a collection
of the shifted momenta, corresponding to an intermediate state, can go on shell. For



every allowed partition of {1,2, . . . ,n} into {1,2, . . . ,k}∪{k+1, . . . ,n−1,n}, there is a
unique value of z that accomplishes this, zk, because K̂2

1,k(zk) = 0 according to eq. (20).
The desired amplitude is the value of Atree

n (z) at z = 0. Provided that Atree
n (z) → 0 as

z → ∞, this value at z = 0 is determined by Cauchy’s theorem in terms of the residues
of Atree

n (z) at z = zk. Using general factorization properties of tree amplitudes, the kth

residue evaluates to the product found in the kth term in eq. (15). The vanishing of Atree
n (z)

as z → ∞ can be established directly from Feynman diagrams for (hn,h1) = (−1,1) [38].
For the other two valid cases it can be shown using the “MHV rules” [12], or by a
recursive argument [40].

No knowledge of twistor space is needed to implement eq. (15). Its derivation is
heuristically related to twistor space, however, in that spinors, not vectors, play the
fundamental role.

Off-shell recursive approaches to summing Feynman diagrams have a long his-
tory [11, 41]. In the off-shell case, however, the auxiliary lower-point quantities are
gauge-dependent. In on-shell recursion relations, in contrast, they are precisely the de-
sired physical, gauge-invariant, on-shell scattering amplitudes, just with fewer partons.
In short, trees are recycled into trees.

A simple application: Atree
6 (1+,2+,3+,4−,5−,6−)

Let us now work through a simple application of eq. (15) [37]. The first non-
MHV n-gluon amplitudes (taking into account parity) are those with six gluons,
three of positive helicity and three negative. There are three cyclicly-inequivalent
helicity configurations: Atree

6 (1+,2+,3+,4−,5−,6−), Atree
6 (1+,2+,3−,4+,5−,6−),

and Atree
6 (1+,2−,3+,4−,5+,6−). The last of these amplitudes is related to the first

two a “dual Ward identity” (group theory relation) [7]. Here we apply eq. (15) to
Atree

6 (1+,2+,3+,4−,5−,6−). Instead of 220 Feynman diagrams (including all color-
orderings), there are just three potential on-shell recursive diagrams, shown in fig. 8.
Diagrams of the form of fig. 8(a) and fig. 8(c), but with a reversed helicity assign-
ment to the intermediate gluon, vanish because Atree

3 (+,+,+) = Atree
3 (−,−,−) = 0.

Figure 8(b), and the corresponding diagram with a reversed intermediate helicity, both
vanish using eq. (1). Finally, diagram (c) is related to diagram (a) by the “flip” symmetry
(1 ↔ 6,2 ↔ 5,3 ↔ 4) (plus spinor conjugation).

So, remarkably, there is only one independent diagram, fig. 8(a). Its value is given
by the product of two shifted MHV amplitudes, each parity-conjugated with respect to
eq. (2),

D(a) = Atree
3 (1̂+,2+,−K̂−

1,2)
i

K2
1,2

Atree
5 (K̂+

1,2,3
+,4−,5−, 6̂−)

=
−i
s12

[1̂2]
3

[2 K̂1,2] [K̂1,2 1̂]

[K̂1,2 3]
3

[34] [45] [5 6̂] [6̂ K̂1,2]

= i

〈

6−
∣

∣(1+2)
∣

∣3−
〉3

〈61〉〈12〉 [34] [45]s612

〈

2−
∣

∣(6+1)
∣

∣5−
〉 . (21)



FIGURE 8. On-shell recursive diagrams for Atree
6 (1+,2+,3+,4−,5−,6−).

To get the contribution D(c), we add the image of D(a) under the permutation (1↔ 6,2↔
5,3 ↔ 4), combined with spinor conjugation, 〈 〉 ↔ [ ]. The full amplitude is

Atree
6 (1+,2+,3+,4−,5−,6−) = i

[ 〈6−|(1+2)|3−〉3

〈61〉〈12〉 [34] [45]s612〈2−|(6+1)|5−〉

+
〈4−|(5+6)|1−〉3

〈23〉〈34〉 [56] [61]s561〈2−|(6+1)|5−〉

]

. (22)

Let’s compare this representation of the amplitude with the previous one, eq. (14), found
using Feynman diagrams. The second expression is shorter. (Here the difference in
length is minimal; it becomes more striking for seven gluons [10, 20].) It also makes
manifest the square-root collinear behavior in all channels. For example, in the collinear
limit where k3 becomes parallel to k4, eq. (22) has the correct 1/ 〈34〉 and 1/ [34]
behavior manifest; in eq. (14), cancellations between the three terms, each of which
behaves like 1/s34, are required to obtain the proper behavior. On the other hand, eq. (22)
contains a spurious singularity, because 〈2−|(6+1)|5−〉 vanishes when k6 +k1 happens
to be a linear combination of k2 and k5 (use the massless Dirac equation to see this).
The amplitude is perfectly finite in this region, but each term diverges. In numerically
implementing eq. (22), one should take care in this region.

ONE-LOOP AMPLITUDES

Although the MHV and on-shell recursive rules are quite efficient for the analytical
computation of many types of tree amplitudes, and shed a lot of light on their structure,
in the end all one really wants are numerical values. Quite efficient numerical computer
programs have already been developed over the years, based on off-shell recursive
methods [42], which can evaluate QCD tree amplitudes with of order 10 external partons
in a reasonable amount of time. In contrast, the complete set of one-loop helicity
amplitudes is not known for any pure QCD process with greater than five external legs.
There are similar bottlenecks for processes in which a few electroweak vector bosons are



produced in addition to multiple QCD partons. So it is of great interest to see whether
new methods can be developed for one-loop QCD amplitudes.

The method used to prove the tree-level on-shell recursion relations [38] — shifting
a pair of momenta by a complex amount, while keeping them on shell — is particularly
promising in this regard, because it efficiently incorporates the known factorization of
amplitudes onto collinear and multi-particle poles. Indeed, the same techniques can
be adopted at one loop, in order to determine the rational (non-logarithmic) parts of
amplitudes, once the parts containing branch cuts (logarithms, polylogarithms, etc.)
have been determined by other means — for example, using unitarity, as mentioned in
section . Recently, all the one-loop n-gluon helicity amplitudes in QCD with up to two
(adjacent) negative-helicity gluons, and an arbitrary number of positive helicity ones,
have been produced (or reproduced) in this way [43, 44]. The amplitudes having n− = 0
or 1 are quite special, because they vanish at tree-level (eq. (1)). They have no infrared or
ultraviolet divergences, and there are no branch cuts at all. Also, they were known from
previous work [45, 41]. They have a purely recursive representation, whose construction
involved a few assumptions, which could be cross-checked by comparing to the previous
results [43].

The series of amplitudes A1−loop
n (1−,2−,3+,4+, . . . ,n+), with two adjacent negative

helicities, have branch cuts as well as infrared and ultraviolet divergences. The branch
cuts were determined a decade ago, using unitarity [46]. The rational parts can now
be constructed recursively [44]. In addition to a set of recursive diagrams, much like
the tree-level formula (15), there are certain “overlap” diagrams, which perform book-
keeping with respect to certain rational-function terms which naturally accompany the
logarithmic terms. There are relatively few diagrams to evaluate. For the rational part of
A1−loop

6
(1−,2−,3+,4+,5+,6+), for example, there are four nonvanishing recursive dia-

grams and three nonvanishing overlap diagrams. The evaluation of each diagram is com-
pletely algebraic; no loop integrations are required. In contrast, the number of one-loop
6-gluon Feynman diagrams in QCD is 10,680, each of which requires a loop integration.

CONCLUSIONS

Several new methods for computing gauge theory scattering amplitudes relevant for
LHC physics have been developed over the last year or two, with a strong stimulation
from twistor string theory. After some abstraction and streamlining, however, many of
these methods actually bear a close resemblance to the bootstrap program developed
in the 1960s. In a bootstrap, scattering amplitudes are reconstructed directly from their
analytic properties, without the need for a Lagrangian [47, 25]. While this program has
proven difficult, if not impossible, to carry out in full nonperturbative generality in a
strongly-coupled four-dimensional field theory, in the context of perturbation theory
much more information is available to assist it. The (factorization) poles of amplitudes
are dictated by amplitudes with fewer legs, while the (unitarity) cuts are dictated by
products of amplitudes with fewer loops. Tree-level on-shell recursion relations, for
example, are a very convenient way of systematically incorporating the factorization
data. The use of analyticity fell somewhat out of favor in the the 1970s, with the rise
of a Lagrangian (QCD) for the strong interactions. Ironically, it now proves useful to



resurrect analyticity, and a perturbative bootstrap, as a tool for computing complicated
QCD amplitudes — for which a direct Lagrangian approach, that is, using Feynman
rules, can be very cumbersome.

To date, the “practical” spinoffs from twistor-inspired methods have been primarily
for tree amplitudes (which can also be obtained by other, numerical methods), and
for loop amplitudes in supersymmetric theories. But recently, new one-loop helicity
amplitudes in full QCD have begun to fall to these methods, suggesting that soon there
will be direct phenomenological applications. In addition, the recent rapid progress in
developing new computational approaches along these lines is very likely to continue.
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