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Abstract Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon

in astrophysics. This work is a preliminary attempt to analyze this phenomenon using the standard tools

developed in accelerator physics. By applying this analysis, it is found that a stable nonrotating galaxy

would become unstable if its size exceeds a certain limit that depends on its mass density.

1 Introduction

There are some notable examples in the past when

developments in astrophysics later are found to be

profoundly connected to important topics in acceler-

ator physics. Two major topics in accelerator physics

has been nonlinear dynamics and collective effects.

It turns out that each of these topics has its origin

traced back to astrophysics.

In nonlinear dynamics, Henri Poincaré (1854-

1912) was believed to be the first person who noted

the behavior of nonlinear dynamical chaos. In 1887,

he entered a contest sponsored by the king of Swe-

den and Norway, and the problem was to prove that

the solar system (as a 3-body system) was dynami-

cally stable. He did not succeed in proving it, but his

work won the prize anyway. Poincaré was also the

person who introduced the Poincareé section, which

accelerator physicists today use everyday. In fact,

what a beam position monitor detects in a circular

accelerator is a special case of Poincaré section. Dy-

namic aperture and chaotic motion are also typically

observed as Poincaré sections (this time on a com-

puter printout), and have become daily language of

nonlinear dynamists in accelerator physics.

In collective effects, one notable preview was

the impressive work by James Clerk Maxwell (1831-

1879). In 1857, Maxwell also won a prize – the Adams

Prize – when he proved analytically that the Saturn

rings can not be stable unless they consisted of many

small solid satellites instead of a single solid piece.

Today, we call this mechanism of Maxwell “negative

mass instability” in accelerator physics.

Following these pioneering founders, one might

ask if today, after years of evolution, might there be

some studies that the accelerator physicists have de-

veloped, and that can be applied to astrophysics in

return. One such attempt is ventured in this paper.

We will try to apply modern accelerator techniques to

the well-known problem of a gravitational instability

of a nonrotating galaxy.

Consider a distribution of stars in a galaxy de-

scribed by a distribution density ρ(~x,~v, t) in the phase

space (~x,~v) at time t. We wish to analyze the stabil-

ity of this distribution of stars under the influence

of their collective gravitational force. To simplify

the problem, we will use a flat Euclidean space-time

and will consider Newtonian, nonrelativistic dynam-

ics only. In other words, we ignore both the special

theory and the general theory of relativity. The in-

stability thus does not assume a specific cosmological

model other than Newtonian gravity. If this approach

turns out fruitful, a large arsenal of analysis tools can

be transported from accelerator physics to this and

other problems in astrophysics.

The instability we are interested in is self-

generated, i.e. it occurs spontaneously. In particular,

it does not require an initial “seed” fluctuation at the
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birth of the galaxy. The instability growth pattern as

well as its rate of growth are intrinsic properties of the

system. This gravitational instability is a well-known

problem; its first analysis appeared almost a century

ago [1]. What we do in the following is to treat the

same problem using the standard techniques devel-

oped in the study of collective instabilities in circular

accelerators[2].

2 Dispersion Relation

Consider a particular star in the galaxy. The

equations of motion of this star are

~̇x = ~v

~̇v = G

∫
d~v′

∫
d~x′

ρ(~x′,~v′, t)(~x′−~x)
|~x′−~x|3 (1)

where G is the gravitational constant. Note that

these equations do not depend on the mass of the

star under consideration.

Evolution of ρ is described by the Vlasov equation
[3]

∂ρ

∂t
+

∂ρ

∂~x
·~̇x+

∂ρ

∂~v
·~̇v

=
∂ρ

∂t
+

∂ρ

∂~x
·~v+

∂ρ

∂~v
·G

∫
d~v′

∫
d~x′

ρ(~x′,~v′,t)(~x′−~x)
|~x′−~x|3

= 0 (2)

To examine the stability of the system, let the

galaxy distribution be given by an unperturbed dis-

tribution ρ0 plus some small perturbation. Let the

unperturbed distribution ρ0 depend only on ~v,

ρ0 = ρ0(~v) (3)

This unperturbed distribution is uniform in ~x, i.e. it

is uniform in the infinite 3-D space. The function

ρ0(~v) is so far unrestricted.

We will allow the small perturbation around ρ0

to depend on t and in ~x although the unperturbed

distribution ρ0 has been assumed not to depend on t

or in ~x. We Fourier decompose the perturbation and

write

ρ(~x,~v, t)= ρ0(~v)+∆ρ(~v)e−iωt+i~k·~x (4)

where ~k is the wavenumber vector and ω is the an-

gular oscillation frequency of the perturbation. We

anticipate that for a given ~k, there will be a specific

oscillation frequency ω. In general, ~k is considered to

be real, but for a given ~k, the corresponding ω can

be complex. With the time dependence of the per-

turbation given by ∼ e−iωt, we see that the imaginery

part of ω is the instability growth rate (growth rate if

Im(ω) > 0, damping rate if Im(ω) < 0). The quantity

∆ρ is considered to be infinetisimal compared with

ρ0.

Substituting Eq.(4) into Eq.(2) and keeping only

first order in ∆ρ yield

−i(ω−~v ·~k)∆ρ(~v)

+G

(∫
d~v′∆ρ(~v′)

)
∂ρ0(~v)

∂~v
·~q(~k)= 0 (5)

where

~q(~k)≡
∫

d~x′
ei~k·(~x′−~x)(~x′−~x)

|~x′−~x|3 =
∫

d~y
ei~k·~y ~y

|~y|3 (6)

is a well-defined quantity depending only on ~k; it is

the Fourier transform of the Newton kernel ~x/|~x|3,
and might be called the graviton propagator follow-

ing a terminology in quantum field theory. In fact,

aside from the singularity at the origin ~k =~0, it can

be shown that

~q(~k)=
4πi

|~k|2
~k (7)

In accelerator physics, the Newton kernel ~x/|~x|3
stands for the wake function while its Fourier trans-

form ~q stands for the impedance.

Eq.(5) can be rewritten as

∆ρ(~v)=−iG

(∫
d~v′∆ρ(~v′)

) ∂ρ0(~v)

∂~v
·~q(~k)

ω−~v ·~k
(8)

Integrating both sides over ~v and canceling out the

mutual factor of
∫

d~v′∆ρ(~v′) then gives a dispersion

relation that must be satisfied by ω and ~k,

1=−iG

∫
d~v

∂ρ0(~v)

∂~v
·~q(~k)

ω−~v ·~k
(9)

Given ρ0(~v), we solve this dispersion relation for ω as

a function of ~k. This solution is then used to find the

most unstable pattern of perturbation and its corre-

sponding growth rate will be described next.

3 Uniform Isotropic Galaxy

We next consider an unperturbed distribution

that depends only on the magnitude of ~v, i.e., let

ρ0 = ρ0(|~v|2) (10)

which gives
∂ρ0

∂~v
=2~vρ′0(|~v|2) (11)



This is the case of a uniform isotropic (uniform in ~x,

isotropic in ~v) galaxy. Normalization condition is
∫ ∞

0

4πv2dvρ0(v2) = ρm (12)

= mass density of

stars per unit volume

Substituting Eqs.(7) and (11) into Eq.(9) then

gives

1=
8πG

|~k|2
∫

d~vρ′0(|~v|2)
~v ·~k

ω−~v ·~k
(13)

Let ~k = (0,0,k), and choose coordinates so that

~v = v(sinθ cosφ,sinθ sinφ,cosθ), Eq.(13) becomes,

with a change of variable u =cosθ,

1=
16π2G

k

∫ ∞

0

v3dvρ′0(v
2)

∫ 1

−1

du
u

ω−kvu
(14)

One must refrain from performing the integration

over u at this time because that integral involves

a singularity. Proper treatment of the singularity

follows the standard technique used in accelerator

physics (and plasma physics) on Landau damping
[4]. Omitting the details, the treatment amounts to

adding an infinitesimal positive imaginary part to ω,

i.e. ω→ω+ iε,

I(ω,kv) ≡
∫ 1

−1

du
u

ω−kvu
→

∫ 1

−1

du
u

ω+ iε−kvu

= P.V.

∫ 1

−1

du
u

ω−kvu
− iπω

k2v2
H

(
1−

∣∣∣ ω

kv

∣∣∣
)

= − 2
kv
− ω

k2v2
ln

∣∣∣∣
ω−kv

ω+kv

∣∣∣∣−
iπω

k2v2
H

(
1−

∣∣∣ ω

kv

∣∣∣
)

(15)

where P.V. means taking the principal value of the

integral, and H(x) = 1 for x > 0 and 0 for x < 0 is

the step function. By taking P.V., the singularity is

avoided in a well-defined manner.

To be specific, we next take a uniform distribution

of ρ0 (uniform in ~x, isotropic in ~v, and ρ is constant

up to v0),

ρ0(v2)=





3ρm

4πv3
0

if v2 <v2
0

0 otherwise
(16)

This distribution is called the “waterbag model” in

accelerator physics. The quantity v2
0 is related to the

“temperature” of the stars. Substituting Eq.(16) into

Eq.(14) gives the dispersion relation

λ =
1

2+x ln
∣∣∣x−1

x+1

∣∣∣+ iπxH(1−|x|)
(17)

where

λ =
6πGρm

k2v2
0

and x=
ω

kv0

(18)

In accelerator physics, λ is replaced by the

impedance. One simplification for the gravitational

instability is that λ is a real quantity, while the

impedance is complex in general.

4 Stability Condition

We next need to compute the instability growth

rate, which is given by the imaginary part of ω, as a

function of k. The star distribution ρ0(~v) would be

unstable if, for any ~k, its corresponding ω is complex

with a positive imaginary part. We need to compute

x as a function of λ using Eq.(17) in order to obtain ω

as a function of k. Unfortunately Eq.(17) gives λ as a

function of x, and its inversion to give x as a function

of λ is difficult. Here we apply another technique of

accelerator physics as follows.

In general x is complex, but at the edge of insta-

bility, x is real. The edge of stability can therefore be

seen by plotting the RHS of Eq.(17) as x is scanned

along the real axis from −∞ to ∞. Fig.1 shows the

real and imaginary parts of the RHS of Eq.(17) in

such a scan. The horizontal and vertical axes are

the real and imaginary parts of the RHS of Eq.(17)

respectively. As x is scanned from −∞ to ∞, the

RHS of Eq.(17) traces out a cherry-shaped diagram,

including the “stem” of the cherry running from −∞
to 0 along the real axis. If λ lies inside this cherry

diagram (including the stem), the galaxy distribution

is stable. Since λ is necessarily real and positive, the

stability condition therefore reads

λ<
1
2

(19)



-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 1 Stability diagram for the galaxy distribution.

Eq.(19) indicates that a hot universe (high tempera-

ture, i.e. large v0) is more stable than a cold universe.

This is expected due to the Landau damping mechanism.

It also indicates that the star distribution is unstable for

long-wavelength perturbations (small k). The threshold

wavelength is given by

xth =
2π

kth
(20)

where

kth =

√
12πGρm

v0
(21)

Perturbations with wavelength longer than xth are unsta-

ble. One might expect that the galaxy will have a dimen-

sion of the order of xth because if the galaxy had a larger

dimension, it would have broken up due to the instability

until it is reduced to the stable size.

5 Spontaneous Gravitational Instabil-

ity

When λ > 1/2, ω will be complex. The instability

growth rate is determined by the imaginary part of ω,

τ−1 =Im(ω) (22)

We need to modify Eq.(17) slightly for complex ω. In the

unstable region, let

ω

kv0
= x+ iy, (y > 0) (23)

Eq.(17) reads

1

λ
= 2+

�
x+ iy

2

�
ln

�
(x−1)2 +y2

(x+1)2 +y2

�
(24)

+ (ix−y)

�
tan−1

�
x+1

y

�
−tan−1

�
x−1

y

��

When y→ 0+, we obtain Eq.(17) as it should.

We will need to solve Eq.(24) for x and y for given

λ > 1
2
. It turns out that in this range there is always one

solution with purely imaginary ω, i.e. x =0, and therefore

λ =
1

2−2y tan−1
�

1
y

� (25)

or, written out explicitly,

6πGρm

k2v2
0

=
1

2− 2τ−1

kv0
tan−1

�
kv0
τ−1

� (26)

We need to find τ−1 as a function of k. To do so, we first

scale the variables by

u =
kv0√

6πGρm

, v =
τ−1

√
6πGρm

(27)

and then
1

u2
=

1

2−2
�

v
u

�
tan−1

�
u
v

� (28)

Fig.2 shows the result.
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Figure 2 v vs u according to Eq.(28).

As seen from Fig.2, the growth rate vanishes (v = 0)

when u =
√

2, corresponding to λ = 1/2, i.e. at the sta-

bility boundary. This is of course expected. Fig.2 also

shows that instability occurs fastest for small u, i.e. small

k and large wavelength of the perturbation. The growth

rate is maximum at u =0 with v =
p

2/3. This means the

maximum growth rate occurs for perturbation of infinite

wavelength, and is given by

(τ−1)max =
p

4πGρm (29)

Note that the growth rate is independent of v0, even

though that for instability, there is still the condition

λ > 1/2, which does depend on v0 and can be cast into

the form (see Eq.(21))

k <

√
3

v0
(τ−1)max (30)



The fastest instability corresponds to k = 0, or an insta-

bility of infinite wavelength.∗

According to Eq.(30), all stable galaxies must have a

dimension smaller than a critical value, i.e.

galaxy dimension <
2πv0√

12πGρm

(31)

The stability is provided through Landau damping. When

the temperature v0 → 0, no galaxies can be stable.

Eqs.(29) and (31) are our main results.

6 Numerical Estimates

For a numerical application, we take estimates from

the Milky Way,

ρm = 2×10−23 g/cm3

v0 = 200 km/s

We obtain a maximum growth time of τmax =7×106 years

for perturbations with very large wavelengths. For sta-

bility, the galaxy dimension must be smaller than 14000

light-years, which seems to be consistent with the size of

the Milky Way.

7 Discussions

• The case studied so far is that of a galaxy with uni-

form distribution of stars. One direction of gener-

alization is to consider galaxies with a finite extent.

One attempt was made in
[5]

. It is found that a

spherically symmetric distribution of the Haissin-

ski type
[6]

(potential-well distortion in accelerator

physics) does not exist.

• An attempt to extend to a planar galaxy, still non-

rotating, had also been made in
[5]

. The unper-

turbed Haissinski distribution does exist. However,

this planar distribution is found to be always stable

against perturbations that do not involve transverse

structures. Any instability of the planar galaxy will

therefore have to have a sufficiently complex pat-

tern.

• It is conceivable that the same analysis can be ap-

plied to the dynamics of galaxies in a galaxy cluster,

instead of stars in a galaxy. In that case, ρ(~x,~v, t)

describes the distribution of galaxies in the galaxy

cluster. We might then take the corresponding nu-

merical values

ρm = 10−31 g/cm3

v0 = 1000 km/s

We obtain a growth time of τmax = 1×1011 years.

The galaxy cluster dimension should be smaller

than 1×109 light-years. These values do not seem

to be unreasonable.

• For more detailed applications, we will have to in-

clude the rotation of the galaxy into the analysis.

The unperturbed distribution will then involve also

the angular momentum. The analysis will be more

involved.

• Still further extensions might include the special

relativity and general relativity to replace Newto-

nian gravity and to avoid the action-at-a-distance

problem.
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