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Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum
mechanical Hamiltonians that are widely believed not to be solvable by such methods. The novel feature of
adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a
perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. In this talk
I will introduce the method in the context of the pure anharmonic oscillator and then apply it to the case of
tunneling between symmetric minima. After that, I will show how this method can be applied to field theory.
In that discussion I will show how one can non-perturbatively extract the structure of mass, wavefunction and
coupling constant renormalization.

1. Introduction

To avoid controversy I have titled this talk
Adaptive Perturbation Theory , but I could have
equally well called it Non-Perturbative Perturba-
tion Theory (except that I was told people would
dismiss it as crazy). Actually I hope you will
agree by the end of the talk that such a title would
have been eminently defensible.

2. Two Topics

This talk is divided into two parts. First I in-
troduce the general ideas within the framework of
ordinary quantum mechanics. Next, I show how
to extend these ideas to the case of scalar field
theory in any number of space-time dimensions.
I will begin the quantum mechanics discussion by
talking about the pure anharmonic oscillator and
then extend this discussion to cover the anhar-
monic oscillator with either a positive or negative
mass term.

The theory of an anharmonic oscillator with
a positive mass term has a rich literature. The
various authors usually attempt to resum the
ordinary perturbation expansion to obtain the
non-perturbative behavior. I will show that one
∗This work was supported by the U. S. DOE, Contract
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can avoid such complication by exhibiting a con-
vergent perturbation expansion for each eigen-
state of the Hamiltonian. An expansion that,
moveover, captures all non-perturbative features
of the problem in zeroth order. The case of the
anharmonic oscillator with a negative mass term
will allow me to extend the simplest adaptive
technique to handle the case of tunneling between
symmetric minima. In this talk I will not discuss
the case of tunneling between very asymmetric
minima, however this topic is covered in the paper
to appear on this work.

3. The Harmonic Oscillator

Let me begin by reminding you of a some sim-
ple facts pertaining to the ordinary harmonic os-
cillator. The Hamiltonian of the ordinary har-
monic oscillator is:

H =
1

2m
p2 +

mω2

2
x2, where [p, x] = −i. (1)

Next, let me introduce γ-dependent operators A†γ
and Aγ by

x =
1√
2γ

(
A†γ + Aγ

)
,

p = i

√
γ

2
(
A†γ −Aγ

)
. (2)
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Substituting this into Eq. 1 yields

H =
γ

4 m

(
−A†γ

2 −Aγ
2 + 2 A†γAγ + 1

)

+
mω2

4 γ

(
A†γ

2
+ Aγ

2 + 2 A†γAγ + 1
)

. (3)

It is customary to choose γ = m ω so as to cancel
the terms A†γ

2 and Aγ
2 and render the Hamil-

tonian diagonal in the number operator. This
immediately tells us that the eigenstates of the
Hamiltonian are the eigenstates of the number
operator and that the energies of these states are
given by En = (n + 1/2) ω.

4. The Anharmonic Oscillator

In the case of the general anharmonic oscillator
the Hamiltonian is

H =
1
2

p2 +
mω2

2
x2 +

1
6

λx4. (4)

The customary way to deal with this problem is
two introduce annihilation and creation operators
chosen to diagonalize the first two terms and then
construct a perturbation theory based upon ex-
panding in the coupling λ. This approach has a
well known problem; namely, it is known to di-
verge, no matter how small λ, due to n! growth
of the perturbation series. I will now show how to
avoid this problem and produce a rapidly conver-
gent adaptive perturbation theory expansion for
each eigenstate and eigenvalue of H. To empha-
size that this is not an expansion in λ I will begin
by specializing to the case m = 0.

Setting m = 0 in Eq. 4 and making the substi-
tution for x and p given in Eq. 2, leads to

H =
γ

4

(
−A†γ

2 −Aγ
2 + 2 A†γAγ + 1

)

+
λ

4γ2

(
A†γ

2
Aγ

2 + 2A†γAγ + 1 +
1
6
(A†γ

4
+ Aγ

4)

+
2
3

( A†γ
3
Aγ + A†γAγ

3) + (A†γ
2

+ Aγ
2)

)

=
(γ

4
+

λ

4γ2

)
(2Nγ + 1) +

λ

4γ2
Nγ (Nγ − 1)

+
(γ

4
− λ

2γ2

)
(A†γ

2
+ Aγ

2)

+
λ

4γ2

(
1
6
(A†γ

4
+ Aγ

4) +
2
3
(A†γ

3
Aγ + A†γAγ

3)
)

,

(5)

where I have defined the γ-dependent number op-
erator

Nγ = A†γAγ . (6)

Given this expression I define the γ-dependent
unperturbed Hamiltonian, H0 and the perturba-
tion V by

H = H0(γ) + V (γ),

H0(γ) =
(

γ

4
+

λ

4γ2

)
(2 Nγ + 1) +

λNγ(Nγ − 1)
4γ2

,

V (γ) =
(

γ

4
− λ

2γ2

)
(A†γ

2
+ Aγ

2)

+
λ

4γ2

(
1
6

(A†γ
4

+ Aγ
4) +

2
3
(A†γ

3
Aγ + A†γAγ

3)
)

.

(7)

Now, since I have a different perturbation theory
defined for each choice of γ, I need a principle for
fixing γ. This is where the adaptive comes into
adaptive perturbation theory. The key notion is
that I will use a simple variational calculation,
adapted to the eigenvalue to be calculated, in or-
der to pick that value of γ that gives the most
convergent perturbation expansion.

To set up this variational calculation I first de-
fine a γ-dependent family of Fock-states, |Nγ〉.
The γ-dependent vacuum state, |0γ〉, is defined
by the condition

Aγ |0γ〉 = 0, (8)

and the γ-dependent n-particle state, i.e., the
state for which

Nγ |nγ〉 = n|nγ〉, (9)

is just

|nγ〉 =
1√
n!

A†γ
n|0γ〉. (10)

The value of γ used to define the adaptive per-
turbation theory for the nth level of the anhar-
monic oscillator is determined by requiring that
it minimize the expectation value

En(γ) = 〈nγ |H|nγ〉. (11)
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Eqs. 7-7 show that this expectation value is equal
to

En(γ) = 〈nγ |H0(γ)|nγ〉 =
(

γ

4
+

λ

4γ2

)
(2n + 1)

+
λ

4γ2
n (n− 1). (12)

Minimizing En(γ) with respect to γ gives

γ = λ1/3

(
2 (n2 + n + 1)

2n + 1

)1/3

. (13)

At this point I substitute this value into Eq. 11
to obtain

En(γ)min =
3
8

λ1/3 (2n + 1)2/3 (
2n2 + 2(n + 1)

)1/3

(14)

which, for large n, behaves as λ1/3 n4/3 , which is
the correct answer.

The fact that all energies scale as λ1/3 is an
easily obtained exact result and so, the non-trivial
part of variational computation is the derivation
of the dependence of the energy on n. To see why
all energies are proportional to λ1/3 it suffices to
make the following canonical transformation

x → x

λ1/6
; p → λ1/6p. (15)

In terms of these operators, the Hamiltonian of
the pure anharmonic oscillator becomes

Table 1
A comparison of the zeroth order and second or-
der perturbation results, for the energy of the nth

level of the pure anharmonic oscillator, to the ex-
act answer for λ = 1 and widely varying values of
n.

λ n Variational 2nd Order Perturbation Exact Variational % Err Perturbative % Error
1.0 0 0.375 0.3712 0.3676 0.02 0.0098
1.0 1 1.334 1.3195 1.3173 0.01 0.0017
1.0 10 17.257 17.508 17.4228 -0.009 0.0049
1.0 40 104.317 105.888 105.360 -0.009 0.0050

H = λ1/3

(
1
2
p2 +

1
6
x4

)
, (16)

thus proving the claim. A comparison of the vari-
ational computation and the result of a second-
order perturbation theory for λ = 1 and widely
differing values of n is given in Table 1. As ad-
vertised, we see that the adaptive perturbation
theory for each level converges rapidly, indepen-
dent of λ and n.

Obviously, the same method can be used to
study the case where m2 > 0, except that now
one has to solve a cubic equation to determine γ
as a function of λ,m2 and n. The general result
that for each n, second order perturbation theory
is accurate to better than one percent still holds
true.

4.1. What does this have to do with quasi-
particles?

An interesting corollary to the adaptive per-
turbation theory technique is that it provides an
explicit realization of the quasi-particle picture
underlying much of many-body theory. What we
have shown is that no matter how large the un-
derlying coupling, the physics of the states near
a given n0-particle state can be accurately de-
scribed in terms of perturbatively coupled eigen-
states of an appropriately chosen harmonic oscil-
lator. Of course, as we have seen, the appropri-
ately chosen harmonic oscillator picture changes
as n0 changes. Furthermore, the perturbatively
coupled states |nγ(n0)〉, for n ≈ n0, correspond to
states containing an infinite number of particles,
if we choose as a basis those states that corre-
spond to a significantly different value of n0.
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5. The Double Well

The most general negative mass version of the
anharmonic oscillator can, up to an irrelevant
constant, be written as:

H =
1
2

p2 +
1
6

λ
(
x2 − f2

)2
. (17)

Clearly, for a non-vanishing value of f2, this po-
tential has two minima located at x = ±f . Thus,
we would expect that the best gaussian approx-
imation to the ground state of this system can’t
be a gaussian centered at the origin; classical in-
tuition would imply that it is a gaussian centered
about another point, x = c. In other words, if
|0γ〉 is a state centered at x = 0, it is better to
adopt a trial state of the form

|c, γ〉 = e−icp |0γ〉. (18)

Since

eicp x e−icp = x + c, (19)

computing the expectation value of the Hamil-
tonian, Eq. 17, in the state specified in Eq. 18, is
the same as computing the expectation value of
the Hamiltonian obtained by replacing the oper-
ator x by x+ c, in the state |0γ〉. In the language
of the previous sections, this is equivalent to in-
troducing the annihilation and creation operators
A†γ and Aγ as follows:

x =
1√
2γ

(
A†γ + Aγ

)
+ c,

p = i

√
γ

2
(
A†γ −Aγ

)
. (20)

The expectation value of this Hamiltonian in the
state |0γ〉 is

E(c, γ) =
(

γ

4
+

λf4

6
− λf2c2

3
+

λc4

6
+

λc2

2γ

+
λ

8γ2
− λf2

6γ

)
, (21)

which should be minimized with respect to both
γ and c in order to define the starting point of
the adaptive perturbation theory computation.

To see what these equations tell us, it is con-
venient to hold c fixed and solve for the value

of γ that minimizes E(γ, c); call this γ(c), and
then plot E(γ(c), c) for various values of λ and f2.
Three such plots are shown in Fig. 1. The first
plot is for a value of f which is large enough so
that the lowest energy is obtained for a gaussian
shifted either to the right or left by the amount
c = ±cmin. While there is a local minimum at
c = 0 it has a higher energy than the shifted
states. Things change as one lowers the value
of f . Thus, the second plot shows that for lower
f the shifted wavefunctions and the one centered
at zero are essentially degenerate in energy. For a
slightly smaller value of f things reverse and the
unshifted wavefunction has a lower energy than
the shifted ones.
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0.8

0.805

0.81
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0.82

E
(c

)
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Figure 1. Effective potential as a function of
c, showing two degenerate local minima at c =
±cmin and one minimum at c = 0. The three
plots are for λ = 1 and different values of f and
show how the minimum at c = 0 changes from
lying higher than the minima at c = ±cmin to be-
ing the global minimum. If this were field theory
this would be characteristic of a first order phase
transition.

While, there would seem to be nothing wrong
with the situation shown in Fig. 1, it is problem-
atic when one applies the same sort of analysis to
negative mass φ4 field theory in 1+1-dimensions.
In this case, if one were to add a term like Jφ
to the Hamiltonian, this result would imply the
existence of a first order phase transition when J
reached some finite value. At this point the ex-
pectation value of φ in the ground-state would
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jump discontinuously from zero to a non-zero
value. It has been rigorously shown that such
a first order phase transition at a non-vanishing
value of J cannot occur[4].

6. Doing Better

Clearly, to do better, it is necessary to do some-
thing different. The solution is remarkably sim-
ple. The trick is to take advantage of the fact
that H contains a term linear in A†γ and Aγ .

H =
γ

4
− λf2

6γ
+

λf4

6
+

λ

8γ2
− λf2c2

3

+
λc2

2γ
+

λc4

6
+

[
γ

2
+

λ

2γ2
+

λ(3 c2 − f2)
3γ

]
Nγ

+
λ

4γ2
Nγ(Nγ − 1)

+

[√
2λ c (c2 − f2)

3
√

γ

]
(A† +A)

(22)

To do this introduce a trial state of the form.

ψ(γ, c, α) = eicp (cos(α) |0γ〉+ sin(α) |1γ〉) . (23)

Varying over α is the same as minimizing the 2×2
Hamiltonian of the zero and one particle states for
fixed γ. Then, having done this, minimize over γ
and c. The typical result is seen in Fig. 2, where,
as you can see, the minimum at c = 0 has all but
disappeared.

7. Large n

For larger values of n, things change, even for
f À 0. Generically, what happens is that as n
grows cmin tends to zero, but doesn’t quite get
there. Thus, as for the case n = 0, there are still
two degenerate minima corresponding to equal
and opposite values of cmin and so it is possible
to lower the energy by forming the states

|ψeven〉 = eicp (cos(α) |nγ〉+ sin(α) |n + 1γ〉)
+ e−icp (cos(α) |nγ〉 − sin(α) |n + 1γ〉)

(24)

and

|ψodd〉 = eicp (cos(α) |nγ〉+ sin(α) |n + 1γ〉)

Figure 2. Effective potential as a function o f c,
one global minimum.

− e−icp (cos(α) |nγ〉 − sin(α) |n + 1γ〉) .

(25)

The result of such a computation is to show that
as n grows the splitting between these states
grows. Eventually, no matter what value is as-
signed to f (so long as it is finite) there is a value
of n for which the splitting between the states
|ψeven〉 and |ψodd〉 becomes of order unity. This
is the point at which it makes no sense to talk
about tunneling between states defined on one or
the other side of the potential barrier.

8. Applying It To Field Theory

For the purpose of this talk I will limit my
discussion to the case of φ4-field theory whose
Hamiltonian is

H=
∫

dnx

[
1
2
Πφ(x)2 +

1
2

(∇φ(x))2 +
λ

6
φ(x)4

]
.

(26)
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It is customary to rewrite the operators φ(x) and
Πφ(x) in terms of their Fourier transforms; i.e.

φ(~k) =
1√
V

∫
dnxe−i~k·~xφ(x),

Πφ(~k) =
1√
V

∫
dnxe−i~k·~xΠφ(x), (27)

where V stands for the volume of the system. (I
have assumed the system is in a finite volume so
that the momenta become discrete and the oper-
ators become well defined.)

This Hamiltonian can be rewritten in terms of
these momentum space operators as

H =
∑

~k

[
Πφ(−~k)Πφ(~k)

2
+

(~k2 + m2)
2

φ(~k)φ(−~k)

]

+
λ

6
1
V

∑

~ki

φ(~k1) φ(~k2)φ(~k3)φ(~k4)δ(
4∑

i=1

~ki).

(28)

To define the adaptive perturbation theory cal-
culation I introduce γ(k)-dependent annihilation
and creations operators as follows,

φ(~k) = i

√
γ(~k)

2
(A(−~k)† −A(~k))

Π(~k) =
(A(−~k)† +A(~k))√

2 γ(~k)
, (29)

The vacuum state associated with this choice of
γ(~k)’s,

|vac〉 =
∏

k

|0γ(k)〉, (30)

is defined by the condition that it be annihilated
by all the A(~k)’s.

As in the simpler example I determine the
γ(k)’s by minimizing the vacuum expectation
value of the Hamiltonian in this trial state. It fol-
lows directly from these definitions that the func-
tion to be minimized is

〈vac|H |vac〉=
∑

k

[
γ(~k)

4
+

(~k · ~k + m2)

4 γ(~k)

]

+
λ

4V


∑

~k

1

γ(~k)




2

. (31)

Obviously, if the range of the momenta appear-
ing in these sums is unrestricted, these expres-
sions diverge. It is customary to deal with this
problem, in the context of ordinary perturbation
theory, by regulating the integrals and adding
counterterms to the Lagrangian to cancel diver-
gences. Since I wish to discuss this theory non-
perturbatively, I will adopt a different strategy.
I will render the theory well defined by restrict-
ing the operators φ(~k) and Πφ(~k) to be finite in
number. This can be accomplished in a variety of
ways, but all amount to restricting the range of
~k’s which appear in the Fourier transform.

Minimizing Eq. 31 with respect to each γ(~k)
yields

γ(k)2 = ~k · ~k + m2 + 2 λ


 1

V

∑

~k′

1

γ(~k′)


 . (32)

In particular, the equation for ~k = 0 is

γ(0)2 = m2 + 2 λ


 1

V

∑

~k′

1

γ(~k′)


 , (33)

which can be substituted into Eq. 32 to give

γ(~k)2 = ~k · ~k + γ(0)2. (34)

If we use this to rewrite the equation for γ(0), it
becomes the non-perturbative equation

γ(0)2 = m2 + 2 λ
1
V

∑

~k′

1√
(~k′)2 + γ(0)2

. (35)

Taking V to infinity and converting the sum over
~k to an integral, we obtain an equation which is
reminiscent of the Nambu Jona-Lasinio equation.

γ(0)2 −m2 =
(2λ)2p

(2π)p

∫ Λ

0

kp−1dk
1√

~k · ~k + γ(0)2
.

(36)

In fact Eq. 36 should not be thought of as an
equation for γ(0), but rather as an equation for
m2; i.e., it should be rewritten as

m2 = γ(0)2− (2λ)2p

(2π)p

∫ Λ

0

kp−1dk
1√

~k · ~k + γ(0)2
.

(37)
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This shows that for any arbitrarily chosen value
of γ(0), this equation determines the value of
m2 for which the chosen value of γ(0) will min-
imize the ground state energy density. This is,
of course, nothing but a non-perturbative way
of determining the leading mass renormalization
counter term.

9. Wavefunction Renormalization

To this point I have shown how a simple vari-
ational calculation captures the general notion of
mass renormalization in a non-perturbative man-
ner. I now wish to briefly describe what one has
to do to capture wavefunction and coupling con-
stant renormalization. The trick is to proceed
as in the double well problem and generalize the
trial state to include the effects of the A†4 and A4

terms which appear in the normal ordered Hamil-
tonian; i.e. terms of the form

∑

k1,k2,k3

1
4

√
γ(k1) γ(k2) γ(k3) γ(k4)

×
[
A†k1

A†k2
A†k3

A†k4
+Ak1 Ak2 Ak3 Ak4

]

(38)

To allow these terms contribute to the ground
state energy I have to add to the vacuum state
a general four particle state; i.e., I need a trial
state of the general form

|vac〉+
∑

α(k1, k2, k3)|4− particle〉, (39)

where the sum is assumed to go over all possible
four-particle states. The question is ”How do we
minimize over the α(k1, k2, k3)’s?”.

Actually this question can be finessed since it is
equivalent to finding the ground state energy den-
sity of a system where the Hamiltonian is trun-
cated to the vacuum state and all possible four
particle states. While it is hard to do this for the
full Hamiltonian, it can be done for the case where
the full Hamiltonian is limited to the part indi-
cated in Eq. 38. In this case the general solution,
which will resum the important non-perturbative
effects in λ, can be obtained by considering the
resolvent operator. Dividing H into the part di-
agonal in the number operator and the terms in

Eq. 38; i.e.,

H = H0 + λV, (40)

it is easy to show that the resolvent operator sat-
isfies the integral equation

1
H − z

=
1

H0 − z
− λ

H0 − z
V

1
H − z

. (41)

This equation is customarily solved by iteration
to give the following series;

1
H − z

=
1

H0 − z
− λ

H0 − z
V

1
H0 − z

+
λ2

H0 − z
V

1
H0 − z

V
1

H0 − z

− λ3

H0 − z
V

1
H0 − z

V
1

H0 − z
V

1
H0 − z

+
λ4

H0 − z
V

1
H0 − z

V
1

H0 − z
V

1
H0 − z

V
1

H0 − z

+ . . . . . . (42)

Since V only links the vacuum to the four particle
states and then links four particle states back to
the vacuum, this series simplifies to

〈0| 1
H − z

|0〉 =
1

E0 − z

+
1

E0 − z

[
λ2

∑
n

〈0|V |n〉〈n|V |0〉
(En − z)(E0 − z)

]

+
(

1
E0 − z

[
λ2

∑
n

〈0|V |n〉〈n|V |0〉
(En − z)(E0 − z)

])2

+ . . .

=
1

E0 − z




∞∑

j=0

[
λ2

∑
n

〈0|V |n〉〈n|V |0〉
(En − z)(E0 − z)

]


j

=
1

E0 − z − λ2
∑

n
〈0|V |n〉〈n|V |0〉

En−z

.

(43)

Clearly, since the poles of the resolvent operator
correspond to the eigenvalues of the Hamiltonian
it is only necessary to find that zero of the func-
tion

E0 − z − λ2
∑

n

〈0|V |n〉〈n|V |0〉
En − z

= 0 (44)
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which lies to the value E0 in the limit λ → 0.
While this looks like a difficult problem it can
be solved to arbitrary accuracy by converting the
problem into an equation which can be solved it-
eratively. To show this I will begin by defining δz
as

z = E0 − λ

√∑
n

|V |20n δz, (45)

and then use this definition to rewrite Eq. 44 as
an integral equation for δz; i.e.,

δz =
∑

n

|V̄ |20n
En−E0

λ + δz
, (46)

where I have defined V̄0n to be

V̄0n =
|〈0|V |n〉|√∑

j |V |20j

. (47)

It is clear that with these definitions, so long as
the range of En − E0 is bounded, in the limit
λ → ∞ the solution to the integral equation is
δz = 1. In other words, in the limit of large λ the
energy shift is proportional to λ instead of the
perturbative behaviour which goes like λ2.

Given the large λ value of δz it is possible to
give an iteration procedure for solving for δz for
arbitrary values of λ. This is done by defining a
sequence of values zj by the recursion relation

δz0 = 1

δz1 =
∑

n

|V̄ |20n
En−E0

λ + δz0

δzn =
∑

n

|V̄ |20n
En−E0

λ + δzn−1

, (48)

The desired value of δz is obtained by taking the
limit n → ∞. As an example, consider the case
in which H is a 2 × 2 matrix with two arbitrary
entries on the diagonal E0 and E1; i.e.,

H =




E0 x

x E1


 . (49)

Since it is trivial to diagonalize this matrix it is
easy to compare, for the case E0 = 1 and E1 = 2,
the iterative solution for arbitrary x to the exact

answer. Figure 3 shows how a single iteration
manages to reproduce the behavior of the exact
answer to pretty good accuracy over the whole
range of x.

2.5

x

7.5

1.0

0.0

0.25

0.5

5.0 10.0

0.75

Figure 3. Comparison of exact energy as a func-
tion of x (red curve) compared to δz1 (blue curve)

After three iterations it is much harder to dis-
tinguish the curves, see Fig. 4. Doing more iter-
ations just produces better and better accuracy
over the entire range. By twelve iterations one is
accurate to very high accuracy except in a very
small band around x ≈ 0.8, where the fractional
error is ≈ 0.015. The same computation can be
done for the more realistic case where V connects
us to a large number of momenta, with similar
results.

Having established that it is in principle possi-
ble to obtain the shift in the ground state energy
due to the part of the Hamiltonian which mixes
the vacuum with four particle states, it is time to
go back to our discussion of the adaptive pertur-
bation theory scheme. Given the preceding dis-
cussion it is easy to show that differentiating the
expectation value of the Hamiltonian in our trial
state will yield a set of equations for the γ(k)’s of
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Figure 4. Comparison of exact energy as a func-
tion of x (red curve) compared to δz3 (blue curve)

the general form

1
4
− (k2 + m2)

4 γ(k)2
− λ

2γ(k)2

[
1
V

∑

k′

1
γ(k′)

]

− λ2

γ(k)2
Σ(k2, λ, γ(ki)) = 0, (50)

where the function Σ(k2, λ, γ(ki)) is obtained by
differentiating the solution for δz obtained from
our integral equation. In writing things in this
form I used the fact, which can be obtained
from the integral equation, that differentiating δz
with respect to a given γ(k) produces a factor of
γ(k)−2 multiplied by a function of k2,λ and all
the γ(ki). As in the earlier discussion of mass
renormalization, it is convenient to rewrite these
equations as

γ(k)2 = k2 + m2 + 2 λ

[
1
V

∑

k′

1
γ(k′)

]

+ λ2 Σ(k2, λ, γ(ki)) (51)

and then observe that this means that

γ(0)2 = m2 + 2 λ

[
1
V

∑

k

1
γ(k)

]

+ λ2Σ(0, λ, γ(ki)). (52)

Substituting this into the equation for a generic
value of k yields

γ(k)2 = k2 + γ(0)2

+ λ2
(
Σ(k2, λ, γ(ki))− Σ(0, λ, γ(ki))

)
.

(53)

At this point the role of wavefunction renormal-
ization becomes obvious. If, as is conventional,
we Taylor series expand Σ(k2, λ, γ(ki)) so as to
rewrite Eq. 53 as

γ(k)2 = (1 +
∂

∂k2
Σ(k2), λ, γ(ki))k2 + γ(0)2

+ λ2
(
Σ(k2, λ, γ(ki))− Σ(0, λ, γ(ki))

− k2 ∂

∂k2
Σ(0, λ, γ(ki))

)
. (54)

This can be put into a conventional form

γ(k)2 = k2 + γ(0)2 + λ2Σ̄(k2, λ, γ(ki)) (55)

by introducing a rescaling of the fields and the
overall Hamiltonian by

φ → Z
1/2
φ φ ; Πφ → Πφ

Z
1/2
φ

H → ZφH. (56)

Thus, we see that wavefunction renormalization
is just that, an overall change in the γ(k)’s. Note
that the rescaling of the Hamiltonian is necessary
because we are working in a Hamiltonian and not
a manifestly covariant formalism.

Finally, I will just say a few words about cou-
pling constant renormalization and why φ4 the-
ory doesn’t exist in four dimenstions, at least if
one attempts to remove the cutoff. Clearly, once
the γ(k)’s have been chosen, the only remaining
issue is determining those values of λ for which
some physical quantity come out finite. For the
purposes of this discussion I can choose this to
be the energy of a trial state containing only two
particles of momentum zero.
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As in earlier discussions I will restrict this
analysis to the effect of terms in H which take
two particles to two particles. In this case I can
employ a similar argument, based upon study-
ing the matrix element of the resolvent opera-
tor in this zero-momentum state, to show that
in four dimensions this energy is given by a se-
ries in λ (λ ln(Λ))n. From this it follows that the
only way to have this come out finite is to take
λ → 1/ ln(Λ). But this, of course, implies that
there is no interaction.

10. The Spectrum Isn’t Boost Invariant

The final point which should be touched upon
before closing my talk is the observation that at
first glance an equation of the form

γ(k)2 = k2 + γ(0)2 + λ2Σ̄(k2, λ, γ(ki)) (57)

would seem to be problematic, since γ(k) for
k 6= 0 is not just related by a boost to the value
for k = 0. In fact, this is not a bug, it is a feature.
What it says is that while it is possible to choose
the γ(k)’s to give a good perturbation perturba-
tion theory, with this choice of γ(k)’s the opera-
tors A†(k) do not create a true asymptotic states
which should be used to compute scattering am-
plitudes. Even if I assume that the state created
by A†(0) is a good approximation to the zero
momentum state, the state for k 6= 0 should be
obtained by applying the boost operator to this
state. For an interacting theory this is certainly a
multi-particle state. Thus, it follows that adopt-
ing the formalism of adaptive perturbation theory
forces implies that the scattering problem must
be handled as in the parton picture. In other
words, the computation of a scattering process
intrinsically has two parts; first, it is necessary to
find the parton wavefunction for the asymptotic
scattering states and then, this wavefunction, to-
gether with the explicit form of the Hamiltonian
written in terms of the annihilation and creation
operators associated with the specific choice of
γ(k)’s, should be used to compute scattering am-
plitudes. This point, together with the observa-
tion that applying a boost (written in terms of
the relevant annhilation and creation operators)
to a given state implies a kind of Alterelli-Parisi

equation, requires much more thought.

11. Summary

In this talk I began by showing you how to con-
vert problems, which in the past were thought to
be impossible to deal with perturbatively, can be
easily done using the method I have called adap-
tive perturbation theory. I then went on to show
how these methods can be extended to give a very
pretty picture of the structure of renormalization
in a non-perturbative context. These ideas can
be extended to a theory which includes fermions
by adding adding a general Bogoliubov transfor-
mation for the fermion fields defined in momen-
tum space. A bit more work has to be done to
extend the tricks to cover the case of compact
Abelian gauge-fields. However, a paper by David
Horn and myself[5], extended in the obvious way
to fit it into the framework of adaptive perturba-
tion theory, showed how to do this for the case
of compact QED. This paper showed that the
method is quite capable of extracting the interest-
ing non-perturbative structure of confinement in
this theory in any number of space-time dimen-
sions. While the path towards extending these
ideas to the case of a non-abelian gauge theory
is not so obvious, I nevertheless believe that it is
possible.
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