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Light-cone sum rules: A SCET-based formulation
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We describe the construction of light-cone sum rules (LCSRs) for exclusive B-meson decays into light energetic
hadrons from correlation functions within soft-collinear effective theory (SCET). As an example, we consider
the SCET sum rule for the B — 7 transition form factor at large recoil, including radiative corrections from
hard-collinear loop diagrams at first order in the strong coupling constant.

1. INTRODUCTION

Form factors parameterizing hadronic matrix
elements defining B decays to a light pseudoscalar
(P) or vector meson (V') play an important role
in several respects. For example, they enter in
the determination of |V,;| from exclusive modes.
However, since they are non-perturbative objects,
their determination is a difficult task.

Let us consider for definiteness the decay of
a B meson in its rest frame into a highly ener-
getic pion. Several energy scales are involved: i)
A = few X Aqcp, the soft scale set by the typi-
cal energies and momenta of the light degrees of
freedom in the hadronic bound states; ii) my, the
hard scale set by the b-quark mass; iii) the hard-
collinear scale up. = vmpA appearing via inter-
actions between soft and energetic modes. The
dynamics of hard and hard-collinear modes can
be described perturbatively in the heavy-quark
limit. The separation of the two perturbative
scales from the non-perturbative hadron dynam-
ics is formalized within the framework of soft-
collinear effective theory (SCET) [1)2]. The small
expansion parameter in SCET is given by A =
/A /my, such that A\2my, < pine ~ Admp < myp,.

SCET describes B decays to light hadrons with
energies much larger than their masses, assum-
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ing that their constituents have momenta almost
collinear to the hadron momentum p*. Intro-
ducing two light-like vectors nﬁ_ = (1,0,0,-1),
n" = (1,0,0,1) one can generically write: pt =
P+ 4+ pll, with piy = (n_p)/2nf, p =
(nyp)/2n"; momenta are then classified accord-
ing to the scaling of their light-cone coordinates
(p-‘rap—apL)'

In order to see how SCET can be exploited in
the case of heavy-to-light B decays, we have to
recall some general features of the form factors
relevant to these kind of transitions.

In the large energy limit of the final state, B —
P,V form factors obey spin symmetry relations
3], broken by hard gluon corrections to the weak
vertex and hard spectator interactions. In the
heavy-quark limit one can write [ (see also [5J6]):

(w|¢ T3 bB) = Ci(( B, pr) &x(pr, B)  + (1)
E(E,U,(JJ,,LLH)®¢E(W,MH)®¢¢(U,MH) + ctt

where I is a generic Dirac structure and the dots
stand for sub-leading terms in A/my. The ma-
trix elements in ([Il) get therefore two contribu-
tions. The first one contains the short-distance
functions Cj, arising from integrating out hard
modes: puy < myp, and a “soft” form factor &,
which does not depend on the Dirac structure
of the decay current. In this contribution, the
hard-collinear interactions are not factorizable, so
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that the “soft” form factor is in general a non-
perturbative object of order (). The second
term in ([Il) factorizes into a hard-scattering ker-
nel T; and the light-cone distribution amplitudes
¢p and ¢,. T; contains the effect of both hard
and hard-collinear dynamics: pi; < pne. Both C;
and T; can be computed as perturbative series in
as, and potentially large logarithms lnmy /p; and
In pine/pa1 can be resummed by renormalization-
group techniques (the effective theories for the
two short-distance regimes are known as SCET;
and SCET];, respectively). A still controversial
question is to what extent the first contribution
is numerically suppressed by Sudakov effects.

Let us consider eq. (@) for I'; = ~,,, i.e. for the
QCD vector current. This can be matched onto
SCET] currents as follows [II:

(j"y# b— (04715 + 051)“) gthhc }/SThrU ... (2)

where dots represent subleading terms and Cy =
14 O(as), Cs = Oa,). v* is the heavy-quark
velocity with nyv = 1. The direction of the mo-
mentum of the (massless) pion is given by p# =
(nypr)nt /2. Besides, &ne(z) = %Mm(w) is
a hard-collinear light-quark field in SCET; and
h, is the usual heavy quark field in HQET. The
hard-collinear and soft Wilson lines Wi and Y
appear to render the definition gauge-invariant.
The soft form factor in ([{Il) can be defined as [4]

(7 (D) (EncWhe) (0) (Y 7o ) (0)| B(mpv)) =
(n4p") &x(nyp's p) (3)
Neglecting O(a) effects the approximate sym-
metry relations mentioned above between the vec-

tor and tensor form factors for B — 7 transitions
read [BI7:

f+(@®) ~ nﬂ:]i fo(q®) ~ ﬁ fr(d?)
~ &(%). (4)

SCET thus provides a field-theoretical frame-
work to achieve the factorization of short- and
long-distance physics, and to calculate the for-
mer in renormalization-group-improved pertur-
bation theory. However, non-perturbative quan-
tities such as the soft form factors remain un-
determined without further phenomenological or
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theoretical input. A theoretical approach for this
purpose is represented by QCD/light-cone sum
rules (see for instance [RQIT0]). In [T1] we have
shown that it is possible to formulate light-cone
sum rules within SCET, in a different way with
respect to the traditional method. We summarize
below the main features of this new formulation.

2. SUM RULES IN SCET: THE CASE OF
B — ™ DECAY

In contrast to the traditional approach where
the B meson is represented by an interpolating
current, we treat it as an external field and not as
a propagating particle in the correlation function
(see also [12]). Actually, the heavy quark is nearly
on-shell in the end-point region. In SCET] this is
reflected by the fact that hard sub-processes (vir-
tualities of order m?) are already integrated out
and appear in coefficient functions multiplying
Jo. Instead, the short-distance (off-shell) modes
in SCET] are the hard-collinear quark and gluon
fields. Hence, our starting point is the correlator

) =i [ e ' O, ) O Ee)), (5)

where ply = mpv#, and

Jo(0) = &ne(0)Whe(0)YF(0)1y(0), (6)
Je(z) = —i(x)hyysP(x)
= —ine(®) hes Ene() (7)

—i (EeWhe(@)1h475 Y gs(2) + hec.) |

where ¢s is the soft quark field in SCET and
(0| Jz|m(p")) = (n4p") fr. In the following we will
consider a reference frame where p/, = v, = 0
and nyv = n_v = 1. In this frame the two inde-
pendent kinematic variables are (nyp') ~ 2E,; =
O(mp), 0 > (n_p’) = O(A), with |n_p'| >
m2/(nyp’). The dispersive analysis will be per-
formed with respect to (n_p') for fixed values of
(n4p').

As with all QCD sum rule calculations, the
procedure consists in writing the correlator (&)
in two different ways: we will refer to them as
the hadronic side and the SCET side. On the
hadronic side, one can write:

4P (n_p') =T(n_p')|  +M(n_p')

3
res. cont.

(8)
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the first term represents the contribution of the
pion, while the second takes into account the role
of higher states and continuum above an effective
threshold wy, = O(A?/n,p’). One has

(0| Jz|m(p")) (= (p")|Jo| B(pB))

_ (4P (nap) [ )
= o ,

obtained in the chosen frame where p/, = 0 and
neglecting the pion mass. At tree level, the SCET

Figure 1. Leading contribution to the correlation
function for the SCET current Jy.

side stems from calculating the diagram in Fig. 1,
with the result:

Mn_p) = meB/O dw

where w = n_ - k, k¥ being the momentum of the
soft light quark that ends up as spectator in the
B. In ([[) we used the momentum-space repre-
sentation of LCDAs for B mesons as in [I3/7],
ifsms

4
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Notice that () has already the form of a dis-
persion relation in the variable n_p’:

M(n_p) = %/OOO dw/%, (11)

1
with —Im([I[I(w')] = femp¢?(w'). The final sum
T

¢F (w)

— (10
oy —in 10

B
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rule is obtained by writing also II(n_p’) ac-
cont.
cording to a dispersion relation in which the spec-

tral function is identified with the one computed

in SCET. Finally, a Borel transformation with pa-
rameter wys is applied to both sides, giving the
following sum rule at tree level:

N o meB “e —w/wpm 4B
i) = ol [ ol 6P () (12)
The inclusion of radiative corrections to the cor-
relation function (@) comes from hard-collinear
loops, as shown in Fig. @ for the leading order in
as. The explicit calculation shows that the scale-
dependence of the correlation function cancels
with that of the C;(u) at the considered leading
logarithmic order (involving double logs). As for
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Figure 2. Diagrams contributing to the sum rule
for &, to order ag with hard-collinear loops and
no external soft gluons.

the numerical analysis, we fix the sum rule param-
eters wg and wys from the sum rule for f, which
provides us with the default values wy ~ wg ~
0.2 GeV. For ¢B(w), we use the parametriza-
tion proposed in [[3]: ¢Z(w) = e “/“° /wy with
1/wo = ¢2(0) = 2.15 GeV~!. Fixing one of the
two parameters to its default value and varying
the other, we may investigate the dependence on
such quantities. It turns out that going from LO



to NLO such a dependence becomes moderate
(see ref. [II] for details). Taking into account
the various uncertainties, we obtain:

Ci(p)
Ci (mb)
which compares well with other estimates for the
B — 7 form factor in full QCD.

Our approach can also be applied to calculate
the factorizable form factor contribution, which
comes from spectator scattering terms. This can
be obtained starting from the correlator:

IL(p) =i /d4$ P (O[T [T () J1 (0)]| B(pp)) ,

“&r(mp, p) = 0277557, (13)

where J; = & gAf;C h, in the light-cone gauge.

The remarkable result of the SCET-sum-rule
for the B — 7 form factor is that the ratio of
factorizable and non-factorizable contributions is
independent of the B-meson wave function to first
approximation and amounts numerically to about
~ 6%, which is in line with the power counting
used in QCD factorization [T4[7], but contradicts
the assumptions of the pQCD approach [I5] and
the results of a recent study in [16].

3. CONCLUSIONS

We have described the approach derived in
[I1] consisting in the derivation of light-cone sum
rules for exclusive B-decay amplitudes at large re-
coil within soft-collinear effective theory (SCET).
This formalism defines a consistent scheme to cal-
culate both factorizable and non-factorizable con-
tributions to exclusive B decays as a power ex-
pansion in A/my. The non-perturbative informa-
tion is encoded in the light-cone wave functions
of the B meson, and in the sum-rule parameters.

An explicit example is provided by the study
of the factorizable and non-factorizable contri-
butions to the B — = form factor at leading
power in A/my. The result for the central value
of the “soft” /non-factorizable B —  form factor
is consistent with corresponding estimates in full
QCD. In particular, to first approximation, the
ratio of factorizable and non-factorizable contri-
butions is independent of the B-meson wave func-
tion and small (formally of order a; at the hard-
collinear scale, numerically of the order of 5-10%),
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thus confirming the power-counting adopted in
the QCD-factorization approach.

The improvement of the SCET sum rule for the
B — m form factor and the extension to other
decays requires a better understanding of both,
the size and the renormalization-group behaviour,
of the light-cone wave functions for higher Fock
states in the B meson. These issues are left for
future investigations.

REFERENCES

1. C. W. Bauer et al.,, Phys. Rev. D 63 (2001)
114020; C. W. Bauer and I. W. Stewart, Phys.
Lett. B 516 (2001) 134.

2. M. Beneke et al., Nucl. Phys. B 643 (2002)
431; M. Beneke and T. Feldmann, Phys. Lett.
B 553 (2003) 267.

3. J. Charles et al., Phys. Rev. D 60 (1999)
014001.

4. M. Beneke and T. Feldmann, Nucl. Phys. B
685 (2004) 249.

5. R. J. Hill and M. Neubert, Nucl. Phys. B
657 (2003) 229; B. O. Lange and M. Neubert,
Nucl. Phys. B 690 (2004) 249.

6. C. W. Bauer, D. Pirjol and I. W. Stewart,
Phys. Rev. D 67 (2003) 071502.

7. M. Beneke and T. Feldmann, Nucl. Phys. B
592 (2001) 3.

8. A. Khodjamirian and R. Riickl, Adv. Ser. Di-
rect. High Energy Phys. 15 (1998) 345.

9. P. Ball and V. M. Braun, Phys. Rev. D 58
(1998) 094016. P. Ball, JHEP 9809 (1998)
005.

10. P.  Colangelo
hep-ph/0010175.

11. F. De Fazio, T. Feldmann and T. Hurth,
arXiv:hep-ph/0504088.

12. A. Khodjamirian, T. Mannel and N. Offen,
Phys. Lett. B 620 (2005) 52.

13. A. G. Grozin and M. Neubert, Phys. Rev. D
55 (1997) 272.

14. M. Beneke et al., Phys. Rev. Lett. 83 (1999)
1914; Nucl. Phys. B 606 (2001) 245.

15. C. H. Chen, Y. Y. Keum and H. n. Li, Phys.
Rev. D 64 (2001) 112002.

16. C. W. Bauer et al., Phys. Rev. D 70 (2004)
054015.

and A. Khodjamirian,


http://arxiv.org/abs/hep-ph/0010175
http://arxiv.org/abs/hep-ph/0504088

	INTRODUCTION
	SUM RULES IN SCET: THE CASE OF B  DECAY
	CONCLUSIONS

