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Abstract
The performance of a free electron lasers (FEL) is af-

fected when the electron beam energy varies alone the un-
dulator as would be caused by vacuum pipe wakefields
and/or when the undulator strength parameter is tapered
in the small signal regime until FEL saturation. In this
paper, we present a self-consistent theory of FELs with
slowly-varying beam and undulator parameters. A general
method is developed to apply the WKB approximation to
the beam-radiation system by employing the adjoint eigen-
vector that is orthogonal to the eigenfunctions of the cou-
pled Maxwell-Vlasov equations. This method may be use-
ful for other slowly varying processes in beam dynamics.

INTRODUCTION
High-gain free electron lasers (FEL) are being developed

as extremely bright x-ray sources of a next-generation radi-
ation facility. An x-ray FEL based on self-amplified spon-
taneous emission (SASE) typically requires an electron
beam with a few kilo-Ampere peak current and a small-gap
undulator system of a hundred meter in length. The collec-
tive interaction of a high-current short electron bunch with
the undulator vacuum chamber may significantly change
the beam energy inside the undulator and degrade the FEL
performance, as highlighted by the recent analysis of the
ac resistive wall wakefield [1] for the linac coherent light
source (LCLS) [2]. The wakefield-induced energy change
may be compensated partially by tapering the undulator pa-
rameter. In order to evaluate the wakefield effects and to
optimize the undulator taper, we develop a self-consistent
theory of FELs with slowly varying beam and undulator pa-
rameters [3]. In this paper, we show how the WKB method
well-known in quantum mechanics can be formulated to
solve the coupled Maxwell-Vlasov equations for the FEL
system. This approach may be useful for analyses of other
slowly varying processes in beam dynamics.

FEL EQUATIONS WITH VARIABLE
PARAMETERS

The wakefield generates an energy variation along the
undulator distance as well as along the bunch position.
Since the typical bunch length for an x-ray FEL greatly
exceeds the radiation slippage length over the entire un-
dulator, the energy variation within an FEL slippage length
(known as an FEL slice) is usually negligible for the wake-
field that do not vary rapidly inside the bunch. Thus, the
main effect of the undulator wakefield in an FEL slice is
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due to the energy change along the undulator distance and
may be considered to be equivalent to that caused by taper-
ing the undulator strength parameter.

Let us consider a planar undulator with a period λu =
2π/ku and an undulator strength parameter K(z) that may
vary along the undulator distance z. We also assume
γc(z)mc2 is the average electron energy in the absence of
the FEL interaction, which may vary along the undulator
due to wakefields and emission of spontaneous radiation.
The initial resonant wavelength of the FEL is

λ0 =
2π

k0
=

2πc

ω0
=

λu

2γc(0)2

[
1 +

K(0)2

2

]
. (1)

We define the resonant energy (in units of mc2) as

γr(z) =

√
λu

2λ0

[
1 +

K(z)2

2

]
, (2)

from which we obtain γr(0) = γc(0) ≡ γ0. This is the en-
ergy of the electron at the undulator location z that radiates
at the initial wavelength λ0.

In this paper, we consider a one-dimensional (1-D) FEL
system and ignore any transverse effect. The longitudi-
nal motion of the electron with a wiggle-averaged position
ct∗ can be described by a ponderomotive phase variable
θ(z) = (k0 + ku)z − k0ct

∗ and a normalized energy vari-
able η(z) = [γ(z)− γc(z)] /γ0. Taking into account that
cdt∗/dz = 1 + (1 + K(z)2/2)/[2γ(z)2] and that changes
in K and γc over the entire undulator distance are typically
very small compared to K(0) ≡ K0 and γ0, the FEL pen-
dulum equations can be written as

dθ

dz
=2ku

γ(z)− γr(z)
γ0

= 2ku(η + δ) , (3)

dη

dz
=

eK0[JJ]
4γ2

0mc2

∫
dνEν(z)eiνθ−i∆νkuz + c. c. , (4)

where the fractional energy change with respect to the res-
onant energy in the absence of the FEL interaction is

δ(z) =
γc(z)− γr(z)

γ0
with δ(0) = 0 . (5)

Here Eν(z) is the (complex) electric field amplitude at the
frequency ω = νω0 near ω0, ∆ν = ν − 1, |∆ν| ¿ 1,
and the Bessel function factor [JJ]=J0(ξ)−J1(ξ) with ξ =
K2

0/(4 + 2K2
0 ).

In the small signal regime before saturation, the elec-
tron distribution function can be decomposed into two
parts: a coarse-averaged electron distribution function
V (η) (for a uniform bunch current) and a small pertur-
bation containing the initial shot noise fluctuation and the
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FEL interaction δF (θ, η; z). Incorporating the pendulum
Eqs. (3) and (4), the linearized Vlasov equation for the
Fourier component of the distribution function Fν(η; z) =∫

δF (θ, η; z) exp(−iνθ)dθ/(2π) is

dFν

dz
+iν2ku (η + δ)Fν+

eK0[JJ]Eν(z)
4γ2

0mc2
e−i∆νkuz dV

dη
= 0 .

(6)
The Maxwell equation for the electric field is then

dEν

dz
= −ek0K0[JJ]

2ε0γ0
ei∆νkuz

∫ ∞

−∞
dηFν(η; z) (7)

with ε0 being the vacuum permittivity.
Let us introduce the following dimensionless variables:

z̄ =2ρkuz , η̄ =
η

ρ
=

γ(z)− γc(z)
γ0ρ

,

ν̄ =
∆ν

2ρ
, δ̄ =

δ

ρ
=

γc(z)− γr(z)
γ0ρ

,

aν =− eK[JJ]e−i∆νkuzEν

4γ2
0mc2kuρ

, fν =
2kuρ2

k0
Fν . (8)

Here ρ is the FEL scaling parameter given by [4]:

ρ =

[
1
8π

Ie

IA

(
K0[JJ]

1 + K2
0/2

)2
γ0λ

2
0

ΣA

]1/3

, (9)

where Ie is the electron peak current, IA = 4πε0mc3/e ≈
17 kA is the Alfvén current, ΣA is the area of the electron
beam transverse cross section. The Maxwell-Vlasov equa-
tions (7) and (6) in the matrix form are

d

dz̄

(
aν

fν

)
= iM

(
aν(z̄)

fν(η̄; z̄)

)
, (10)

where

M =
( −ν̄ −i

∫∞
−∞ dη̄

−idV
dη̄ − [

η̄ + δ̄(z̄)
]

)
. (11)

We define
∫∞
−∞ dη̄ as the integration operator that operates

on a function of η̄.

WKB SOLUTION
Since the main effect of the energy variation is to move

electrons off-resonance, δ(z) can be regarded as a slowly
varying function of z when the relative energy change per
field gain length (∼ λu/(4πρ)) is much less than the rela-
tive gain bandwidth that is typically a few ρ, i.e.,

∣∣∣∣∣
λu

4πρ

dδ

dz

∣∣∣∣∣ ¿ a few ρ , or

∣∣∣∣∣
dδ̄

dz̄

∣∣∣∣∣ < 1 . (12)

This condition allows us to use the WKB approximation
to solve Eq. (10) and is satisfied if the accumulated energy
change over the saturation distance (typically about 10 field
gain length) is less than 10ρ.

WKB approximation using the matrix formalism
We first illustrate the WKB approximation using the ma-

trix formalism. Consider a second-order differential equa-
tion for a function φ(x):

d2φ

dx2
+ k2(x)φ(x) = 0 , (13)

where the parameter k(x) is assumed to be slowly varying
in x. Equation (13) can be regarded as the one-dimensional,
time-independent Schrödinger equation for the wavefunc-
tion φ(x). Let us define dφ/dx ≡ ϕ and convert Eq. (13)
to a couple of first-order differential equations. Using the
matrix notation, we have

d

dx

(
φ
ϕ

)
= L

(
φ
ϕ

)
, L =

(
0 1

−k2(x) 0

)
.

(14)
Since k(x) is slowly varying, we expect the solution to

closely approximate the free-particle state, i.e.,
(

φ
ϕ

)
≈ Ψ0(x)eiS0(x) , with

dS0

dx
= ±k(x) . (15)

The eigenvector given by ±ikΨ0 = LΨ0 is

Ψ+
0 (x) =

(
1

ik(x)

)
, Ψ−0 (x) =

(
1

−ik(x)

)
.

(16)
We define Φ0 as the adjoint eigenvector that satisfies
±ikΦ0 = Φ0L and find

Φ+
0 (x) =

(
1,

1
ik(x)

)
, Φ−0 (x) =

(
1,− 1

ik(x)

)
.

(17)
The adjoint eigenvector Φ±0 is orthogonal to the eigenvector
Ψ±0 since the scalar products Φ±0 Ψ∓0 = 0 and Φ±0 Ψ±0 = 2.

To take into account the slow variation of Ψ0(x) in
Eq. (15), we introduce first-order corrections as

(
φ
ϕ

)
≈ [Ψ0(x) + Ψ1(x)] ei[S0(x)+S1(x)] , (18)

where Ψ1 and dS1/dx are considered small, but not S1.
Inserting this into Eq. (14) and ignoring higher-order terms
dΨ1/dx and Ψ1dS1/dx, we have

dΨ0

dx
+ i

dS1

dx
Ψ0 =

(
−i

dS0

dx
+ L

)
Ψ1 . (19)

Applying the adjoint eigenvector Φ0 to Eq. (19), the
scalar product of the right hand side vanishes because
Φ0(idS0/dx) = Φ0L, and the scalar product of the left
hand side becomes

Φ0

[
dΨ0

dx
+ i

dS1

dx
Ψ0

]
=

1
k

dk

dx
+ 2i

dS1

dx
= 0 , (20)

from which we obtain S1 = i ln
√

k(x). Inserting S0 and
S1 into Eq. (18) and neglecting Ψ1 in comparison with Ψ0,



we obtain the standard WKB solution

φ(x) ≈ C1√
k(x)

exp
[
i

∫
k(x)dx

]

+
C2√
k(x)

exp
[
−i

∫
k(x)dx

]
, (21)

where C1 and C2 are given by initial/boundary conditions.

FEL growth rates
Following the above discussion, we seek a zeroth-order

solution of Eq. (10) in the form

e−i
R z̄
0 µ0(τ)dτΨ0 ≡ e−i

R z̄
0 µ0(τ)dτ

(
A0

F0(η̄; z̄)

)
. (22)

In the 1-D case, A0 is simply a constant given by the ini-
tial conditions. Treating dF0/dz̄ as a first-order term, the
zeroth-order eigenvalue equation is
(

(µ0 − ν̄) −i
∫∞
−∞ dη̄

−idV
dη̄

[
µ0 −

(
η̄ + δ̄(z̄)

)]
)(

A0

F0(η̄)

)
= 0 .

(23)
The eigenvalue is determined by solving the second row for

F0(η̄; z̄) =
iA0

µ0 −
[
η̄ + δ̄(z̄)

] dV

dη̄
(24)

and inserting it into the first row. The dispersion relation is

µ0 − ν̄ =
∫ ∞

−∞

dη̄[
η̄ + δ̄(z̄)− µ0

] dV

dη̄
, (25)

or

µ̂− ν̂ =
∫ ∞

−∞

dη̄

(η̄ − µ̂)
dV

dη̄
, (26)

with µ̂(z̄) ≡µ0(z̄)− δ̄(z̄) , ν̂(z̄) ≡ ν̄ − δ̄(z̄) . (27)

This is the same FEL dispersion relation as in the constant-
parameter case [5]. For a variable-parameter FEL, the
instantaneous frequency detune ν̂(z̄) = ν̄ − δ̄(z̄) is z̄-
dependent due to changes in the beam energy and the
undulator parameter. As a result, the local growth rate
Im(µ0)=Im(µ̂) is also a function of z̄. The corresponding
eigenvector is

Ψ0(z̄) =
(

A0

F0(η̄; z̄)

)
∝

(
1

i

µ0−[η̄+δ̄(z̄)]
dV
dη̄

)
. (28)

To take into account the z-dependence of F0, we must
include the first-order corrections as(

aν

fν

)
≈ e−i

R z̄
0 [µ0(τ)+µ1(τ)]dτ [Ψ0(z̄) + Ψ1(z̄)] . (29)

Note that both Ψ1 = (A1,F1(η̄)) and µ1 are considered
small as compared to Ψ0 and µ0, respectively, but the ac-
cumulated phase change

∫ z̄

0
µ1(τ)dτ in the exponent can

be of the same order. Inserting Eq. (29) into Eq. (10) yields

[−iµ0(z̄)− iµ1(z̄)] (Ψ0 + Ψ1)+(Ψ′0 + Ψ′1)
=iM(Ψ0 + Ψ1) , (30)

where (′) = d/dz̄. Making use of −iµ0Ψ0 = iMΨ0 and
neglecting the higher-order terms µ1Ψ1 and Ψ′1, we have

Ψ′0 − iµ1Ψ0 = i(µ0 + M)Ψ1 . (31)

The growth rate correction µ1 can be found by using
an adjoint eigenvector and a properly defined scalar prod-
uct [3]. In the 1-D case, the adjoint eigenvector is simply

Φ0 =

(
1,

i

µ0 −
[
η̄ + δ̄(z̄)

]
)

. (32)

Defining the 1-D scalar product as

〈Φ0|Ψ0〉1D =

[
1−

∫ ∞

−∞
dη̄

dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]2
]

≡B
(
µ0 − δ̄

)
, (33)

we apply Φ0 to both sides of Eq. (31). The resulting scalar
product of the right side with Φ0 is

i(µ0 − ν̄)A1 +
∫ ∞

−∞
dη̄F1(η̄)+

∫ ∞

−∞
dη̄

[
iA1

µ0 −
[
η̄ + δ̄(z̄)

] dV

dη̄
−F1(η̄)

]
= 0 (34)

in view of the dispersion relation Eq. (25). Thus, the scalar
product of the left side of Eq. (31) with Φ0 is

−iµ1B
(
µ0 − δ̄

)
+

∫ ∞

−∞
dη̄

(µ′0 − δ̄′)dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]3 = 0 ,

(35)

Using variables defined in Eq. (27), the correction to the
complex growth rate is

µ1 =− i
µ′0 − δ̄′

B
(
µ0 − δ̄

)
∫ ∞

−∞
dη̄

dV/dη̄[
µ0 −

(
η̄ + δ̄(z̄)

)]3

=− i
µ̂′

B (µ̂)

∫ ∞

−∞
dη̄

dV/dη̄

(µ̂− η̄)3
, (36)

which can be obtained after solving the FEL dispersion re-
lation (i.e., Eq. (25) or (26)).

The FEL growth rates predicted by Eqs. (26) and (36)
agree well with 1-D FEL simulations and are used in
Ref. [3] to study the LCLS wakefield effects and to opti-
mize the undulator taper. Start-to-end LCLS FEL simula-
tion results are reported elsewhere in these proceedings [6].
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