
Work supported by Department of Energy contract DE-AC02-76SF00515

Lucretia: A Matlab-Based Toolbox for the Modelling and Simulation of
Single-Pass Electron Beam Transport Systems∗

P. Tenenbaum† , SLAC, Stanford, CA, USA
Abstract

We report on Lucretia, a new simulation tool for the
study of single-pass electron beam transport systems. Lu-
cretia supports a combination of analytic and tracking tech-
niques to model the tuning and operation of bunch com-
pressors, linear accelerators, and beam delivery systems of
linear colliders and linac-driven Free Electron Laser (FEL)
facilities. Extensive use of Matlab scripting, graphics, and
numerical capabilities maximize the flexibility of the sys-
tem, and emphasis has been placed on representing and pre-
serving the fixed relationships between elements (common
girders, power supplies, etc.) which must be respected in
the design of tuning algorithms. An overview of the code
organization, some simple examples, and plans for future
development are discussed.

INTRODUCTION

In 2002, the Linear Accelerator Research program
(LIAR) [1] was modified to extend its capabilities to the
full Low Emittance Transport (LET) of a linear collider
(including the bunch compressor, linac, and beam deliv-
ery system) by adding a ray-tracing tracking engine which
coexisted with the native macroparticle tracker of LIAR; at
the same time, the source code was reorganized to create
a subroutine, callable from Matlab, which could combine
the beam dynamics simulation capability of LIAR with the
power and flexibility of the Matlab environment. The final
product of these modifications is described in [2].

The mat-LIAR package was used successfully for a
number of Start-to-End (S2E) simulations, running from
each damping ring to the IP, during the preparation of the
International Linear Collider Technical Review Commit-
tee’s 2003 report [3], but was subject to a number of limi-
tations:

• The use of two independent tracking engines (the
LIAR engine for linacs, the ray-tracer for bunch com-
pressors and final focus areas), as well as the inter-
facing back and forth between them, was complicated
and error-prone, in particular resulting in loss of infor-
mation about the longitudinal charge distribution pro-
duced by a bunch compressor

• Accessing and changing the lattice and beam defini-
tion used by mat-LIAR was cumbersome, often rely-
ing on passing text strings to the command parser of
the original LIAR program

∗Work supported by the United States Department of Energy, Contract
DE-AC02-76SF00515.
† quarkpt@slac.stanford.edu

• The mat-LIAR package inherited a number of limita-
tions from the original LIAR program; most notably,
tracking a beam through a subsection of the accelera-
tor was not possible

• Since LIAR was originally intended to study only
linacs, there was no native provision for studying two
beamlines which intersect at the collision point; stud-
ies of colliding beams were performed using two mat-
LIAR images, each of which had one of the beamlines
loaded into its data structures.

We have developed a new simulation package for high
performance single pass electron transport lines which ad-
dresses the limitations above and extends LIAR’s capabili-
ties for realistic simulations of accelerator operations, tun-
ing, and stabilization, and also makes more complete use of
the Matlab environment. The package, Lucretia, is suitable
for simulations of linear collider low emittance transport
regions (bunch compressor, linac, and beam delivery sys-
tem), as well as linac-driven free electron lasers.

USER INTERFACE

Lucretia follows the conceptual design of the Acceler-
ator Toolbox (AT) [4]: a collection of Matlab scripts and
functions, almost all written in the Matlab programming
language, rather than a fully self-contained program with
a command-line interpreter. This organization allows the
user to seamlessly integrate Matlab’s graphics, mathemat-
ics, and data-management tools with Lucretia’s tools for
accelerator simulation.

Accelerator Representation

The accelerator is represented by a set of five Matlab
data structures. Cell Array BEAMLINE contains the beam-
line elements, fully-instantiated, in beamline order; arrays
GIRDER, KLYSTRON, and PS contain the properties of
mechanical supports, RF power sources, and DC power
sources, respectively; array WF contains data related to
single- and multi-bunch wakefields. The data structures
are cross-referenced to one another (for example, BEAM-
LINE{}.Klystron shows which klystron powers a given
beamline RF device, while KLYSTRON().Element shows
which elements are powered by a given klystron). Since all
of the data is resident in Matlab, it is possible for the user
to examine any of the data at any time and ensure that pa-
rameters are properly set, etc. Any switches which control
tracking behavior (wakefields enabled or disabled, etc.) are
set element-by-element and stored for each element in the
BEAMLINE array.

SLAC-PUB-11215
May 2005

Contributed to Particle Accelerator Conference (PAC05), Knoxville, TN, May 16-20, 2005



Each element in the beamline can have mechanical off-
sets and excitation errors; beam position monitors can have,
in addition, electrical offsets and resolution limits. Further-
more, girders can have mechanical offsets and klystrons
and power supplies can have excitation errors which are ap-
plied to all elements they support. This simplifies the book-
keeping associated with a complicated tree of misalign-
ments and errors, and forces tuning algorithms to respect
realistic limitations such as elements which are powered in
series.

Because it is a common practice to represent a single
physical element with several instances in a lattice (in the
vernacular, to have “slices” of a magnet), Lucretia allows
the user to indicate “slicing,” which will then be respected
by error-setting and strength-tuning functions. Similarly, a
cluster of devices which are tightly coupled to one another
(a “block”) can be established, and blocks are respected by
misalignment functions. These features allow the user to
define an intermediate level of structure to the lattice be-
tween individual instances in the BEAMLINE array on the
one hand and girders, klystrons, and power supplies on the
other.

All Lucretia functions which operate on the accelerator
data, including the Twiss propagation and tracking func-
tions, take as arguments the range of elements, klystrons,
etc., which are to be operated on by the function. This per-
mits the user to store multiple disjoint beamlines in a single
set of arrays, which in turn permits direct simulation of ef-
fects such as colliding beams which have passed through
two separate Low Emittance Transports.

Beam Representation

Like the accelerator, the beam representation is resident
in Matlab; any number of beams can be defined. The beam
data structure is in turn composed of bunch data structures,
and each bunch contains one or more dimensionless rays.
Each ray has 6 coordinates (transverse positions and frac-
tional momenta, arrival time relative to the reference parti-
cle times the speed of light, total momentum) and a charge.
Each beam also includes an inter-bunch arrival time inter-
val, and each bunch has an array to indicate whether each
particle was stopped during tracking, and if so at what point
in the beamline.

Lucretia only tracks dimensionless rays, since these
are the more appropriate beam representation for systems
which introduce high-order correlation into both the trans-
verse and longitudinal degrees of freedom. Within this lim-
itation, however, the user is free to define any combination
of rays which suit their current purposes. For example, it is
possible to emulate the LIAR beam, which is composed of
macroparticles, by generating 9 rays with identical charges,
momenta and arrival times but different transverse posi-
tions (to be precise, one ray at the centroid and the others
at±2.12 σ in each transverse degree of freedom).

ORGANIZATION OF THE SOURCE CODE

The current Lucretia distribution contains 71 functions,
almost all of which are written in the Matlab scripting lan-
guage. These functions are used to generate and configure
the lattice, add misalignments and errors, perform tuning
and analysis, and generate beam data structures. Although
the Matlab interpreter is not fast compared to execution of
compiled code, execution speed of these functions is ac-
ceptably high.

In tests it was found that execution of tracking was too
slow when implemented as Matlab functions executed by
the interpreter. For this reason, the tracking system was
written in C and compiled into a dynamically linked func-
tion (known as a “mexfile”). The resulting function is exe-
cuted from the Matlab command line in a manner and using
a syntax identical to standard Matlab interpreted functions,
but with execution speeds hundreds of times faster. Since
calculation of R-matrices and Twiss function propagation
share much of the tracking code, these functions were also
written in C and compiled; for similar reasons, the lattice
verification function (which ensures that the lattice is con-
structed without errors and in a self-consistent manner) is
also a compiled, dynamically-linked function.

SUPPORTED ELEMENTS AND PHYSICS

The supported element classes in Lucretia include:
drifts; dipole steering magnets; sector bends (with or with-
out focusing gradient); quadrupoles, sextupoles, and thin-
lens multipoles; linear acceleration RF structures; beam
position monitors; markers; several classes of beamline in-
strument (generic instruments, profile monitors, wire scan-
ners, toroids, current monitors, synchrotron light monitors,
bunch length monitors); collimators; and marker points.
These elements support the standard suite of beam dynam-
ics effects (steering, bending, linear and second-order dis-
persion, linear and second-order longitudinal motion, chro-
matic focusing, sinusoidal linear acceleration, nonlinear fo-
cusing in multipoles, collimation by perfectly opaque ob-
jects). RF structures also support single bunch longitudi-
nal and transverse wakefields, as well as multi-bunch trans-
verse wakefields.

TRACKING

Lucretia’s tracking function takes as arguments the start-
ing and ending elements for tracking, the beam which is
to be tracked, and the index numbers of the first and last
bunches which are to be tracked. The user can track a sin-
gle element, an entire beamline, or any subsection of the
beamline. As described above, this flexibility facilitates
simulation of colliding-beam facilities while allowing all
beamlines to be stored in a single set of Matlab data struc-
tures.

In addition, the user can specify whether multi-bunch
tracking is performed “element-wise” (in which all bunches
are tracked through an element before any bunches are



tracked through the next element) or “bunch-wise” (in
which each bunch is tracked through all the elements before
the next bunch is tracked through any elements). The for-
mer mode is the default, since it is faster and more memory-
efficient. The latter mode permits simulations in which
feedbacks measure and correct beam properties within a
single bunch train: the first bunch is tracked through the
accelerator, and the resulting instrument data is collected;
changes are made to accelerator settings; the second bunch
is then tracked through the modified accelerator; etc.

BEAM INSTRUMENTATION

During tracking, the user can select any subset of the
beam position monitors or other instruments for which
beam data will be returned. The data is returned in a Mat-
lab structure array which is a return argument to the track-
ing function. Selection or elimination of instrument data is
done via tracking flags embedded in each element’s entry
in the BEAMLINE array.

The most common beam instrumentation is beam posi-
tion monitors (BPMs). Each BPM can be set to return no
information, to return physically realistic information only
(position readings with resolution limits, position offsets,
and electrical offsets taken into account), or to return both
realistic and unrealistic information (unrealistic informa-
tion includes the centroid momentum, the matrix of beam
second moments, and the angle of the beam trajectory with
respect to the BPM). The BPM can be selected to return
information for each tracked bunch individually, or else for
all of the bunches in a train in aggregate.

Other beam instruments such as profile monitors can be
configured to return no information or else to return a stan-
dard set of values including the beam’s transverse and lon-
gitudinal position, bunch length, three transverse second
moments (< xx >, < xy >, and< yy >), and charge. As
with the BPMs, this information can be returned bunch-by-
bunch or in the aggregate in the case of multibunch track-
ing.

Finally, the RF structures can be configured to return
beam position signals based on reconstructing the power
and phase of excited dipole modes. An RF structure can
have any number of HOM-BPMs, uniformly spaced longi-
tudinally in the structure. As with conventional BPMs, the
HOM-BPMs return data with resolution and static offsets
taken into account. HOM-BPMs always return aggregated
data for a bunch train, not data for individual bunches.

PLATFORMS AND SUPPORT

Lucretia is available for Windows XP, Solaris, and Linux
computers, and runs under Matlab 7. Source code, executa-
bles, examples, and documentation can all be found at the
Lucretia website,

http://www.slac.stanford.edu/accel/ilc/
codes/Lucretia/

In principle, Lucretia can be ported to any platform for
which Matlab 7 is available.

FUTURE DEVELOPMENTS

In future releases of Lucretia, we anticipate adding the
following features:

• A combined function solenoid-dipole-quadrupole
(SDQ) element, which permits simulation of compli-
cated IR geometries including detector solenoids

• Incoherent synchrotron radiation

• Arbitrary changes in the nominal survey line of the
accelerator

• An interface to the beam-beam collision simulation
code GUINEA-PIG [5]

• An implementation of Seryi’s ground motion model
for accelerators [6]

• Improved simulation of particles which are not fully
relativistic, taking into account effects at the order of
mec

2/p2.

In addition, the Lucretia C functions have been structured
in such a way as to facilitate adaptation into an operating
environment other than Matlab. One likely candidate is the
open-source mathematics package Octave, which also sup-
ports dynamically-loaded compiled functions.

ACKNOWLEDGEMENTS

The work described in this paper could not have been
accomplished without the assistance, advice, and support
of T. Raubenheimer, A. Terebilo, G. White, A. Wolski, and
M. Woodley.

REFERENCES

[1] R. Assmannet al, “LIAR: A Computer Program for the Mod-
eling and Simulation of High Performance Linacs” (1997).

[2] P. Tenenbaumet al, “Recent Developments in the LIAR Sim-
ulation Code,” (2002).

[3] International Linear Collider Technical Review Committee
Second Report(2003).

[4] A. Terebilo, “Accelerator Modeling with Matlab Accelerator
Toolbox,” (2001).

[5] D. Schulte, “Beam-beam Simulations with GUINEA-PIG”
(1998).

[6] A. Seryiet al, “Effects of Dynamic Misalignments and Feed-
back Performance on Luminosity Stability in Linear Collid-
ers” (2003).


