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Abstract

We discuss simulated photonic crystal structure de-
signs for laser-driven particle acceleration, focusing on
three-dimensional planar structures based on the so-called
“woodpile” lattice. We demonstrate guiding of a speed-of-
light accelerating mode by a defect in the photonic crystal
lattice and discuss the properties of this mode. We also dis-
cuss particle beam dynamics in the structure, presenting a
novel method for focusing the beam. In addition we de-
scribe some potential coupling methods for the structure.
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INTRODUCTION

Photonic crystals have great potential for use as laser-
driven accelerator structures. A photonic crystal is a struc-
ture with permittivity periodic in one or more of its dimen-
sions. As described in [1], optical modes in a photonic
crystal form bands, just as electronic states do in a crys-
talline solid. Similarly, a photonic crystal can also exhibit
one or more photonic band gaps (PBG’s), with frequen-
cies in the gap unable to propagate in the crystal. Confined
modes can be obtained by introducing a defect into a pho-
tonic crystal lattice. Since frequencies in the bandgap are
forbidden from propagating in the crystal, they are confined
to the defect. A linear defect thus functions as a waveguide.

High accelerating gradients are possible because pho-
tonic crystals can be composed entirely of dielectric mate-
rials and benefit from their high breakdown threshold [2].
Photonic crystal waveguides also allow confinement of a
speed-of-light mode in vacuum, resulting in high charac-
teristic mode impedance. Another significant benefit of
photonic crystal accelerators is that only frequencies within
a bandgap are confined. In general, higher order modes,
which can be excited by the electron beam, escape through
the lattice. This benefit has motivated work on matallic
PBG structures at RF frequencies [3]. In addition, an accel-
erating mode has been found in a PBG fiber structure [4].
We recently completed a study of two-dimensional planar
dielectric photonic crystal accelerator structures, demon-
strating synchronous waveguide modes and discussing rel-
evant parameters of such modes [5]. Those structures, how-
ever, only confine the accelerating field in one transverse
dimension. Here we present the design and simulation of
a three-dimensional planar structure, which overcomes that
obstacle and includes a waveguide which fully confines the
accelerating mode.
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Figure 1: The geometry of a vertically symmetric waveg-
uide structure.

STRUCTURE GEOMETRY

The structure is based on the so-called “woodpile” lat-
tice, which consists of layers of silicon rods in vacuum,
with the rods in each layer rotated 90° relative to the layer
below and offset half a lattice period from the layer two
below, following the geometry described in [6].

We consider laser acceleration using a wavelength of
1.5 µm, in the telecom band where many promising sources
exist. At this wavelength silicon has a normalized permit-
tivity of εr = ε/ε0 = 12.1 [7]. The horizontal lattice pe-
riod is then a = 561 nm, and the rods are 157 nm wide
by 198 nm tall. This lattice exhibits an omnidirectional
bandgap—a range of frequencies in which no mode, of any
wavevector or polarization, exists.

In order to make the structure vertically symmetric to
avoid transverse dipole fields, we invert the upper half of
the lattice so it is a vertical reflection of the lower half. The
geometry, with a defect waveguide introduced, is shown in
Figure 1. This inversion introduces a planar defect where
the two halves meet, but the bandgap persists despite the
defect.

This waveguide supports an accelerating mode; its fields
are shown in Figure 2. In this case the dipole fields are sup-
pressed by the vertical symmetry of the structure. The char-
acteristic impedance of the mode, which describes the re-
lationship between input laser power and accelerating gra-
dient [8], is Zc = E2

accλ
2/P = 410 Ω, where P is the

laser power. This large impedance value means that for
10 kW of peak power, which is currently attainable using
commercially available fiber lasers, the accelerating gradi-
ent on axis would be 1.35 GeV/m.

The damage factor of the mode relates Eacc to the max-
imum electric field anywhere in or on the material. Since
laser power is ultimately limited by the breakdown thresh-
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Figure 2: The accelerating field seen by a speed-of-light
particle, averaged over a lattice period, normalized to the
accelerating field on axis, shown with structure contours
for a transverse slice at z = 0.

old of the material, the damage factor is an important mea-
sure of the maximum possible accelerating gradient a struc-
ture can sustain. For this mode, fD = Eacc/ |E|material

max =
0.24. Also, the group velocity of the mode is vg = 0.245c.
Finally, the physical aperture of the waveguide is 1.53 µm×
1.39 µm. Because of such a small aperture, a beam with
extraordinarily small emittance or a focusing lattice with
extremely strong quadrupole strength is required to contain
a beam.

PARTICLE BEAM DYNAMICS

While this structure presents a small aperture, it also
raises the possibility of extremely strong particle beam fo-
cusing using the optical fields. However, it also presents the
problem of strong focusing and nonlinear transverse forces
experienced by off-crest particles. We first consider the lin-
ear forces. We define K to be the focusing gradient expe-
rienced by a particle 90° ahead of crest. Thus for beam
energy E,

K =
i

E

∂Fx

∂x

∣
∣
∣
∣
x=0,y=0

,

where F is the force on a speed-of-light particle averaged
over a lattice period, and we assume a time dependence
of eiωt for the fields. For Eacc = 1 GeV/m, this gives
K = (6.6 × 1014 eV/m2)/E, equivalent to a 2.2 MT/m
quadrupole magnet. Particles off-crest by a phase φ will
experience focusing gradients

Kx = K sin φ, Ky = −K sin φ.
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Figure 3: The particles accepted through the dynamic aper-
ture of the system are shown in blue; a fourth-order reso-
nance is visible. The range of the plot is the physical aper-
ture of the structure.

Thus off-crest particles will be focused strongly in one di-
rection, and defocused strongly in the other. While this
presents a problem for beam containment, the presence of
such strong focusing fields presents a possible solution not
only to the problem of transverse fields but may also over-
come the small aperture of the structure: By running the
drive laser ±π/2 out of phase with the electron beam, we
can attain very strong focusing forces that dwarf the natu-
ral focusing forces experienced by slightly off-crest parti-
cles. Creating a lattice in this manner, the phase offset of a
particle from the crest of the fields leads to a small pertur-
bation to the transverse motion rather than wildly different
dynamics.

We use this phase-switching technique to construct a
F0D0 lattice, which we then model using a particle-
tracking code. We simulate the particle proagation exacly,
including all phase-space variables and omitting only the
negligible effects of synchrotron loss due to betatron mo-
tion. The effects of the non-synchronous space harmonics
are negligible as well, due the microscopic photonic crystal
lattice period, so we use the averaged fields over a single
period. We consider an initial particle energy of 10 GeV
and an average accelerating field of 1 GeV/m. To com-
pute the dynamic aperture of this system, we track on-crest,
mean-energy particles uniformly distributed throughout the
physical aperture of the structure and with zero initial trans-
verse momentum. The results of this simulation are shown
in Figure 3. The dynamic aperture of this system is small
due to the fourth-order nonlinear fields. However, it may be
possible to suppress these nonlinearities, and work in this
area is ongoing.



Figure 4: Radiation from an accelerating waveguide into
free space. The box in the lower-left corner indicates a
metallic input guide used for the simulation.

COUPLING TECHNIQUES

A significant advantage of planar structures which are
amenable to lithography is that a coupler from a laser
source to the accelerating waveguide can be integrated with
the rest of the structure as part of the same manufacturing
process. While investigation of such couplers is currently
underway, several possibilities have arisen. It should be
noted that for the time being, our goal is not to design a
near-perfect coupler as would be required for efficient col-
lider operation [9]. Rather, we aim to produce a coupler
that has sufficient efficiency for use in a proof-of-principle
experiment, given that the input fields are limited by the
damage threshold of the material.

The first possibility is simply to attempt to couple di-
rectly into the accelerating waveguide from a free-space
laser mode. To investigate this, we used FDTD to simu-
late the reverse problem of radiation from the guide. The
result of the simulation is shown in Figure 4. We find that
only 7% of the power is reflected at the exit of the guide,
indicating that the guide is well-matched to free space.

Another possible coupler involves using two identical
accelerating waveguides placed parallel to one another and
offset by several wavelengths. In such a structure the eigen-
modes are the odd and even modes, and the accelerating
mode in a single guide is very well approximated by the
sum or difference of the eigenmodes. The beat length be-
tween the odd and even modes therefore determines the
length required to couple from one guide into the other.
We find that for a separation of 7 lattice periods, or 3.9 µm,
the beat length is L = 1816λ, or 2.7 mm.

CONCLUSION

We have found a confined mode in a three-dimensional
planar photonic crystal waveguide. This structure has many
qualities desirable for a laser-driven accelerator. The mode
has a large characteristic impedance, so it could be pow-
ered to gradients in excess of 1 GeV/m using readily avail-
able fiber laser sources. The photonic crysal lattice has an
omnidirectional bandgap, which simplifies coupler design
by severely restricting the number of modes into which the

laser field can scatter. The structure is amenable to litho-
graphic fabrication, and in fact much work has been done
in fabricating this type of lattice [10]; this remains an ac-
tive area of research in the optics community. Investigation
of both coupler design and fabrication for this structure is
now underway.

We have also demonstrated the possibility of confining a
particle beam using the very strong optical focusing fields
available in this structure. However, the dynamic aperture
of the simulated system is small due to nonlinearities. Also,
the optical damage threshold of silicon is not known, and
models proposed for other materials suggest that the break-
down limit will be low due to the small electronic bandgap
of silicon.

In addition to the work on the woodpile structure, work
is continuing on photonic crystal fiber structures such as
the one described in [4].
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