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1 Introduction

The measurements of the angles α, β and γ of the Unitarity Triangle at the BABAR and Belle exper-
iments are providing precision tests of the description of CP violation in the Standard Model (SM).
This description is provided by the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix[1],
which relates the weak and flavour eigenstates of the quarks in the weak Lagrangian
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2
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is the 3 × 3 CKM matrix shown here in the Wolfenstein parameterisation[2]. The imaginary
coefficient η is the source of CP violation.

The CKM matrix is a unitary matrix and using this condition one can write down several
relationships of the following form ∑

i

VijV
∗
ik = 0 (j �= k). (3)

There are six such equations, each of which represents a triangle in the complex plane. One of these
has sides of similar magnitude and also contains some of the least well constrained CKM matrix
elements:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (4)

The triangle, rescaled by 1
VcdV ∗

cb
, is illustrated in fig. 1. The internal angles of the triangle are given

by
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]
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This paper will review recent measurements of these CKM angles from the BABAR collaboration.
The BABAR detector and the PEP-II accelerator are described in detail elsewhere[3, 4].

2 Measurements relating to β

The primary goal of the BABAR experiment was to measure sin2β in the so called “golden modes”
that proceed via the decay b → ccs, such as B0 → J/ψK0

S . These channels are considered golden
since they are not too challenging experimentally and are theoretically clean due to the presence
of only one weak phase. The latest BABAR measurement using a data sample of 227 million BB
pairs is: sin2β = 0.722 ± 0.040 ± 0.023[5]. Measuring sin2β results in a four-fold ambiguity on β
itself but one of the four solutions is in excellent agreement with the predictions of the Standard
Model based on experimental knowledge of other parameters, as can be seen from fig. 2.
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Figure 1: The Unitarity Triangle.
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Figure 2: The ρ̄− η̄ plane showing the various constraints on the Unitarity Triangle.

2.1 Measurement of the sign of cos2β

In order to properly test the Standard Model it is important to reduce the ambiguity on the
measurement of β. The existing four-fold ambiguity can be reduced to two-fold by determining the
sign of cos2β [6].



The decay B → J/ψK∗ has a dependence on cos2β due to the interference of the one CP -odd and
two CP -even components. This dependence appears in the time-dependent angular distributions
in the observables:

cos(δ‖ − δ⊥) · cos2β, cos(δ⊥ − δ0) · cos2β (6)

where δi are the strong phases of the decay amplitudes:

Ai = |Ai|eiδi . (7)

Using samples of both neutral and charged decays it is possible to measure these strong phases up
to a two-fold ambiguity:

(δ‖ − δ0, δ⊥ − δ0) ⇔ (−(δ‖ − δ0), π − (δ⊥ − δ0)). (8)

Under this transformation cos(δ‖ − δ⊥) and cos(δ⊥ − δ0) change sign and so the two sets of param-
eters:

(δ‖ − δ0, δ⊥ − δ0, cos2β) ⇔ (−(δ‖ − δ0), π − (δ⊥ − δ0,− cos2β)) (9)

are equivalent, meaning that the sign of cos2β is still ambiguous.
However, it is known from previous experiments that the K∗(892) is not the only contribution in

this region of Kπ mass and that a broad S-wave is also present[7]. This additional contribution also
has an associated strong phase, δS , and so a new relative phase enters the problem: γ = (δS − δ0).
The ambiguity of eq. (8) now becomes:

(δ‖ − δ0, δ⊥ − δ0, γ) ⇔ (−(δ‖ − δ0), π − (δ⊥ − δ0),−γ). (10)

The ambiguity on γ can be broken however using Wigner’s causality principle[8], which states that
the phase of a resonance rotates anticlockwise with increasing mass. Since the phase of the S-wave
is moving very slowly in the region of the K∗(892) while the phase of the P-wave is moving very
rapidly the relative phase γ must rotate clockwise. fig. 3 shows the behaviour of γ as a function
of Kπ mass for both solutions along with the data from the LASS experiment[7], which shows
remarkable agreement with the one solution that also obeys Wigner’s principle.

With the strong phase ambiguity broken a time-dependent fit can be performed to the B0 →
J/ψK∗0(K0

Sπ
0) data sample in order to extract cos2β and sin2β. With sin2β floating in the fit the

results obtained are:

cos2β = +3.32+0.76
− 0.96 ± 0.27

sin2β = −0.10 ± 0.57 ± 0.14. (11)

If sin2β is fixed to the world average value of 0.731 we obtain:

cos2β = +2.72+0.50
−0.79 ± 0.27. (12)

If cos2β and sin2β are considered to be measuring the same angle β then cos2β should be ±0.68.
A toy Monte Carlo technique is used to determine which of these solutions is more likely. It is
found that the positive solution is preferred at the 89% confidence level. The projection of the time
dependent fit is shown in fig. 4. This analysis used a sample of 88 million BB pairs.
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Figure 3: The relative phase γ as a function of Kπ mass. The open circles are “Solution 1”, the
filled circles are “Solution 2” and the open diamonds are the LASS data. A global offset of π has
been added to the LASS data.
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Figure 4: Moment of the function weighting the cos2β contribution to the amplitude. The solid
line is the result of the fit with both cos2β and sin2β floating. The dashed line corresponds to the
preferred value cos2β = +0.68 and the dotted to cos2β = −0.68.



2.2 sin2β from b → sss Penguin Modes

The time dependent CP asymmetry for a given B0/B0 decay is given by:

AfCP
(∆t) =

Γ(B0(∆t) → fCP ) − Γ(B0(∆t) → fCP )
Γ(B0(∆t) → fCP ) + Γ(B0(∆t) → fCP )

= ηfCP
SfCP

sin(∆md∆t) − ηfCP
CfCP

cos(∆md∆t) (13)

where ηfCP
is the CP eigenvalue of the final state fCP , ∆md is the mass difference between the two

neutral B mass eigenstates and ∆t is the time difference between the decays of the two B mesons.
Measurements of the S coefficient of this CP asymmetry in decay channels dominated by b→ sss
“penguin diagrams” are expected to be equal to ηfCP

sin2β where sin2β is that measured in the
b → ccs decays. If the measured values are found to deviate then this could be an indication of
new particles entering in the loop and contributing to the amplitude. However, care must be taken
in the interpretation as small deviations are expected in some modes due to the presence of SM
suppressed amplitudes with different weak and strong phases.

2.2.1 B0 → φK0
S and B0 → φK0

L

This channel is the most theoretically clean of all the penguin modes in that it is expected to have
no contribution from tree diagrams. This means that to very good approximation CfCP

should be
zero and SfCP

should be + sin2β for φK0
S and − sin2β for φK0

L. From a data sample of 227 million
BB pairs BABAR reconstructs 114 ± 12 φK0

S events and 98 ± 18 φK0
L events. Combining these

samples in a time-dependent fit yields the following results[9]:

SφK0 = 0.50 ± 0.25+0.07
− 0.04

CφK0 = 0.00 ± 0.23 ± 0.05 (14)

These results are in good agreement with the SM since C is zero and S is consistent with sin2β
within 1σ.

2.2.2 B0 → K+K−K0
S excluding φK0

S

The B0 → K+K−K0
S Dalitz plot contains many more events than those simply due to φK0

S and so
can reduce the statistical uncertainty on the measurement of sin2β in these modes. However, there
are possible contributions from other amplitudes making it theoretically less clean. Additionally,
the CP content of the final state is not known and must be determined. This is achieved using a
moments analysis that takes advantage of the statistical technique known as sPlot [10]. The S- and
P-wave intensities are shown in fig. 5 along with the CP -even fraction, all as a function of K+K−

mass. The average number obtained for the CP -even fraction was 0.89± 0.08± 0.06 from the data
sample of 227 million BB pairs. The time-dependent CP fit then yielded the following results[9]:

SK+K−K0
S

= −0.42 ± 0.17 ± 0.03

CK+K−K0
S

= +0.10 ± 0.14 ± 0.04 (15)
sin2βeff = +0.55 ± 0.22 ± 0.04 ± 0.11

where the third error on sin2β is due to the uncertainty in the CP -even content. As with the φK0

results the central value of sin2β is slightly lower than the SM value but agrees within errors. The
C value is again zero within errors. The time-dependent asymmetries for this mode as well as φK0

S

and φK0
L are shown in fig. 6.



Figure 5: S- and P-wave intensities and CP -even fraction as a function of K+K− mass.

2.2.3 B0 → K0
SK

0
SK

0
S

This mode, like φK0, is very clean from a theoretical standpoint. It is also a pure CP -even state
making the experimental determination simpler. An experimental complication is that there are no
tracks originating from the primary vertex and as such the determination of the vertex separation
(essential for a time-dependent analysis) was thought to be impossible. However, it was found in
the BABAR analysis of B0 → K0

Sπ
0 that applying a beam-spot constraint allows successful vertexing

with reasonable errors[11]. Firstly a branching fraction fit is performed that only uses kinematic
and event topology variables and then a time-dependent CP fit is performed[12]. The branching
fraction fit yields 88 ± 10 signal events from a data sample of 227 million BB pairs, which gives
the following branching fraction: B(B0 → K0

SK
0
SK

0
S) = (6.9+ 0.9

− 0.8 ± 0.6)× 10−6 The CP fit gives the
following results:

SK0
SK0

SK0
S

= −0.71+0.38
− 0.32 ± 0.04

CK0
SK0

SK0
S

= −0.34+0.28
− 0.25 ± 0.05 (16)

sin2βeff = +0.79+0.29
− 0.36 ± 0.04

Again, these results are highly consistent with the SM value of sin2β. The distributions of ∆t for
B0 and B0 tagged events are shown in fig. 7 along with the time-dependent asymmetry.



Figure 6: Time-dependent asymmetry distributions for (a) φK0
S , (b) φK0

L and (c) K+K−K0
S ex-

cluding φK0
S . The signal to background ratio is enhanced by a cut on the likelihood ratio.
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2.2.4 Summary of sin2β from b→ sss Penguin Modes

The results presented above are all consistent with the value of sin2β measured in the charmonium
modes. However, there are measurements in the penguin modes that are not so consistent, shown
in fig. 8, and the average of all the penguin modes differs from the average of the charmonium
modes by 3.7σ. It must be emphasised, however, that the theoretical uncertainty on many of
the modes is high, so large deviations may be possible within the Standard Model. More precise
measurements of these modes, particularly the most clean modes such as φK0, are necessary before
any conclusions can be drawn about the presence of New Physics.
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Figure 8: Comparison of sin2β measured in charmonium and b→ sss penguin modes

3 Measurements relating to α

The decays of neutral B mesons to the final states hh, where h = ρ, π, are sensitive to the CKM
angle α in the interference between decay and mixing. The presence of penguin loop diagrams
complicates the situation by introducing additional phases such that the measured parameter is
αeff = α+ δαpenguin. In terms of the time-dependent asymmetry defined in eq. (13) the coefficients
are given by:

Shh =
2Im(λhh)
1 + |λhh|2 , Chh =

1 − |λhh|2
1 + |λhh|2 (17)



and λhh is given by:

λhh =
q

p

Ā

A
= e2iα 1 − P

T e
−iα

1 − P
T e

+iα
= |λ|e2iαeff (18)

where q and p are the B mixing coefficients and P
T is the penguin to tree amplitude ratio, which

can be different for ππ, ρπ and ρρ.

3.1 Isospin analysis in B → hh

Taking the case of B → ππ we can see how isospin symmetry can be employed to disentangle α
from αeff . The following relations can be formed relating the amplitudes for the decays of B0 and
B0 mesons to various ππ final states[14]:

1√
2
A+− = A+0 −A00,

1√
2
Ā+− = Ā+0 − Ā00 (19)

By also noting that ∣∣∣A+0
∣∣∣ =

∣∣∣Ā+0
∣∣∣ (20)

(in the absence of electroweak penguin diagrams) it can be seen that these decay amplitudes form
two triangles with a common base in the complex plane as illustrated in fig. 9.

Figure 9: Illustration of the B → ππ isospin triangles. δ = |α− αeff |.

For the modes B → ρρ there can be up to three such triangles depending on the angular
structure of the decays and for B → ρπ a pentagon isospin analysis is required[15] or a Dalitz plot
analysis[16].

3.2 B → ππ

As seen in the last section this is the simplest set of decay modes to study when attempting
to measure α. The measurements of the various branching fractions and CP asymmetries are
summarised in tab. 1, where S and C are the coefficients are defined in eq. (17) and ACP is the
charge (tag) asymmetry in the case of a charged (neutral) B decay. All the measurements are
sufficiently well established to perform an isospin analysis. However, the value of B(B → π0π0) is



Table 1: Summary of BABAR measurements of B → ππ decays.

Mode B × 10−6 S C

π+π− 4.7 ± 0.6 ± 0.2 −0.30 ± 0.17 ± 0.03 −0.09 ± 0.15 ± 0.04
ACP

π±π0 5.8 ± 0.6 ± 0.4 −0.01 ± 0.10 ± 0.02
π0π0 1.17 ± 0.32 ± 0.10 −0.12 ± 0.56 ± 0.06

Table 2: Summary of BABAR measurements of B → ρρ decays.

Mode B × 10−6 fL S C

ρ+ρ− 30 ± 4 ± 5 0.99 ± 0.03 ± 0.04 −0.19 ± 0.33 ± 0.11 −0.23 ± 0.24 ± 0.14
ACP

ρ±ρ0 22.5+ 5.7
− 5.4 ± 5.8 0.97+0.03

− 0.07 ± 0.04 −0.19 ± 0.23 ± 0.03
ρ0ρ0 < 1.1 90% C.L. — —

the limiting factor in this analysis. Its value is too large to allow a tight bound to be placed on
|α − αeff | but it isn’t sufficiently large to allow a precision measurement of this quantity with the
current statistics. The limit that results from the current isospin analysis is: |α − αeff | < 35◦ at
90% confidence level[13].

3.3 B → ρρ

The analysis of B → ρρ is potentially highly complicated due to the fact that there are three
possible helicity states for the decay. The helicity zero state, which corresponds to longitudinal
polarisation of the decay, is CP -even but the helicity ±1 states are not CP eigenstates. Fortunately
this complication is avoided due to the experimental determination that the longitudinally polarised
fraction fL is dominant[17, 18]. This and other ρρ measurements are summarised in tab. 2[19, 20].
The measurements of the branching fractions of B → ρ±ρ0 and B → ρ0ρ0 indicate that the penguin
pollution is small in these modes compared with B → ππ. As such it is possible to perform an
isospin analysis on the longitudinal part of the decay and to place a much tighter bound on |α−αeff |,
at the same time as using the results of the CP fit to constrain α. From this analysis BABAR obtains
the confidence level plot shown in fig. 10 and the measurement[20]:

α = (96 ± 10 ± 5 ± 11)◦ (21)

3.4 B → ρπ

Previous measurements of this mode have been made using a “quasi-two-body” approach[21], i.e.
cutting out the interference regions of the Dalitz plot (DP) and analysing the regions containing
the ρ resonances. This approach has the advantage that it avoids the need to understand the
interference effects but by cutting out those regions of the DP statistical power is lost. Additionally,
the statistics available to the B factories are not sufficient to perform the pentagon isospin analysis
that is necessary in these modes. The measurements reported here are the results of the first
attempt by either of the B factories to perform a time-dependent Dalitz plot analysis of a B decay
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Figure 10: Plot of the confidence level of the CKM angle α from the BABAR isospin analysis of
B → ρρ.

mode[22]. This Dalitz analysis models the interference between the intersecting ρ resonance bands
and so determines the strong phase differences from the Dalitz plot structure. The Dalitz amplitudes
and time-dependence are all contained in various complex parameters within the likelihood fit.
The values obtained for these parameters are then converted back into the quasi-two-body CP
observables, which are more intuitive in their interpretation and are defined in[21]:

S = −0.10 ± 0.14 ± 0.04
C = 0.34 ± 0.11 ± 0.05 (22)

ACP = −0.088 ± 0.049 ± 0.013

Using isospin with these results the confidence level plot shown in fig. 11 is obtained and the
following constraint is placed on α:

α = (113+ 27
− 17 ± 6)◦. (23)

This result is of particular value because there is a unique solution between 0 and 180◦, which helps
to break the ambiguity on the ρρ result, which is in itself more precise. The direct CP violation
parameters C and ACP can be combined into more intuitive variables A+−

ρπ and A−+
ρπ , which give

the charge asymmetry in the modes where the ρ and the π respectively is emitted by the W boson.
The contour plot for these observables can be found in fig. 12, which shows that there is a hint of
direct CP violation at the 2.9σ level.
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Figure 11: Plot of the confidence level of the CKM angle α from the BABAR isospin analysis of
B → ρπ.

3.5 Combined results for α

Combining all the BABAR results on α presented above gives the measurement:

α = (103+ 11
− 10)

◦. (24)

The confidence level plot of each individual measurement and the combined result is shown in
fig. 13. Also included in the plot is the result for α from the global CKM fit not including the
direct constraints from these results. The agreement is excellent.

4 Measurements relating to γ

Sensitivity to the CKM angle γ occurs in decay modes that have contributions from diagrams
containing b→ c and b→ u transitions that interfere with one another. The size of the interference,
and hence the sensitivity to γ, is determined by the relative magnitudes of the two processes. The
two diagrams being considered here are those of B+ → D0K+ and B+ → D0K+, which are
illustrated in fig. 14. In order for these two processes to interfere it is required that the final state
be the same. Here we examine the decay of the D0 and D0 to K0

Sπ
+π−.

In this decay mode, there are four unknowns

• γ,

• rB = |A(B+→D0K+)|
|A(B+→D0K+)|

• δB - the strong phase of the B decay and
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• δD - the strong phase of the D decay.

This last parameter is eliminated by using the Dalitz plot structure of the D0 → K0
Sπ

+π− decay
in the likelihood fit. This is determined by performing a full Dalitz plot analysis of this D decay
mode using a very high statistics sample of D∗+ decays. The resulting amplitude model is then
fixed and used as the f terms in the following expressions:

M+(m2
−,m

2
+) =

∣∣∣A(B+ → D0K+)
∣∣∣ [
f(m2

+,m
2
−) + rBe

iδBeiγf(m2
−,m

2
+)

]
M−(m2

−,m
2
+) =

∣∣∣A(B− → D0K−)
∣∣∣ [
f(m2

−,m
2
+) + rBe

iδBeiγf(m2
+,m

2
−)

]
(25)

The fit to the D∗ sample can be seen in fig. 15.
A simultaneous fit is then performed to both the B+ and B− data samples in order to determine

γ, δB and rB. In addition to the Dalitz plot information, kinematic and event topology information
is used to separate the signal and background events. The number of signal events was found to be
261 ± 19 for the D0K+ mode, 83 ± 11 for the D∗0(D0π0)K+ mode and 40 ± 8 for D∗0(D0γ)K+.
The results determined are[23]:

rB < 0.19 (90%CL), r∗B = 0.155+ 0.070
− 0.077 ± 0.040 ± 0.020

δB = (114 ± 41 ± 8 ± 10)◦, δ∗B = (303 ± 34 ± 14 ± 10)◦ (26)
γ = (70 ± 26 ± 10 ± 10)◦.



0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

B → ππ
B → ρπ
B → ρρ

Combined
CKM fit

α    (deg)

C
on

fid
en

ce
 le

ve
l

BABARC K M
f i t t e r

End of 2004
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5 Summary

In the last few years the measurements of the angles of the CKM Unitarity Triangle from the
BABAR experiment have become increasingly sophisticated and precise. New techniques are allowing
ambiguities to be resolved and measurements to be performed in modes that were not thought
possible when the B factories were first conceived. The measurements are mostly in excellent
agreement with the Standard Model predictions but there are possible hints of New Physics in the
measurements of sin2β in b → s penguin modes. BABAR intends to double its dataset by Summer
2006 and again by 2008 so we can look forward to further improvement in the measurements of
these parameters.
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