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1. Introduction

While the Standard Model (SM) is a spectacularly successful description of high energy
particle phenomena, it leaves unexplained why the Electroweak scale is much smaller than
the GUT or Planck scales. Recently, it has been proposed that this hierarchy might be
explained by the presence of additional compactified dimensions. These could be TeV scale
and flat [1, 2], or Planck scale with a warped geometry [3]. In this second scenario, the
Randall-Sundrum (RS) model, there is a single extra dimension and the spacetime has the
geometry of five-dimensional Anti-de Sitter space, AdS5, compactified on an orbifolded circle,
S1/Z2. One 3-brane is localized on each end of the orbifold, and the warping between them
generates the Electroweak scale.

In the original RS model, all SM fields are localized on the TeV (or IR) brane. The
observable phenomenology in this case comes from the new spin-2 graviton resonances [4].
However, there is no reason for the fermions and gauge fields not to propagate in the bulk [5, 6,
7, 8]. Indeed, bulk fermions have a zero mode which is exponentially localized near one of the
branes. Choosing O(1) Lagrangian parameters for different fermions can select exponentially
different overlaps on the IR brane, and hence different masses, providing a possible explanation
of the fermion mass hierarchy [7, 9, 10]. There have been many investigations into the
phenomenology of this model [11, 12, 13, 14, 15]. One important conclusion is that simply
putting the SM gauge group in the bulk produces a large Peskin-Takeuchi T -parameter [16].
The can be fixed by expanding the gauge group to be left-right symmetric, SU(2)L×SU(2)R×
U(1)B−L [17] or by introducing brane localized kinetic terms for the fermions [18]. It is also
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possible to extend this to a Grand Unified group which then contains a dark matter candidate
[19, 20].

More recently, there has been a proposal that no Higgs is needed in this model, as the
geometry can set the gauge boson masses [21, 22, 23], as well as the fermion masses [24]. The
most straightforward application of this model produces large electroweak corrections, and
does not preserve tree-level unitarity in longitudinal gauge boson scattering at finite center-
of-mass scattering energies [25, 26, 27, 28, 29, 30, 31, 32, 33]. They do, however, contain a
rich collider phenomenology which is largely independent of those considerations [34]. There
have been several variations on the model, including deconstructing the extra dimension
[35, 36, 37, 38, 39, 40, 41], adding additional dimensions [42], and adding additional branes
[43].

The Higgsless models can be obtained as the limit of a model with a Higgs where the
vev, v, is taken to be large compared to the AdS curvature k; that is v/k � 1. The fact that
Higgsless scenarios have difficulty accommodating the precision electroweak observables leads
to the speculation that the agreement may be improved by including the effects of a finite
Higgs vev.

Additionally, analyses of the Higgs scenario, v/k � 1 show that this model is allowed by
precision electroweak data. However, in this case, with Kaluza-Klein (KK) masses, mKK ≈
2− 3 TeV, we have v/k ≈ 1/4, which is not particularly small. In fact, this is expected from
RS effective field theory arguments which tell us that all Lagrangian level mass parameters
should be of the same order, MPl. Hence, it makes sense to study the corrections to collider
observables induced by a finite, but not large, Higgs vev.

In this paper we will examine the numerical behavior of explicit solutions for the gauge
and fermion wavefunctions in RS with a finite and arbitrary value for v/k. From this we can
extract both the small vev limit and the Higgsless limit.

Note that the RS models can be thought of as large N 4D conformal gauge theories
through the AdS/CFT correspondence [44]. Analyses have also been performed on the CFT
side of the Higgsless model [45], and the Higgs model [46, 47].

In Section 2 we develop the formalism that will be employed in this paper. Section 3
shows the behavior of the Kaluza-Klein spectra as the Higgs vev is varied. We investigate
the gauge couplings and precision electroweak constraints in Section 4, and the corrections
to Higgs properties in Section 5. Section 6 concludes.

2. Formalism

We work in a slice of AdS5, with metric (in conformal coordinates)

ds2 =
(
R

z

)2

(dx2 − dz2) (2.1)

where R = 1/k is the inverse of the curvature scale. There is one brane located at z = R (the
Planck or UV brane), and a second brane at R′ = (MPl/TeV )R (the TeV or IR brane). This
gives log(R′/R) ∼ 35. We define ε = R/R′ ∼ 10−15 for later convenience.
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We are interested in models with a bulk SU(2)L × SU(2)R × U(1)B−L gauge symmetry.
The additional SU(2)R factor over the SM provides a bulk custodial SU(2)c, which can
successfully protect the T parameter [17]. The bulk gauge action is then

Sbulk =
∫
d5x

√
g

( −1
4g2

5L

FL
MNF

MN
L +

−1
4g2

5R

FR
MNF

MN
R +

−1
4g2

5B

FB
MNF

MN
B

)
(2.2)

We will make use of the ratios of gauge couplings

κ = g5R/g5L, λ = g5B/g5L. (2.3)

Clearly, this group needs to be broken to U(1)EM. We accomplish this by separating the
breaking into two sectors. On the Planck brane we break SU(2)R×U(1)B−L → U(1)Y . Since
the UV brane is the only place where the SU(2)c is broken, we can see why the effects on the
T parameter will be small. On the TeV brane we break SU(2)L ×SU(2)R → SU(2)D , where
SU(2)D is the diagonal subgroup of SU(2)L and SU(2)R.

We will work in the A5 = 0 (unitary) gauge. The gauge condition can potentially be
complicated by the fact that the brane localized Goldstone modes, the Gi can mix with
the A5 modes. This means that the physical longitudinal polarization for each vector is a
combination of bulk and brane modes. However, for the breaking pattern used here there is
no zero mode for any of the A5 fields, and hence no extra physical zero-mode scalar. We can
therefore safely work in the gauge where A5 = Gi = 0.

We now ask what drives the breaking on each brane. On the planck brane all degrees
of freedom will have Planck scale masses, so we can ignore them. We can then implement
the breaking with boundary conditions to good approximation. This leads to the boundary
conditions at z = R

∂z

(κ
λ
AR −AB

)
= 0, ∂zAL = 0,

AB − κ

λ
A3

R = 0, A±
R = 0. (2.4)

On the TeV brane, the masses will be TeV scale, so we should look at the Higgs sector
in detail. The simplest structure that will create the breaking pattern is a real Higgs that is
a bidoublet under SU(2)L × SU(2)R. This leads to the boundary conditions at z = R′

∂z(AL + κAR) = 0, ∂zAB = 0,

∂z(κAL −AR) = −g
2
5Lv

2

4
(κAL −AR). (2.5)

Note that in the v/k → ∞ limit we obtain the usual Higgsless boundary conditions. Instead of
the real bidoublet, we could also use the complex bidoublet familiar from Left-Right symmetric
models with minimal changes. See Appendix A for details.

To write down the effective 4D theory we expand the 5D fields into Kaluza Klein (KK)
fields.

A(x, z) =
∑
n

ζ
(n)
A (z)A(n)(x) (2.6)
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We can now obtain the gauge boson wavefunctions by solving the equation of motion subject
to the boundary conditions (2.4) and (2.5). The generic solution for the wavefunctions is

ζ
(n)
A (z) = z(A(n)

A J1(mnz) +B
(n)
A Y1(mnz)). (2.7)

Here the label A refers to the particular gauge field being expanded. One of the coefficients,
A(n) and B(n), and the mass are determined by inserting eq. (2.7) into eqs. (2.4) and
(2.5). The other coefficient is fixed by the normalization condition. We will use 4D canonical
normalization for all fields, giving

N
(n)2
W =

∫ R′

R

dz

z
R
(
|ζ(n)

A±
L

(z)|2 + |ζ(n)

A±
R

(z)|2
)
, (2.8)

for the charged gauge bosons, and

N
(n)2
Z =

∫ R′

R

dz

z
R
(
|ζ(n)

A0
L
(z)|2 + |ζ(n)

A0
R
(z)|2 + |ζ(n)

BR
(z)|2

)
, (2.9)

for the neutral tower.
The fermion sector of the theory is more intricate. First, we will need to arrange the SM

fermions into representations of SU(2)R. There are two ways to do this in the RS model. The
most straightforward is to pair corresponding SU(2)L singlets into a single SU(2)R doublet.

So, e.g uR and dR become
(
uR dR

)�
. The other option is to make each right-handed field

part of a different SU(2)R doublet. So uR →
(
uR d′R

)�
, etc.. Orbifold projections are then

required to insure that there is no light mode for the new fermion states. The first option
follows more naturally from Grand Unified theories, and allows the possibility of an explicit
Z2 symmetry that exchanges the Left and Right gauge groups. The second makes it easier to
obtain top-bottom splitting and to suppress corrections to the Zbb̄ vertex, and is compatible
with the GUT scenario in [20]. Here we will study the case where there is an explicit Z2, and
hence choose to combine right-handed fields into a single SU(2)R multiplet.

We write the 5D fermion as two 4D Majorana fermions, Ψi = (ψi χi)�. The orbifold
conditions tell us that one component must be even and the other odd [6]. We will pick the
ψi to be even for fields corresponding to the left-hand SM fermions, and the χi even for the
right-handed ones. The Yukawa couplings to φ, the Higgs on the IR brane, will connect the
left and right-handed zero modes and lift them. These couplings are

SIR =
∑

f

∫
d4x

(
R

z

)4

λfφ
(
ψf

Riχ
f
Li + χ̄f

Liψ̄
f
Ri + ψf

Liχ
f
Ri + χ̄f

Riψ̄
f
Li

)
. (2.10)

Here f labels the fermion flavor. Eq. (2.10) induces the boundary conditions at z = R′

ψf
L = −λfvψ

f
R χf

R = λfvχ
f
L. (2.11)

This is equivalent to introducing a Dirac mass λfv on the IR brane. Note that this is
SU(2)D symmetric, and hence can not generate different masses for the up and down-type
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quarks. That splitting must be generated on the UV brane, which is the only place where the
custodial symmetry is broken. It was demonstrated in [24] that the simplest way to do this
with a complex fermion is to introduce brane-localized fermions that can mix with the bulk
states. So we include a contribution to the brane action for each SM right-handed fermion

SUV =
∫
d4x

∑
f

(
−iξ̄f σ̄µ∂µξ

f − iηf σ̄µ∂µη̄
f + F (ηf ξf + η̄f ξ̄f ) +MfR

1/2(ψf
Rξ + ξ̄ψ̄f

R)z=R

)
(2.12)

where ξi and ηi are the brane localized states, ψRi is the component of the bulk state that
has a zero mode, and the index f runs over all SM right-handed fermions. This leads to the
boundary condition

ψf
L = 0 χf

R = mnM
f2
m /F 2ψf

R. (2.13)

The fermion KK expansion will take the form1

χ =
∑
n

g(n)(z)z3/2χ(n)(x), ψ̄ =
∑
n

f (n)(z)z3/2ψ̄(n)(x). (2.14)

Again, we will normalize these canonically, giving∫
dz

z
χ(n)∗(z)χ(m)(z) = δnm, (2.15)

and similarly for the ψ(n). Note that 5D fermions are achiral, so we can always write down a
mass term in the bulk

mf
5Ψ̄Ψ =

cf

k
Ψ̄fΨf . (2.16)

Even in the presence of this mass term there is still a 4D zero mode for the orbifold even
components of Ψ when v = 0. The cf determine the shape of the wavefunction in the extra
dimension. This would-be zero mode wavefunction is

f
(0)
f (z) = A

(0)
f

( z
R

)cf−1/2
(2.17)

We can see that for c > 1/2 the zero mode is localized to the Planck brane, and for c < 1/2
it is localized to the TeV brane.

3. Kaluza-Klein spectra

We can solve Eq. (2.7) subject to (2.4) and (2.5) to obtain x
(n)
W ≡ m

(n)
W /kε. Figure 1 shows

the behavior of x(1)
W as a function of v/k. Demanding that m(1)

W = mW sets the mass scale
kε. In the region with v/k small we have x(1)

W ≈ g
2

v
k giving the standard result kε ≈ 2

gmW
k
v .
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Figure 1: Behavior of the first charged boson mass (corresponding to the observed W ) as a function
of v/k at fixed k. The linear behavior at small v/k corresponds to the ordinary Higgsed model limit,
and the flat behavior as v/k → ∞ to the Higgsless limit.

This reflects the fact that as v/k gets small, the KK scale gets large. When v/k is large, x(1)
W

asymptotes to the Higgsless value x(1)2
W = 1/ log(R′/R) [22].

Once this scale has been set, we can solve for the rest of the KK gauge boson masses.
For the neutral sector this depends on the additional parameter, λ. We can solve Eq (2.7)
for the neutral gauge sector for λ in terms of x(1)

Z , the mass of the observed Z boson. We will
use this to choose λ, and hence with our choice of input parameters the on-shell definition of
the weak mixing angle, sin2 θos ≡ 1−m2

W/m
2
Z , is automatically set to the experimental value

sin2 θos = 0.222 [48]. These inputs completely determine the gauge KK mass spectrum. Figure
2 shows this spectrum for neutral bosons. Note that each KK level in the v/k small region
starts as a degenerate triplet and splits into the doublet-singlet structure seen in Higgsless
theories as v/k gets large. These masses are large enough that these states are not bounded
by direct detection constraints at the Tevatron[49]. Also, the couplings to light fermions are
small enough that they also avoid the LEP II contact interaction constraints [29].

The fermion masses depend on both the brane localized Yukawa couplings to the Higgs
and the bulk masses. Eq. (2.11) shows that the Yukawa couplings provide an effective Dirac
mass on the IR brane, and it is this mass that controls the lowest fermion mass (i.e. the mass
of the observed SM particle). Hence, the relevant dimensionless parameter is λiv/k (where λi

is the relevant Yukawa coupling), rather than v/k. In this paper we consider the case where

1The choice of what powers of z to include in the wavefunctions is, of course, arbitrary. This choice makes

transparent on which brane the fermion zero mode is localized.
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Figure 2: Masses of the first six neutral boson KK excitations lying above the SM Z as a function
of v/k with the W and Z masses held fixed at their physical values.

the fermion mass hierarchy generated by the different bulk masses, and not the Yukawas. To
correctly produce the top mass, the top/bottom Yukawa must be order 1. We will assume
that the other generations have universal Yukawa couplings λlight. Since we are assuming an
explicit Z2 symmetry that exchanges the SU(2)L and SU(2)R we have cfL = −cfR ≡ cf (the
minus sign arises from the choice of orbifold parities). We will pick the parameters cf to
produce the correct fermion masses for a given Yukawa coupling and Higgs vev. In the quark
sector we pick the cf to match the up-type masses. We then introduce mixing with UV brane
fermions as in Eq. (2.12) to generate the up-down splitting. In the lepton sector we simply
match the charged lepton masses by picking the cf , and leave the neutrinos massless. We can
then solve for the KK masses, shown in Fig. 3. Note that a large Dirac mass on the IR brane
makes the first KK excitation light. This behavior corresponds to that seen in [20]. To avoid
light KK leptons we will need ylight � 1/2.

4. Gauge-fermion couplings

Here we will examine how the shifts in couplings of the W and Z to fermions depend on the
Higgs vev. The 5D covariant derivative acting on a fermion ψ is (suppressing Lorentz indices)

Dψ =

(
∂µ +

∫ R′

R

dz

z
g5L (ALµTL + κARµTR + λQB−LABµ)

)
ψ (4.1)
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Figure 3: Masses of the first two excited KK fermions as a function of v/k for several species. Note
that the mass of the first excitation depends strongly on the IR-brane mass term, but the second
excitation does not.

with QB−L = (B − L)/2. The electromagnetic charge is Q = T 3
L + T 3

R + QB−L. We can
rewrite the pieces of D corresponding to the neutral gauge boson couplings as

g5L(If
3L − λIf

B)

(
T 3

L +
κIf

3R − λIf
B

If
3L − λIf

B

T 3
R +

λIf
B

If
3L − λIf

B

Q

)
. (4.2)
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Where the If
i =

∫ R′
R dz/z ζiψ̄fψf encode the extra dimensional physics. This can be matched

onto the covariant derivative from the effective 4D theory

gZ1ff̄ (T 3
L + sin2 θR,fT

3
R − sin2 θeff,fQ). (4.3)

This identifies the strength of the Z coupling to fermion f as gZ1ff̄ = g5L(I3
L − λIB), the

effective weak mixing angle for that coupling sin2 θeff,f = −λIB/(I3
L−λIB), and a new quantity

that measures the strength of the right-handed couplings: sin2 θR,f = (κI3
R−λIB)/(T 3

L−λIB).
We can also write an expression similar to Eq. (4.2) for the charged sector

g5LI
f
±L

(
T±

L +
κIf

±R

If
±L

T±
R

)
, (4.4)

giving the strength of the left and right handed couplings.
Note that the wavefunctions for all electroweak particles, with the single exception of the

zero mode photon, have non-trivial dependence on the extra dimension. In particular the
different flavors of fermions will have different wavefunctions that can be probed by the W
and Z. Hence, all quantities defined above will depend on the fermion species, as indicated
by the label f .

Since the photon wavefunction is flat in the extra dimension, the electromagnetic coupling
is simply given by (using the normalization from Eq. (2.9))

e2 =
g2
5L

R log(R′/R)
κ2λ2

κ2 + λ2 + κ2λ2
. (4.5)

We can use this to define the 5D coupling in terms of the fine structure constant α by

g2
5L

R
= 4πα log(R′/R)

(
1 +

1
λ2

+
1
κ2

)
. (4.6)

The advantage of this definition is that it is the only coupling that is independent of the
fermion species, and allows us to relate g5L to the measured quantity α without ambiguity.

With these definitions we can find the shifts in the couplings. Fig 4 shows the shift in
gZff̄ as a function of v/k. Note that the shifts are only large for the third generation quarks.
This is expected since they are the only fermions with substantial overlap on the IR brane
where the W and Z wavefunctions are distorted. Imposing the LEP and SLD bound on the
shift in the Zbb̄ vertex of ∼ 1% [48], we find that v/k < 1/2. This gives kε > 800 GeV,
and vε < 400 GeV. In Fig. 5 we see the shifts in the effective weak mixing angle in Z-
pole observables relative to the on-shell value. The experimental error on this measurement
is ±0.00036 [48], so for v/k ≤ 1/2 the model shifts correspond to a 2σ deviation. Fig. 6
shows sin2 θR, the magnitude of the right handed couplings to SM fermions relative to the
left handed coupling. Note that the boundary conditions in Eq. 2.4 cause this to vanish for
Planck brane localized fermions. Indeed we see that the closer the fermion to the UV brane,
the smaller the effect. In all cases, however, the effect is unobservable in the allowed region
v/k ≤ 1/2.
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Figure 4: Shifts in the coupling of fermions to the Z induced by the Z wavefunction distortions. The
large shift to the Zbb̄ coupling is the dominant constraint on v/k.
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Figure 5: Corrections to the effective weak mixing angle for couplings of fermions to the Z on the
Z-pole.

5. Higgs couplings

We now investigate the shifts in couplings of particles to the physical Higgs boson. As shown
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Figure 6: The effective size of the right-handed currents induced by the SU(2)R gauge bosons.

above, the main effects come from distortions of the gauge wavefunctions near the IR brane.
Schematically, the coupling of a Higgs to two bulk modes will simply be the product of the
bulk wavefunctions evaluated at the IR brane, times a Lagrangian parameter. So for the
coupling to gauge bosons we have

ghWW =
g5Lv

2mW

1
1 + κ2

(
ζ

(1)

A±
L

(R′) − κζ
(1)

A±
R

(R′)
)2
, (5.1)

and

ghZZ =
g5Lv

2mZ

1
1 + κ2

(
ζ

(1)

A3
L
(R′) − κζ

(1)

A3
R
(R′)

)2
. (5.2)

The wavefunction suppression near the TeV brane will decrease these couplings, with gh(WW,ZZ) →
0 as v/k → ∞. This coupling is shown in Fig. 7. This reduction will weaken the LEP bound
on the Higgs mass.

Using the above relations we can find the width for the decay into vector pairs, which is
simply

Γ(h→ (WW,ZZ)) =
(

1
2

) g2
h(WW,ZZ)m

3
(W,Z)

64πm2
h

(ξ − 4)1/2(12 − 4ξ + ξ2), (5.3)

with ξ = m2
h/m

2
W,Z , and the first factor of 1/2 is a symmetry factor relevant only for the ZZ

final state.
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Figure 7: Coupling of the Higgs to vector boson pairs compared to the SM value as a function of
v/k. Again, the W and Z coupling strengths are nearly identical due to the custodial symmetry.

The decay modes where one vector is off-shell can also be important [50]. These decay
widths are

Γ(h→WW ∗) =
3g2

hWW g2mH

512π3
HW (mW /mH), (5.4)

Γ(h→ ZZ∗) =
g2
hZZg

2mH

2048π3 cos4 θ

(
7 − 40

3
sin2 θW +

160
9

sin4 θW

)
HZ(mZ/mH), (5.5)

where

HW,Z(x) =
∫ 1+x2

2x
dy

(y2 − 4x2)1/2

(1 − y2)2 + x4Γ2
W,Z/M

2
W,Z

(y2 − 12x2y + 8x2 + 12x4), (5.6)

and we have ignored the corrections to the Wfb̄ and Zff̄ couplings which are small for v/k ¡
1/2. It is necessary to include the effects of the finite widths, ΓW,Z , to match onto Eq. (5.3).

The fermion couplings to the Higgs are similar; they take the form of the fermion wave-
functions evaluated on the TeV brane times a Yukawa coupling. Specifically,

λf,n = λf

(
χ

f(n)
L (R′)ψf(n)

R (R′) − ψ
f(n)
L (R′)χf(n)

R (R′)
)
. (5.7)

Note that, since the Kaluza-Klein excitations are localized near the TeV brane, this coupling
will be enhanced by the factor

√
log(R′/R). In the case of the 3rd generation quarks, which

have O(1) Lagrangian level Yukawa couplings, these enhancements make the couplings quite
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large, though in all cases they are perturbative. Again, the width into fermion pairs is simply

Γ(h→ f f̄) =
Ncλ

2
f,1mh

32π

(
1 − 4m2

f

m2
h

)3/2

, (5.8)

where Nc counts the fermion’s color degrees of freedom.
Finally, two of the most important couplings for the discovery of the Higgs boson at the

LHC are the Higgs-glue-glue, and Higgs-gamma-gamma vertices. These couplings are absent
at tree-level, but are generated radiatively by loops containing fermions and W -bosons. In the
present model, these vertices receive corrections from two sources. First, the KK excitations
of all fermion species can run in the loop (along with the W KK excitations in the case of
the γγ couplings); since these have substantial couplings to the Higgs these corrections can
be large. Second, the suppression in gHWW from the distortion of the W wavefunction can
suppress the coupling of the Higgs to two photons. To calculate these contributions, we can
adapt the formulae from [51] and [52]. The parton level cross section for producing a Higgs
from gluon fusion is

σgg→h =
GF [αs(mH)]2

32
√

2πm4
H

∣∣∣∣∣
∑

i

F i

∣∣∣∣∣
2

. (5.9)

Here the sum runs over all KK states (including the zero modes) of all colored fermions, with
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i labeling the flavor. The kinematic function F i is

F i = 2mi

∑
n

mi,nλi,n{−2 + (m2
H − 4m2

i,n)C0(mi,n)}, (5.10)

where C0(x) is an abbreviation for the three-point scalar Passarino-Veltman function [53]

C0(x) = C0(m2
H , 0, 0;x, x, x). (5.11)

This can be expressed simply as [52]

C0(m2) =

⎧⎪⎨
⎪⎩

− 2
m2

H

[
arcsin

(
1√
τ

)]2
: τ ≥ 1

1
2m2

H

[
ln
(

1+
√

1−τ
1−√

1−τ

)]2
: τ < 1

, (5.12)

with τ = 4m2/m2
H . Figure 8 shows the ratio of the gg → h cross-section to that of the

Standard Model as a function of the Higgs mass for ylight = 1/10. As expected, there can be
large corrections, even in the small v/k region.

For the decay h→ γγ we have

Γh→γγ =
α2

π3mHm
2
W

∣∣∣∣∣
∑

i

F i

∣∣∣∣∣
2

(5.13)

where the F i are as in Eq. (5.10) for fermions and

FW =
∑

n

(
m2

H

2
+ 4m2

W − [4m2
W (m2

H − 2m2
W (n)) −m2

W (n) ]C0(m2
W )
)

(5.14)

This is shown in Fig. 9. The mH dependence looks complicated, but the qualitative
features are easy to understand. The initial enhancement is from the KK fermion contribution.
As the Higgs mass approaches the gauge boson threshold the suppression to the hWW vertex
becomes more important, and this suppression increases with v/k as expected. For large Higgs
masses the top and other fermion KK contributions dominate and result in an enhancement.

Putting all of this together we can compute the branching ratios, shown in Fig 10 for
v/k = 1/10, ylight = 1/10. Several features are visible. First, the WW and ZZ coupling
suppression results in a delayed dominance of these modes, although they do dominate even-
tually for all allowed values of v/k. Second, the Z2 left-right symmetry requires the b and t

couplings to be equal, and hence the width to bb̄ is always larger than the width to tt̄ (they
would, of course, be equal if mt = mb). Finally, this enhancement in the b coupling suppresses
all other modes. In particular, the h → γγ mode is unobservable. Note that even if the b
coupling were not enhanced, the γγ mode would be reduced over a large region of parameter
space by the hWW coupling suppression. This means searches for Higgs bosons at the LHC
which depend on the h → γγ decay mode will have dramatically reduced signal, and will
likely not be viable if this model is correct.
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Figure 9: Ratio of the decay of a Higgs to γγ compared with the value in the SM. The different
curves correspond to the values of v/k from top to bottom on the right edge of the graph of (1.5, 1.1,
0.8, 0.4, 0.1). Again, we have taken ylight = 1/10.

It has been observed that Higgsless models with KK masses � 1 TeV show a breakdown
of perturbative unitarity in longitudinal gauge boson scattering [28]. Of course, in a purely
Higgsed 4D model, unitarity is maintained to arbitrarily high scales. It is therefore interesting
to see the behavior of the amplitude for WLWL → WLWL [54] as a function of v/k. This is
shown in Fig. 11 for a fixed Higgs mass of 150 GeV. Note both the rapid falloff and the fact
that, in the region v/k ≤ 1/2, unitarity is maintained to scales above 4 TeV.

6. Conclusion

In this paper we have investigated the effects of a finite Higgs vev in the Left-Right symmetric
Randall-Sundrum model with fermions and gauge bosons in the bulk. The main effects come
from distortions of the W and Z wavefunctions near the IR brane. We found that the model
is free of existing constraints as long as v/k � 1/2. In this region the Higgs coupling to
the gauge bosons can be suppressed by a factor of up to 1/3, and the Higgs couplings to gg
and γγ can be substantially shifted. This results in a new pattern of branching ratios as a
function of mH .

It has been shown previously that the precision electroweak observables can be shifted
by inclusion of brane localized kinetic terms for the gauge bosons and fermions [14, 12, 18].
This will shift the allowed region of v/k, but will not qualitatively alter the properties of the
Higgs couplings.
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Figure 10: Partial widths (top) and branching ratios (bottom) for Higgs decay into various channels
as a function of the Higgs mass at fixed v/k = 1/10 and ylight=1/10.

In this model it will be difficult to discover the Higgs, since the γγ mode is invisible over
much of the parameter space and the massive gauge boson couplings to the Higgs are reduced.
However, when it is found the properties of the Higgs will be an important tool in mapping
out the parameters of the full model.

– 16 –



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0  0.5  1  1.5  2  2.5  3  3.5

P
U

V
 s

ca
le

 (
G

eV
)

v/k

mH = 150 GeV

Figure 11: The center-of-mass energy at which tree-level perturbative unitarity is violated in
W+

L W
−
L →W+

L W
−
L scattering.

Acknowledgments

The author would like to thank Kaustubh Agashe, JoAnne Hewett, Jay Hubisz, Frank
Petriello, Tom Rizzo, and Marc Schreiber for helpful discussions.

A. Bidoublet Higgs

Instead of the real bidoublet used in Section 2, we could use a complex bidoublet Higgs field,
producing a version of the Two Higgs Doublet Model. We can parameterize this field as

ϕ =

(
ϕ0

1 ϕ+
1

ϕ−
2 ϕ0

2

)
(A.1)

The most general form of the potential for complex bidoublet field is [55]

V (ϕ) = −µ2Trϕ†ϕ+ λ1(Trϕ†ϕ)2 + λ2Trϕ†ϕϕ†ϕ+
1
2
λ3(Trϕ†ϕ̃+ Trϕ̃†ϕ)2

+
1
2
λ4(Trϕ† − Trϕ̃†ϕ)2 + λ5Trϕ†ϕϕ̃†ϕ̃+

1
2
λ6(Trϕ†ϕ̃ϕ†ϕ̃+ Trϕ̃†ϕϕ̃†ϕ), (A.2)

where ϕ̃ = σ2ϕ
∗σ2, and σ2 is the ordinary Pauli matrix. We expect that there will be solutions

where the neutral fields acquire vevs, so we try 〈ϕ0
1〉 = v1, 〈ϕ0

2〉 = v2. Stability of this solution
requires the two conditions ∂V/∂v1,2 = 0, where all fields are evaluated at their vevs. These
then imply (

v1
2 − v2

2
)
(−4λ3 − λ5 + λ2 − λ6) . (A.3)
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There is no symmetry that can require the second factor to vanish, so we can see that aside
from a vanishingly small and unnatural region of parameter space we have v2

1 = v2
2 ≡ v2/2.

The second stability condition then gives

v2 =
1
2

µ2

4λ3 + 2λ1 + λ2 + λ5 + λ6
. (A.4)

Inserting this solution into Eq. (A.2) we can read off that the mass eigenstates are

h ≡ (ϕ0
1 + ϕ0

2) H ≡ (ϕ0
1 − ϕ0

2)

A ≡ �(ϕ0
1 + ϕ0

2) G0 ≡ �(ϕ0
1 − ϕ0

2)

h+ ≡ ϕ+
1 + ϕ+

2 G+ ≡ ϕ+
1 − ϕ+

2 . (A.5)

The Gi are the would-be Goldstone fields, and hence have no mass terms in the potential.
Furthermore, the structure of the potential requires mH = mh+. However, there are enough
parameters that the masses are otherwise arbitrary. To parameterize this, we can write

m2
h = λhv

2, m2
H = m2

h+ = λHv
2, m2

A = λAv
2. (A.6)

CP symmetry tells us that there is no three-point vertex coupling two gauge bosons to the
CP-odd scalar. Hence, restricting ourselves to the neutral sector, we find the analysis from
the main part of the paper goes through with minimal changes.
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