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Abstract

In theories with extra dimensions it is well known that the Lorentz invariance of

the D = 4 + n-dimensional spacetime is lost due to the compactified nature of the n

dimensions leaving invariance only in 4d. In such theories other sources of Lorentz vio-

lation may exist associated with the physics that initiated the compactification process

at high scales. Here we consider the possibility of capturing some of this physics by an-

alyzing the higher dimensional analog of the model of Colladay and Kostelecky. In that

scenario a complete set of Lorentz violating operators arising from spontaneous Lorentz

violation, that are not obviously Planck-scale suppressed, are added to the Standard

Model action. Here we consider the influence of the analogous set of operators which

break Lorentz invariance in 5d within the Universal Extra Dimensions picture. We

show that such operators can greatly alter the anticipated Kaluza-Klein(KK) spectra,

induce electroweak symmetry breaking at a scale related to the inverse compactification

radius, yield sources of parity violation in, e.g., 4d QED/QCD and result in signifi-

cant violations of KK-parity conservation produced by fermion Yukawa couplings, thus

destabilizing the lightest KK particle. LV in 6d is briefly discussed.
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1 Introduction

The possibility that Lorentz invariance(LI) may be violated at high energies in 4d with

testable consequences has become a subject of much interest in the past few years[1]. If one

considers rotational invariance to be sacrosanct due to the strength of existing experimental

constraints, Lorentz violation(LV) must take the form of a breakdown of invariance under

boosts. Such a scenario is suggestive of spontaneous LV[2] where in some preferred frame,

e.g., a time-like 4-vector takes on a vacuum expectation value with components ∼ (1, 0, 0, 0).

While LV of the type described above have yet to be observed in 4d it is clear that if

n extra (flat) compact dimensions exist, perhaps near the TeV scale, they obviously behave

differently than do the large dimensions with which we are familiar. Clearly the LI in the

D = 4 + n dimensional space has been lost through the compactification process; LI suffers

further damage if the compactified manifold (here considered to be a torus) is orbifolded.

In the usual bottom-up analysis, the D-dimensional action is conventionally written in a

completely LI manner with all LV arising from the compactification/orbifolding process in

the IR. Thus, in the UV, such a theory apparently maintains LI. While such an approach

may be the simplest one to analyze it certainly does not address the larger issue as to how

or why the n dimensions have become compact. Some unknown UV physics must have

triggered this compactification process making the 4 large dimensions (or, depending on

one’s viewpoint, the n compactified dimensions) ‘special’ otherwise we would be living in

4 + n dimensions. Thus the true UV physics cannot be completely LI in D-dimensions.

It would be interesting to ask if this UV physics has left any signatures for us to find at

accelerators that are beginning to probe the TeV energy regime near the compactification

scale, R−1. If present, how might such effects be parameterized?

For simplicity let us consider the case of one extra dimension, i.e., a theory in 5d
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with the extra dimension compactified as usual on S1/Z2 with R−1 <∼ few TeV. If the UV

breaking of LI is spontaneous, as in the 4d case discussed above, we can imagine that it

was triggered by a 5-vector taking on the vev ∼ (0, 0, 0, 0, 1) in some frame[2] thus leaving

us with 4d LI with the fifth dimension becoming ‘special’. Although our approach will not

capture any of the detailed dynamics associated with how such a vev was generated, it may

be able to probe some of the residual LV physics which could remain accessible at the TeV

scale. A framework for this type of analysis already exists for the Standard Model(SM) in

4d, the so-called SM Extension[3]. This framework is particularly appealing for a number

of reasons one of which is that it isolates the dominant effects of explicit LV in operators

of the lowest possible dimension. In order to have a specific model in which to work in 5d

that is closely analogous to this 4d case, we here adapt this particular framework to the 5d

version of SM where all fields are in the bulk, i.e., the Universal Extra Dimensions(UED)[4]

scenario, but allowing LV to occur only in the fifth dimension.

As we will see in detail below the existence of LV in 5d induces a number of new

effects within the 5d UED framework such as: (i) The KK spectra of the gauge and Higgs

bosons as well as those for all of the left- and right-handed fermions can each be rescaled

arbitrarily. This can increase the possible confusion between UED and SUSY scenarios at

the LHC[4]. (ii) New loop-induced parity violating effects are generated within previously

parity conserving sectors of the model, e.g., in 5d QED/QCD. One signature of this is the

generation of anapole moment-type couplings between fermions and gauge bosons. (iii) KK-

parity, which is exact even at loop order in ordinary UED, becomes broken through mixings

in the fermion KK mass matrices. This results in loop-induced mixing among gauge KK

states and a finite lifetime for the Lightest KK Particle(LKKP) which usually considered

as a stable dark matter candidate in the UED scenario. (iv) It is possible that the 5d LV

operators may be the source of electroweak symmetry breaking.
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The outline of this paper is as follows: In Section 2 we discuss the adaptation of

the LV SM Extension operators to 5d under the assumption that LI is broken only in 5d.

Here we also show how the 5d analogs of the 4d CPT violating (as well as LV) operators

can be (almost) removed from the action by suitable field redefinitions. We will show that

through these redefinitions these operators may induce spontaneous symmetry breaking by

generating a negative mass squared for scalar fields. This leads to a potential correlation

between the SM Higgs vev and the size of the extra dimension, R−1. In Section 3, we

analyze how the remaining operators lead to modifications in the KK spectra of the SM

gauge, scalar and fermion fields. We show that having a different KK spectrum for left-

and right-handed fermions, which is possible now that 5d LI is broken, yields a potential

source for parity violation in QED/QCD in 4d. In Section 4 we demonstrate that KK-parity

violation results from the Yukawa sector of the theory that normally generates masses for the

would be fermion zero-modes. This again arises from the field redefinitions employed earlier

to remove the analogs of the CPT violation operators. KK-parity violation is shown to lead

to a number of new effects such as the instability of the lightest KK-parity odd particle as

well as general mixing among the KK-even and KK-odd excitations. A discussion and our

conclusions can be found in Section 5. The Appendix contains a brief discussion of LV in 6d

for scalar fields.

2 Lorentz Violating Operators

Given the field content of the SM, the SM Extension[3] provides for us a relatively short list

of the lowest-dimension gauge invariant 4d LV operators which may also be CPT violating.

We can easily adapt this list to our purposes and restrict ourselves to those cases where only

5d LI is lost while 4d LI remains. This requirement turns out to be highly restrictive as

many of the 4d LV operators do not have 5d analogs which can lead to loss of LI in only 5d.
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Systematically going through the list 4d operators we find a number whose general-

izations to 5d cannot satisfy our constraints. Consider for example the LV set of 4d operators

Φ†(αµνB
µν + βµνT

aW µν
a )Φ , (1)

where Φ is the Higgs scalar and Bµν and W µν
a are the U(1) and SU(2) field strength tensors;

αµν and βµν are sets of numerical coefficients. Generalizing to 5d we immediately obtain

Φ†(αMNB
MN + βMNT

aWMN
a )Φ . (2)

We now ask what values of A,B are allowed for the coefficients above without violating 4d

LI: if A,B both take on 4d indices then 4d LI will be broken. Similarly, if, e.g., A = µ and

B = 5 then 4d LI is again lost; the last possibility, i.e., A = B = 5, yields zero due to the

index antisymmetry. Thus the generalization of operators such as this in 4d to 5d does not

yield anything interesting given the assumptions of our analysis. As another example of this,

consider the 4d operator

κµνD̄σ
µνSΦ + h.c. , (3)

whereD(S) is an SU(2)L doublet(singlet) fermion field and κµν a set of numerical coefficients.

In 5d this trivially generalizes to

κABD̄σ
ABSΦ + h.c. . (4)

As in the previous example the various possible choices of A,B yield either LV in 4d or are

zero by the antisymmetry of the indices.

Let us now turn to the set of surviving operators. As an example, in 4d, suppressing

flavor indices one has the following possible ‘kinetic’ LV term, e.g., for an SU(2)L singlet

fermion field, S:

i

2
(cS)µν S̄γ

µD̄νS , (5)
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where D̄ν is a covariant derivative acting in both directions and the cS are a set of dimen-

sionless numerical coefficients; we expect these coefficients to be very small in 4d. Here we

wish to generalize this operator to 5d, i.e.,

i

2
(cS)ABS̄ΓAD̄BS , (6)

where Γµ = γµ, Γ5 = iγ5 and only keep terms which are LV in 5d but not in 4d. Clearly,

given the experience of the examples above, we can only choose A = B = 5 and taking

kS = (cS)55 this term becomes

kS

2
[S̄γ5D5S − (D5S̄)γ5S] . (7)

Perhaps, more naturally, in 5d we might anticipate that kS = O(1) since LI in 4d remains

unbroken. Of course we may expect a similar term to be present for an SU(2)L doublet as

in the singlet case described above, with kS → kD, but which need not be the same value.

We will assume for simplicity that these 5d fermion terms are flavor-diagonal in what follows

and denote their set of coefficients more generically by kΨ. Going through and attempting

to generalize the remaining set of SM Extension 4d operators we find that only very few of

them satisfy our 5d requirements; in addition to the ‘kinetic’-like operator above for fermions

we find the following possibilities:

1

4
kκλµνF

κλF µν → λ

4

(
Fµ5F

µ5 + F5µF
5µ
)

k′µν(D
µΦ)†(DνΦ) → −kΦ(D5Φ)†(D5Φ)

aµf̄γ
µf → iαf̄γ5f

i(kφ)
µΦ†DµΦ + h.c. → ihΦΦ†D5Φ + h.c. , (8)

where the ‘mapping’ from 4d to 5d is shown explicitly. In the equation above, Φ represents

the Higgs doublet as before and, correspondingly, F represents any of the SM field strength
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tensors. Likewise, f is either an SU(2)L doublet, D, or singlet, S, fermion. Note that the first

two operators above lead to modifications of gauge and Higgs kinetic terms as was the case

for the fermionic operator discussed previously. Also note that in 4d the last two operators

in the equation above are CPT violating; we note that in 5d their coefficients must be Z2-odd

in a manner similar to that of any 5d bulk fermion mass term. The parameters λ, kΦ,Ψ are

dimensionless quantities which we might expect to be of order unity; they must be highly

suppressed quantities in the usual 4d SM Extension. On the otherhand the coefficients α

and hΦ have the dimensions of mass and might most naturally be of order ∼ R−1. While

it is possible that higher dimensional operators may also be present in addition to the ones

considered above these are likely to be Planck suppressed and can be safely ignored in the

analysis below.

The LV operators that we have found above are for a 5d scenario. It would be

interesting to consider how this operator set would be modified by going to even higher

dimensions, e.g., 6d. Here we could imagine that not only is LI of the type that we have

been discussing violated in the higher dimensional action but also rotational invariance in

the extra dimensions may be lost leading to very interesting new physics. Such possibilities

will be considered briefly in the Appendix and in detail elsewhere.

It was noted in Ref[3] that some of these CPT violating operators can be eliminated

in 4d by suitable field redefinitions. This remains especially true here in 5d (since we are only

considering LV in the one extra dimension) but with interesting consequences since these

field redefinitions will now depend on the co-ordinate of the extra fifth dimension. As an

example, consider the scalar part of the action including the two relevant LV terms above:

∫
d4x dy

[
(DAΦ)†(DAΦ) − V (Φ†Φ) − kΦ(D5Φ)†(D5Φ) + ihΦ(Φ†D5Φ − ΦD5Φ

†)
]
, (9)

where we use y as the co-ordinate for the extra dimension and V is the usual scalar potential.
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If we now make a field redefinition

Φ → eiΣΦyΦ , (10)

where Σ is a parameter whose value we choose to be (recall hΦ is Z2-odd)

ΣΦ = − hΦ

1 + kΦ
, (11)

then the action becomes

∫
d4x dy

[
(DAΦ)†(DAΦ) − V (Φ†Φ) + Σ2

Φ(1 + kΦ)Φ†Φ − kΦ(D5Φ)†(D5Φ)
]
, (12)

thus eliminating the ‘CPT violating’ term but now introducing a new contribution to the

scalar potential. Note that although the parameter ΣΦ must be Z2-odd only its square now

appears in the action.

Interestingly it is possible that this new quadratic term could produce a negative

mass squared for the scalar Higgs field thus generating spontaneous symmetry breaking in

the potential. Since we imagine that most naturally ΣΦ ∼ R−1 in magnitude this would

tell us that the weak scale is linked to the size of the compactification scale up to order one

corrections.

A similar field redefinition trick can also be applied in the fermion sector to rid

ourselves of the ‘CPT violating’ term. Let Ψ be any 5d fermion field; the relevant action is

then ∫
d4x dy

[ i
2
Ψ̄ΓAD̄AΨ − 1

2
kΨΨ̄γ5D̄5Ψ − iαΨ̄γ5Ψ

]
, (13)

where we have neglected any bulk mass terms as is standard in UED. Now we make the field

redefinition

Ψ → eiΣΨyΨ , (14)
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with

ΣΨ =
α

1 + kΨ
, (15)

and the ‘CPT violating’ term is eliminated leaving the action

∫
d4x dy

[ i
2
Ψ̄ΓAD̄AΨ − 1

2
kΨΨ̄γ5D̄5Ψ

]
, (16)

this time with no additional terms. As in the case above we note that the coefficient ΣΨ must

be Z2-odd. Thus out of the five possible LV structures in 5d we can eliminate two of them

by field redefinitions; as we will see these redefinitions will return to haunt us later on. Note

that the remaining LV terms are all modifications to kinetic terms and are all dimension-5,

i.e., they are of the same dimension as are the usual SM-like terms in the 5d action.

3 Influence of LV Terms: KK Spectrum

The three remaining LV terms have a common feature: they are modifications of the 5d

kinetic terms for fermions, Higgs bosons and gauge fields. They are analogous to (but not

the same as) the addition of brane kinetic terms in the action[5] and will produce similar

effects as we will now see. We remind the reader that the LV contributions discussed below

occur at the tree level while the somewhat analogous effects observed in the UED occur at

loop order.

For simplicity let us first examine the case of the free scalar(Higgs) field; the action

is then ∫
d4x dy

[
(∂AΦ)†(∂AΦ) − µ2Φ†Φ − kΦ(∂5Φ)†(∂5Φ)

]
, (17)

where we have allowed a standard bulk mass term only for this discussion. Performing the
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Kaluza-Klein(KK) decomposition as usual

Φ =
∑
n

φn(x)χn(y) , (18)

and imposing the orbifold boundary conditions one obtains the usual eigenfunctions χn(y) ∼
cos qny for Z2-even fields where q2

n = m2
n − µ2, with mn being the KK mass. In addition,

these wavefunctions also have the standard normalization
∫
dy χn(y)χm(y) = δnm. However,

the KK spectrum is now somewhat different than usual:

m2
n = µ2 +

n2

R2
(1 + kΦ) , (19)

where R is the compactification radius and n is an integer. The effect of the LV term is

to rescale the KK excitation spectrum by some arbitrary amount. (Recall the we expect

the dimensionless quantity kΦ to be as large as order unity.) This is quite similar to the

loop-induced radiative Higgs mass shift found in the case of UED induced by brane kinetic

terms[4]. In that model the size of the contribution was logarithmically dependent on the

cutoff but was under control numerically; here the rescaling occurs at the tree-level and is

completely arbitrary. In order to insure a tachyon-free spectrum it is clear that we must

have kΦ > −1.

Next we turn to the gauge fields; when the corresponding gauge group is not sponta-

neously broken, e.g., for the case of gluons in SU(3)c, the action is

∫
d4x dy

[
− 1

4
FABF

AB − λc

4

(
Fµ5F

µ5 + F5µF
5µ
)]
, (20)

where color indices have been suppressed. The KK decomposition is most conveniently

performed in the physical g5 = 0 gauge:

gµ =
∑
n

g(n)
µ (x)fn(y) , (21)
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and produces the standard eigenfunctions ∼ cos ny/R for Z2-even fields normalized as usual.

In a manner similar to the scalar case above, the KK masses are, however, now given by

m2
gn

=
n2

R2
(1 + λc) , (22)

where λc can be O(1). This spectrum shift is again similar to that induced by brane term

radiative corrections in the UED model but here it can rescale the spectrum arbitrarily by

a large amount. Since λ and kΦ are completely unrelated, this rescaling of the KK spectra

can be performed independently for these fields.

In the electroweak sector the KK decomposition is a bit more complex due to pres-

ence of symmetry breaking, the mixing among the neutral fields and the fact that the LV

coefficients for the SU(2)L and U(1)Y gauge groups, λW,B, respectively, can be numerically

different. The case of the W KK tower is rather straightforward since the effect of symmetry

breaking here is to generate a simple bulk mass term with the usual eigenfunctions; one

obtains in standard notation

m2
Wn

=
1

4
g2v2 +

n2

R2
(1 + λW ) , (23)

as we might have expected. Note that we can adjust the W and gluon towers relative to

each other in an arbitrary manner; in UED the ratio of these two, loop-induced shifts is

completely fixed. For the neutral fields one obtains a level-by-level mixing between the KK

excitations of the B and W3 fields as in the case of UED. The elements of the symmetric

KK mixing matrix at the nth level are given by

M2
W3W3

=
1

4
g2v2 +

n2

R2
(1 + λW )

M2
W3B = M2

BW3
=

1

4
gg′v2
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M2
BB =

1

4
g′2v2 +

n2

R2
(1 + λB) , (24)

which is somewhat similar to the case of UED. The corresponding level-dependent ‘Weinberg-

angle’ is then given by

tan 2θn =
−2gg′v2

4(λB − λW ) n2

R2 + (g′2 − g2)v2
. (25)

Since λB,W are arbitrary, in principle O(1) parameters, this KK mass spectrum for these two

neutral fields can be substantially different than obtained in UED.

The case for fermions proceeds in the standard fashion from the above action. Let us

ignore SU(2)L ×U(1)Y symmetry breaking and zero-mode mass generation for the moment;

we will return to this issue below. The arbitrary 5d fermion field Ψ is decomposed into left-

and right-handed pieces in the standard manner: Ψ = PLΨL + PRΨR using the usual pro-

jection operators and then the KK decomposition is performed, i.e., ΨL,R =
∑

n ψ
(n)
L,Rf

(n)
L,R(y)

and we arrive at the the coupled equations

(1 + kΨ)∂yf
(n)
L = mnf

(n)
R

−(1 + kΨ)∂yf
(n)
R = mnf

(n)
L , (26)

so that the fermion masses are given by

m2
Ψn

= (1 + kΨ)2 n
2

R2
. (27)

For doublet(singlet) fields we choose the left(right)-handed fermions to be Z2-even to obtain

the conventional SM structure. Note that the mass-squared of the fermion fields are quadratic

in the LV correction whereas bosons experience a linear correction. In either case we again

see that we can rescale the mass spectrum as we’d like since we can choose the LV coefficients

11



arbitrarily. In particular, there is no reason, e.g., for the left- and right-handed SM fermions

to have KK towers that are in any way degenerate which can lead to new physics signatures

as will be discussed below. Although KK-parity is still maintained at this point, clearly if

one can rescale all of the masses of the KK excitations of the SM fields by arbitrary amounts

it is no longer clear which state will be the lightest one in the spectrum. The identity of

the LKKP dark matter candidate now depends on the values of the LV coefficients. We

note that since we can rescale the fermion and boson spectrum as we’d like the possibility of

confusion between the UED and SUSY scenarios at the LHC is now significantly increased.

The fact that the KK excitations of left-handed doublet and right-handed singlet

fermions now have different tree-level masses directly leads to new phenomena. As a demon-

stration of this, consider for simplicity the toy model of 5d QED accompanied by LV. The

KK towers of the of the left-handed and right-handed electron now having different masses

will produce a signal for parity violation within a conventionally parity conserving scenario

as we will now demonstrate. If one considers the coupling between the (zero-mode) photon

and left- and right-handed electrons one finds that at loop level a parity violating coupling

will be generated, i.e., the anapole moment[6], which corresponds to a tensor structure

< f |Jem
µ |f >anapole= ieQf f̄ [q2γµ − γ · qqµ]γ5F3(q

2)f , (28)

with F3(q
2) being the anapole moment form factor. F3(0) = a is then just the standard

anapole moment which has dimensions ∼ R2. The existence of this coupling is directly

related to the fact that the masses of the KK states inside the loop are different for the left-

and right-handed towers; in obvious notation and summing over KK levels we find that

a � α

π

π2R2

48

∫ 1

0
dx
∫ 1−x

0
dy

[
4(1 − x)(1 − y) + 5xy

1 + λγ + [(1 + kR)2 − 1 − λγ ](x+ y)
− (R → L)

]
. (29)

Assuming that R−1 =500 GeV and λγ = 0 for purposes of demonstration we obtain the
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numerical results for a shown in Fig. 1; here we see that |a| ∼ α TeV−2, which to set the

scale, is comparable in magnitude to the conventional SM contribution[6] induced by the

parity-violating weak interaction. Clearly LV in 5d can lead to parity violating signatures

in 4d in the absence of weak interactions. Within the 5d UED scenario the analysis above

Figure 1: The anapole moment of the electron induced by LV in 5d QED assuming λγ = 0.
From top to bottom the curves correspond to kL =-0.9, -0.7,-0.5, etc

also leads directly to a QCD color-anapole moment which also violates parity in 4d.

As we have just seen the introduction of 5d LV violating operators with O(1) co-

efficients allows us to modify the overall scales of the various gauge, scalar and left- and

right-handed fermion KK spectra in UED in an independent fashion. Thus when such oper-

ators are present it is no longer clear that, e.g., a neutral field will be the lightest state which

is odd under KK-parity and we may lose our natural dark matter candidate. The situation

is actually more severe than this as we will now see.
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4 Influence of LV Terms: KK-Parity Violation

The remaining term in the action that we have yet to examine is the Yukawa coupling

between the fermion doublet and singlet fields and the Higgs boson that generates non-zero

masses for the (would-be) zero-mode SM fermions. We can write this generically, dropping

all generation labels, as:

∫
d4x dy λ5D̄SΦ + h.c. . (30)

After rescaling by the field redefinitions employed above to rid ourselves of the unwanted

‘CPT violating’ LV terms this action becomes

∫
d4x dy λ5e

i(ΣΦ+ΣS−ΣD)yD̄SΦ + h.c. , (31)

so that a position-dependent phase has crept into the Yukawa part of the action. It is

important to recall that the quantities Σi are Z2-odd, i.e., they flip their sign at the origin.

To probe the influence of this term let us first extract out the all zero-mode piece and perform

the y-integration. Recall that zero-mode wave functions are flat = 1/
√

2πR; we obtain the

4d integrand

λ5√
2πR

v +H√
2

eiσπR/2 sin(σπR/2)

σπR/2
, (32)

where σ = ΣΦ + ΣS − ΣD and H is the usual SM Higgs field. The SM 4d Yukawa coupling

can then be identified as

λ4 =
λ5√
2πR

eiσπR/2 sin(σπR/2)

σπR/2
. (33)

Apart from the overall phase factor the last term can substantially rescale the size of the

Yukawa coupling depending on the value of σR and may lead to some interesting phe-

nomenology.
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Something even more interesting results when we do not project into the all zero-mode

state. Due to the additional y-dependent phase these Yukawa terms can violate KK-parity

causing, e.g., a destabilization of the LKKP. Recall that in the usual UED model KK-parity

is preserved to all orders in perturbation theory. To see this effect it is useful to examine

the mixing between the would-be zero mode fermion and the Z2-even members of the KK

tower; this corresponds to the off-diagonal sub-matrix linking, e.g., the zero-mode doublet

field with a KK singlet state. This calculation is straightforward and, in terms of the 4d

Yukawa coupling λ4 is given by

λ4v

2

[
einπ/2 σR

σR + n

sin((σR+ n)π/2)

sin(σπR/2)

]
+ (n→ −n) , (34)

which corresponds to the 0n element of the KK mass sub-matrix, M0n, and is seen to be

proportional to the SM zero mode mass, M0n = δ0nmf . (It is important to note that here the

symbol δ0n does not denote the Kronecker delta.) Clearly, such terms can only be significant

if σR is O(1) but this might be expected. Furthermore, one finds that all of the sub-matrix

elements of this type, Mnm = mfδnm, are in general found to be non-zero with a mass scale

set by the conventional SM fermion mass, i.e., with δnm values generally of order unity and

controlled by the values of n,m and σR. This is unlike the case of UED where the mixing

between the D and S fermion fields takes place level by level; here there is also a potentially

significant mixing between the various KK levels. However, light fermions, such as the

electron, experience little direct KK-parity violation through such mixing whereas for heavy

fields, like the top quark, this violation can be quite significant for R−1 ∼ 1 TeV or less. The

removal of the ‘CPT-violating’ LV terms in the original action via field redefinitions has thus

resulted in the breakdown of KK-parity conservation. We note that KK-parity violation at

some level might also occur if UED is extended higher dimensions to include gravitational

effects[7].
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This violation of KK-parity is quantifiable at the tree level by estimating the lifetime

of the LKKP. To get an order of magnitude estimate we perform the calculation in the mass

insertion approximation and assume that as usual the first KK photon excitation with mass

M is the LKKP. The process proceeds via γ1 → f̄L0fL1 + h.c. → f̄L0fL0 + (L → R), where

the second step arises from mixing. We obtain

Γ = NcQ
2
f (2Re δ01)

2 αM

6
(1 − 4m2

f/M
2)1/2

[
(g2

L + g2
R)
(
1 − m2

f

M2

)
+ 6gLgR

m2
f

M2

]
, (35)

where mf is the would-be zero mode mass, M = Mγ1 ,

gL,R =
m2

f

(m2
L,R −m2

f )
, (36)

with mL(R) being the mass of the first KK excitation of the doublet (singlet) field fL(R) and

δ01 is the dimensionless mixing parameter defined above.

Here we see again an example of induced parity violation in that the two couplings

are equal, gL = gR, only when the fermion KK excitation masses are the same. Note that

as expected this decay is very highly suppressed for light fermions, i.e., decays to heavy

fermions such as top quarks, will be by far dominant. To get an idea of the size of this

suppression, we take mL = mR = M and 2Re(δ01) = 1 so that

Γ =
Nc

3
Q2

fα M F (x) , (37)

with x = mf/M ; the function F (x) is shown in Fig. 2. As we expected, except for the

closure of phase space F (x) is larger the closer x is to 1/2; decays to first generation fields

is thus seen to be highly suppressed. Although the expression above might correspond to a

very narrow width by usual collider standards, for any reasonable range of parameters the

lifetime of the LKKP is quite short in comparison to the age of the universe. Clearly, if some
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other particle is actually the LKKP, the analogous calculation can be performed obtaining

qualitatively similar results.

Figure 2: The function F(x) as defined in the text.

Another way to observe the violation of KK-parity is through loop-induced mixing

among different gauge boson KK levels. This mixing is induced by the insertion of off-

diagonal fermion mass matrix elements into vacuum polarization graphs connecting gauge

fields with different KK number. In the 5d QED example this corresponds to a process

γn → f̄nf0 + h.c. → f̄mf0 + h.c. → γm where the intermediate step occurs due to Yukawa

induced fermion mixing. Using the notation above, mass mixing arising from this process in

the photon tower mass matrix induced by a single fermion flavor is given by

δM2
mn � NcQ

2
f

α

π
2Re(δmn) m2

f G(
m2

f

m2
Sn

,
m2

f

m2
Dm

) + (n→ m) , (38)

with mDm,Sn being the masses of the KK fermions in the loop and G is an order one loop

function. Here we again see that the dominant contribution arises from the most massive SM
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fermion sector as we might have expected. Clearly with δnm’s of order unity a summation

over all possible fermions in the loop can lead to small yet significant mixing in the gauge

boson mass matrix. This result easily generalizes to the cases of the W,Z and gluon KK

towers where gauge KK mass eigenstates will now no longer have a definite KK-parity. A

similar mixing will occur among Higgs and Goldstone KK levels.

One of the other effects of KK-parity conservation in the UED model is the inability

to singly produce states which are KK-parity odd at colliders, e.g., the lightest KK gauge

boson excitations. The violation of KK-parity induced by Yukawa interactions leads to

modifications of this conventional result though the corresponding cross sections are not

necessarily large. This can be seen by the fact that the widths of the KK-odd gauge bosons

into zero modes of the first two generations is quite small.

In this section we have seen that the elimination of the 5d analogs of the 4d ‘CPT

violating’ operators by field redefinitions induces potentially large violations of KK-parity.

We observed that the size of this violation an any given SM fermion sector is correlated with

the known size of the would-be zero mode masses. As a result UED loses its dark matter

candidate.

5 Summary and Conclusions

In this paper we have initiated a study of the influence of explicit Lorentz violation within the

context of the 5d SM where all fields are in the bulk, i.e., the Universal Extra Dimensions

scenario. To perform this analysis we extended the ‘conventional’ 4d model of Colladay

and Kostelecky to 5d and searched for a subset of operators that can leave 4d Lorentz

invariance untouched while breaking it in 5d. Two of these operators, the 5d analogs of

those that violate CPT in 4d, can be (almost) removed from the action through a set of
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field redefinitions for fermions and scalars. One obvious result of this field redefinition is

to induce a negative mass square term in the Higgs potential which may be the source of

electroweak symmetry breaking. In addition, the natural scale of the induced vev would be

∼ R−1 thus linking the scale of electroweak symmetry breaking with the size of the extra

dimension. The remaining LV operators lead to alterations of the various gauge, Higgs and

fermionic kinetic terms and independently rescale their associated KK spectra which can

increase the possible confusion of UED and SUSY at the LHC. Since, e.g., the masses of KK

excitations of the left- and right-handed SM fermions need no longer be equal this induces, at

loop order, parity-violating effects in previously parity-conserving parts of the SM, i.e., QED

and QCD. Furthermore, we have shown that the the field redefinitions used to eliminate the

5d analogs of the 4d CPT violating terms make an important change in the nature of the

Yukawa couplings responsible for generating the would-be zero-mode fermion masses. Due

to an additional fifth co-ordinate-dependent phase, fermion mass terms are generated that

produce mixing among all of the various KK levels thus violating KK-parity. This leads to a

destabilization of the lightest KK-odd particle which is the usual dark matter candidate in

UED. In addition these terms were shown to induce mixing between the various gauge KK

levels at one-loop.

As we have seen the presence of LV terms in the 5d UED scenario can lead to substan-

tial modifications from the conventional expectations. Hopefully signals for extra dimensions

will be found at future colliders.
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Appendix: LV in 6d

It is interesting to consider what happens when LV is extended to 6d and compactified on

an orthogonal torus with radii R5,6. Although a detailed study lies outside the scope of the

current work we would like to give some flavor here by considering for simplicity the LV 6d

scalar action. From the analysis above, this is given by

∫
d4x dx5 dx6

[
(DAΦ)†(DAΦ) − V (Φ†Φ) − kij(DiΦ)†(DjΦ) + ihi(Φ

†DiΦ − ΦDiΦ
†)
]
, (39)

where we take ki,j, i, j = 5, 6, to be real and symmetric; summation over these indices when

repeated is implied. Since we will be concentrating for simplicity on the pure scalar sector

in our discussion below, we have ignored the possibility of new LV interaction terms that

may be present in 6d which are absent in 5d. As in 5d, the ‘CPT-violating’ terms can be

eliminated by a field redefinition:

Φ → eiΣixiΦ , (40)

where

Σ5 =
−h5(1 + k66) + h6k56

(1 + k55)(1 + k66) − k2
56

, (41)

and Σ6 can be obtained by interchanging 5 and 6 in the expression above. As in 5d this field

redefinition adds a new, likely negative term to the scalar potential:

−h
2
5(1 + k66) + h2

6(1 + k55) + 2h5h6k56

(1 + k55)(1 + k66) − k2
56

Φ†Φ . (42)

So far this is a rather straightforward extension of 5d; something new happens when we

perform the usual KK decomposition

Φ(xµ, xi) =
∑
n,m

φn,m(xµ)χn,m(xi) . (43)
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Through the usual manipulations we are led to the equation of motion for χ which we can

write for free scalars as

∂i

[
hij∂jχ

]
−m2

n,mχ = 0 , (44)

where the symmetric object hij acts as a flat, constant ‘metric’ in the x5 − x6 space with

elements h55 = 1 + k55, h66 = 1 + k66 and h56 = k56. These satisfy hilh
lj = δj

i and thus hij

are the elements of the inverse matrix h−1. In the x5 − x6 co-ordinate basis this equation is

not generally separable; however, the metric can be diagonalized through a suitable x5 − x6

rotation to the basis x±:

x+ = x5 cos θ + x6 sin θ

x− = x6 cos θ − x5 sin θ , (45)

with angle θ given by

tan 2θ =
2k56

k55 − k66
, (46)

so that the now separable equation of motion for χ becomes

λ−1
+ ∂2

+χ+ λ−1
− ∂2

−χ+m2
n,mχ = 0 , (47)

with λ± given by

λ± = 1 +
k55 + k66

2
± 1

2

[
(k55 − k66)

2 + 4k2
56

]1/2
. (48)

Note that although our metric is constant, rotations no longer commute with it. The fact

that there is a ‘preferred’ frame where the ‘metric’ is diagonal is the result of LV here manifest

as the loss of x5 − x6 rotational invariance. We can now express χ as χn,m = fn(x+)gm(x−)

in this preferred basis.

Although we have switched to the co-ordinates x±, the boundary conditions will most

likely be expressed in the x5,6 basis. Here, for example, we consider the most simple case
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where we have invariance under the typical periodic conditions: x5,6 → x5,6 +2πR5,6, so that

one can write χ = exp inixi/Ri = exp i[a+x+ + a−x−] and thus

m2
n5,n6

=
a2

+

λ+
+
a2
−
λ−

, (49)

where

a+ =
n6

R6
cos θ − n5

R5
sin θ

a− =
n5

R5
cos θ +

n6

R6
sin θ . (50)

Note that in this simple case, the KK mass eigenvalue equation could have been obtained

without making the co-ordinate transformation above since the eigenfunctions are simple

exponentials. Straightforward algebra yields

m2
n5,n6

=

[
(1 + k55)(1 + k66) + k2

56

]−1(
(1 + k66)

n2
5

R2
5

+ (1 + k55)
n2

6

R2
6

− 2k56
n5n6

R5R6

)
. (51)

This eigenvalue equation for the KK masses is remarkably similar to that obtained by

Dienes[8] who consider tori with shift angles and shape moduli in 6d. Instead of the simple

KK spectrum rescaling that we observed for LV in 5d, in 6d the KK spectrum is significantly

skewed and distorted compared to conventional expectations. The shift angle of Dienes in

our case arises from LV and the existence of the preferred frame.

A more detailed discussion of LV in 6d will be given elsewhere.
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