
The BaBar Data Reconstruction Control System
Antonio Ceseracciu, Member, IEEE, Martino Piemontese, Francesco Safai Tehrani, Teela M. Pulliam,

Fulvio Galeazzi

Abstract— The BaBar experiment is characterized by extremely
high luminosity and very large volume of data produced and
stored, with increasing computing requirements each year. To
fulfill these requirements a Control System has been designed and
developed for the offline distributed data reconstruction system.

The control system described in this paper provides the per-
formance and flexibility needed to manage a large number of
small computing farms, and takes full benefit of OO design.
The infrastructure is well isolated from the processing layer, it
is generic and flexible, based on a light framework providing
message passing and cooperative multitasking. The system is
distributed in a hierarchical way: the top-level system is organized
in farms, farms in services, and services in subservices or code
modules. It provides a powerful Finite State Machine framework
to describe custom processing models in a simple regular language.

This paper describes the design and evolution of this control
system, currently in use at SLAC and Padova on ∼450 CPUs
organized in 9 farms.

Index Terms— distributed systems, control system, high energy
physics software.

I. THE BABAR DATA RECONSTRUCTION AND THE

CONTROL SYSTEM

A. BaBar Prompt Reconstruction system

THE Prompt Reconstruction (PR) system is part of the
software for the BaBar experiment. Its tasks are to:

generate calibration data; and process the incoming data from
the detector, performing a complete reconstruction of physical
events producing results ready for physics analysis. These tasks
are done in two separate passes: the Prompt Calibration (PC)
pass, and the Event Reconstruction (ER) pass. The need to
automate this process pushed for the creation of a first Control
System, and later for a new design. This new design and
implementation is the subject of this paper.

The data obtained from the detector Data Acquisition System
(DAQ) is stored in files using a format known as “extended
tagged container” (XTC). There is a 1-to-1 correspondence
between data runs and XTC files. Those files are then archived
in the mass storage system. The typical data rate of XTC
production is 600 GB/day; the integrated amount of stored
XTC data is about 270 TB, at the time of writing. The Prompt

A. Ceseracciu is with the Stanford Linear Accelerator Center, 2575 Sand Hill
Road M/S 97, Menlo Park, CA 94025, USA (email: antony@slac.stanford.edu);
was with Università di Padova, Padova, Italy.

F. Safai Tehrani is with INFN Roma c/o Universitá’ di Roma “La Sapienza”,
P.le A. Moro 2, 00185 Roma, Italy; was with the Stanford Linear Accelerator
Center, Menlo Park, CA, USA

M. Piemontese, Flat 3, 75 Gauden Road, SW4 6LJ, London, UK; was with
the Stanford Linear Accelerator Center, Menlo Park, CA, USA

T.M. Pulliam is with the Ohio State University, Columbus, Ohio, USA.
Fulvio Galeazzi is with INFN Padova, c/o Dept. of Physics, Universitá di

Padova, via F. Marzolo 8, 35100 Padova, Italy

Calibration pass calculates and stores the new calibrations for
each run into the conditions database, presented in [1]. These
calibrations are then used by the Event Reconstruction pass of
the run which produces fully reconstructed events and writes
them to the event store database. The Prompt Calibration and
Event Reconstruction passes are processed by farms of typically
32 and 100 CPUs respectively.

Each farm processes one run at a time. For each run, an
instance of a daemon known as the Logging Manager (LM,
see [2]) is started on a dedicated server. It distributes the events
read sequentially from an XTC file to multiple reconstruction
processes running on the farm machines (nodes). The Prompt
Calibration farm must process runs in sequential order, as the
calibration uses information from the previous runs, while the
Event Reconstruction farm is only constrained to process runs
that have been calibrated. For a detailed discussion of the BaBar
Prompt Reconstruction model see [4] and [7].

B. The need for automation: Control System

The reconstruction software provides all the tools necessary
to process a run in a computing farm. Using the tools by hand
is impractical, given the high data rate of BaBar production.
The basic purpose of the Control System was to automate
the production procedures, in order to obtain a system able
to process long sequences of data runs without continuous
input from human operators. The first control system was then
realized using some of the most popular tools available for
system level automation: the perl programming language and
shell scripting. This first Control System is described in [5].

This necessity driven development process caused the control
system scripts to grow in complexity. “Quick and dirty” pro-
gramming approaches, typical of system level scripting, raised
manageability issues; local improvements easily caused global
disruption. The behavior of the system became difficult to
understand and control. Even though the system was able to
properly satisfy its functionality requirements, these flexibility
concerns motivated the design and implementation of a different
system.

II. THE NEW CONTROL SYSTEM

The lessons taught by the development and operation of the
old system established the functional requirements for the new
Control System, but also a specific set of software requirements:

• flexible: able to execute a variety of processing models,
distributing processes and tasks on different machines as
decided by the user;

SLAC-PUB-11138
April 2005

Work supported in part by the Department of Energy contract DE-AC02-76SF00515
SLAC, Stanford University, Stanford, CA 94309

• reliable: complete and efficient error and exception han-
dling;

• extensible: new modules and features can be easily added
to the processing models;

• simple: both for the end user and for the developer,
interfaces are kept as simple as possible;

To meet these requirements, the Control System is highly
modular and distributed, avoiding as much as possible single
points of failure which caused problems in the former control
system. Relevant services are duplicated as needed (statically
and dynamically) to enhance robustness and performance.

The Control System can be described as a dynamic network
of distributed services interacting to perform all the data
processing related tasks. These tasks can be summarized as
follows:

• Data Flow
• Data Processing
• Distributed Networking
• Finite State Machines
• System Configuration
• System Monitoring and Alarms
• Task Automation
• User Interface

A. Engineering for flexibility: Services

A service is a high level design concept meant to separate
functionality from actual implementation. The end-user will see
the system in terms of the services it provides, without the
need for an in depth knowledge of the internal structure. The
key concept of services is topological transparency: any service
meant to be visible globally in the system can be accessed
from anywhere in the system. The client needs no knowledge
of the location of the service on the network or of the network
topology. The implementation of topological transparency is
described in III-C. Also, services can be hierarchically layered
in order to create higher level services which are potentially
more descriptive of the problem domain and thus able to hide
from the user some details of the programming interface.

III. FRAMEWORK AND AGENTS

A. Introducing the Lightweight Processing Framework

The entity providing cohesion to the system is the
Lightweight Processing Framework (LPF). The framework
itself only provides essential services (hence the attribute
“Lightweight”): cooperative multitasking, message passing and
dynamic module management. Any other core task is delegated
to the core framework modules, and all of the components of
the Control System are coded inside framework modules. Each
node participating in the farm runs at least one LPF agent,
thus allowing for remote activation of services from one or
more remote LPFs. This also allows dynamic restructuring of
the Control System, by easily “moving” services around in a
completely transparent fashion, e.g. shutting an instance of a
service and creating a new one on a different LPF is transparent

to the clients of that service. We can see the set of all the LPFs
running in the system as a distributed service manager.

The framework has the ability to “load” services and objects
through well defined interfaces. The implementation of the LPF
was the first step toward the implementation of the Control
System. Framework functionality is provided by a set of core
modules. Dedicated modules take care of:

• message passing front-end
• dynamic module allocation
• TCP/IP inter-LPF communication
• Transparent proxy system
• Fault-tolerant naming service
• Active handling for external processes
• Internal event scheduling, cron like
• Local and global message logging
• Alarm handling

B. The Structure of the LPF

The LPF is a transparent facility: the operator never needs to
interact with it directly. The uniformity of interactions between
the framework and the object/service modules is guaranteed
by the requirement that all the Framework-instantiable objects
implement a common interface.

The LPF is an event based server with a cooperative multi-
tasking structure, also known as non preemptive multitasking.
In this processing model there is a single flow of execution
in which many parts (modules) participate. Each module must
be written in such a way that it performs a single set of
operations, in a limited amount of time, and then returns control
to the caller. After performing the initialization, the Framework
reaches the “steady state”, that is the main event loop. During
this phase it cyclically transfers control to each one of the
modules, thus simulating a simultaneous flow of execution
of various applications. Modules interact via messages. In
particular, each module generates a list of messages to be
distributed to other modules as a return value. The inter-object
communication becomes completely transparent by centralizing
the message distribution, without the need for any additional
inter process communication structure.

The modules in the Framework can be logically divided into
two separate groups:

• Passive Modules: these are given control only when they
receive a message.

• Active Modules: these need to be given control during
every iteration.

The module interface provides simple methods to allow for
transparent interaction with the Framework:

• Init: invoked after instantiation, allows modules to execute
a custom startup sequence, possibly based on the config-
uration.

• Do: receives a message and executes the associated action
returning the answer as one or more messages;

• Run: performs a set of operations to be executed during
every iteration for Active Modules. Passive Modules don’t
define this method.

• Kill: performs the set of operations needed to remove
cleanly a module from the system;

The main event loop of the LPF looks like this:

• begin event loop:
• invoke the run method of each active module and ...
• ...push the messages returned in the message queue;
• invoke the run method of the dispatcher module, passing

the message queue as an argument;
• the dispatcher module dispatches the messages to the

receivers and...
• ...collects the answer messages that they generate and...
• ...pushes them in the message queue;
• end event loop;

C. Messages and Transparent Proxies

Any inter-module communication is mediated by messages.
Messages sent to a module are implicitly mapped by the
LPF to remote method invocations. Message passing is strictly
asynchronous.

The framework provides message passing among the mod-
ules that are loaded on a given LPF. Hence, when a client
module sends a message to a service, and the service exists as a
module loaded on the same LPF, the message is routed directly
to that module. This mechanism satisfies the requirements for
local, inter-module communication.

When a client sends a message to a service that is not repre-
sented by any module loaded on the local LPF, the transparent
proxy infrastructure is activated. The wanted service is looked
up by name on the remote Naming Service; if an instance of that
service exists on a remote LPF, then a transparent proxy module
is created on the local LPF. This proxy module advertises
itself locally as the real service, and replicates its programming
interface. Any message the proxy receives is forwarded to the
real module, and the answer routed back to the caller. Chained
operation (proxy of a proxy) is supported.

If the wanted service is not available anywhere on the system,
i.e. it is not found in the Naming Service directory, then action
is taken depending on a policy statically declared on a per-
module basis. Depending on that policy, an error message is
returned and/or an alarm is raised, or the service is instantiated
on demand on the local LPF and made available to others via
the Naming Service. This mechanism is designed to work in
in cases where an LPF suddendly becomes unreachable: in this
case, the services it was hosting are deleted from the Naming
Service directory, and replacement services are instantiated as
needed.

The inter-LPF messaging protocol is based on TCP and a
generic serializer: messages are encoded into strings by the
serializer and sent via a TCP socket. The TCP communication
code is entirely contained inside a core module. This is a
minimal approach designed to take advantage of the controlled
environment of a typical computer cluster.

D. The Agents deployment

Each LPF agent of the new Control System can be configured
to dynamically load a number of services . Figure 1 shows the
architecture of the Control System for both PC and ER farms,
with emphasis on the communication flow. The main structure
of both passes is very similar. The main driver of the Control
System is the Farm Manager (FM) service which acts as a
broker between two separate levels of service: the first level
(upper part of figure 1) includes all services needed for the
staging (XTC) to disk of the runs and the services that take care
of the scheduling of the runs; the second level (bottom part of
figure 1) includes all the services that take care of the event
reconstruction (ER pass) or calibration (PC pass). The Farm
Manager serves also as the main access point for the user to
the system. The two layers have separate services’ namespaces,
each one of them having a Naming Service (NS).

The reconstruction part of the single run is controlled by
a Run Processing (RP) Finite State Machine service (see sec-
tion III-F for the Finite State Machine abstraction and service
implementation) that starts the Logging Manager [2] on the
farm server and takes care of the bookkeeping; it also starts
and dynamically configures a number of Node Processing (NP)
Finite State Machine services . Typically on each CPU is run
an instance of the event reconstruction worker process, called
Elf. Each of the Node Processing Finite State Machines (see
figure 2 for the description of the states of the NP) starts the
Elf and waits until it has finished, then it performs integrity
checks on the output data files and gathers information from
the output of the Elf.

A minimal number of the Control System services has a
lifespan longer than the processing time of a run, and is able
to contact multiple farms. Only services that have at least one
of the two requirements are hosted in this part of the system:
any other service is hosted inside farms, to take advantage
of the independence and isolation of the farm’s environment.
Such long-lived services are typically feeders, that schedule and
allocate the runs to be processed to the farms, implementing
policies for load balancing; and monitoring services.

The only persistent component of the Control System is the
bookkeeping database. It is a relational database that stores
the status of current and past processings. Currently a separate
instance of this database runs at every production site, and
the instances are synchronized via an automatic scheduled
procedure.

E. The unified configuration and activation system

1) Formal hierarchic organization: The configuration sys-
tem is designed to define the whole configuration of a large and
complex computing system in a unique structure, contained in
a small number of files. This centralized approach makes life
easier for the user, but it can also be a potential performance and
reliability problem, being a centralized service in a distributed
environment.

A formal hierarchical model allows the maintenance of a
global configuration, but grants the flexibility to configure any

FD

PC Feeder

FM
Farm

Manager

RP Run
Processing

PC farm

NP

Node
Processing

NP NP NP

XTC

XTC
Staging

NS
Naming
Service

(and others)

NS

Run
Processing

Naming
Service

(and others)

Bookkeeping

DB

DB

DB

FD

ER Feeder

FM

Farm
Manager

RP
Run

Processing

ER farm

NP

Node
Processing

NP NP NP

XTC

XTC
Staging

NS

NS

DB

DB

Farm Control

Fig. 1. The actual deployment of the Control System agents, and the partitioning between multiple farms (depicted are a Prompt Calibration (PC) and an
Event Reconstruction (ER)) and farm subsystems (Farm Control, Run Processing). The dotted lines represent interaction with the naming service for transparent
service name resolution, and are not printed on the right side for ease of reading.

group of computing nodes with the desired granularity. An
important advantage of a formal hierarchy is that it gives the
computing environment a controlled and well defined structure.
A strong structure is the only way to harness the complexity of
a large and heterogeneous system, as PR. A clear example is
how the activation system benefits from the structure specified
at configuration level, as described below.

2) Initialization system: Initialization must be completed
before Activation. The Control System initialization procedure
consists of just one operation: running on every node a special
purpose LPF, called “BareLPF”.

A BareLPF is an LPF which only runs some core modules.
Its configuration is extremely simple and entirely hard-coded in
its special startup file. The BareLPF listens on a fixed TCP port,
which is reserved for this service. The BareLPF does not need
any other external information or resources to run. The one and
only duty of a BareLPF is to spawn new LPFs. A new LPF is
spawned upon reception of a specific message. The BareLPF
may be started at boot time or remotely by using the standard
UNIX facilities like ssh [3].

3) Distributed Activation Protocol: Thanks to the hierar-
chical model of computation, we can define the activation
protocol for a single generic case: a Configuration Manager
(A) which activates a lower-level Configuration Manager (B).
The activation of the whole computing environment follows by
recursive application of this rule. Each Configuration Manager
instance corresponds to a LPF agent.

From a local point of view, configuration is performed after
activation. On the whole system scale, though, activation and
configuration are performed at the same time, because the
hierarchy information, needed for the activation, is specified
in the configuration. The configuration sequence of an LPF
includes the activation of all its children in the hierarchical tree,

and cannot return until all its children report success or failure,
or after its timeout expires. Depending on what is specified
in the configuration, failure to activate a child LPF can lead
to the failure of the parent’s configuration sequence, or can
be ignored, or recovered. When the configuration sequence
of the Configuration Master LPF (the top level Configuration
Manager) ends successfully, the whole computing system is
guaranteed to be configured and ready for operation.

4) Configuration parsing and propagation: The configu-
ration file is valid globally. New spawned LPFs could read
the global configuration file, parse it, and find their own
subtree. This approach would require the configuration file to
be distributed to, and parsed by, every node. This centralized
distribution can be a scaling issue from the network point of
view; the main disadvantage though is that the distribution of
the configuration files would require some software component
different from the LPF, like nfs, ssh, ftp, i.e. one more potential
problem. In the activation and configuration protocol design the
configuration files are parsed only once, by the top level Con-
figuration Master. The parsed configuration structure is passed
to the children LPFs upon their activation. This guarantees that
all the nodes configuration is coherent, i.e. built from the same
files.

5) Local configuration: The configuration service exploits
the hierarchical structure of the configuration data to recognize
the subset of the configuration keys relevant for the local LPF,
and makes them available to the LPF itself and its modules.
The configuration supplied for a module is directly copied to
a dedicated structure in the data space of the module itself, so
that the application code in the module needs not to make any
explicit access to the global configuration structure.

6) System deactivation: The activation service is also re-
sponsible for the deactivation. The deactivation subsystem is

also known as the Reaper. The deactivation information is
maintained on each node by its BareLPF, inside a dedicated
module. When the deactivation module sitting on a BareLPF
receives the deactivation command, it checks if it carries
the name of a specific service to be reaped. If it does not,
the BareLPF sends to all of the LPFs active on its host a
deactivation message; otherwise, only LPFs belonging to the
specified service are targeted. This allows for selective service
activation and deactivation on a distributed scale. An LPF
upon reception of the deactivation message executes a self-
destruction sequence: it stops and unloads its modules and
finally exits the main LPF loop. The BareLPF remains active
and ready to undergo a new activation of the system.

The deactivation sequence can be run from any LPF in
which the full configuration has been loaded; this LPF becomes
the Deactivation Master. It is possible to deactivate the whole
system at once, i.e. to stop all LPFs running on some node
defined in the configuration, even if not bound to a configured
service; another option is to deactivate a single System or
Service defined in the configuration.

F. The Finite State Machine framework

A Finite State Machine (FSM) is a computation model
consisting of a discrete set of states, a start state, an input
alphabet, and a transition function which maps input symbols
and current states to a next state. Computation begins in a
special start state. It changes to next states depending on the
transition function.

The processing structure of PR can be naturally described in
terms of states and transitions between the states determined
by well defined conditions. This offers a very flexible model to
describe a processing system and realize it. A valuable benefit
of the FSM model is that it provides a good view of the current
status of the processing to the human operator. It also makes
possible to implement default error detection and recovery
procedures based on tunable timeouts and error handlers. Figure
2 shows a simplified succession of the operations (states) and
transitions of the NodeProcessingFSM.

Our FSM can be considered a specialized, heavyweight
framework dedicated to the application programming. We use
the term heavyweight to indicate the extensive and feature rich
set of programming interfaces available through this framework,
as opposed to the minimal programming interface of the
lightweight framework, the LPF. All the services and facilities
provided by the core system are made available through the
FSM, and any application code is encouraged to be coded inside
FSM states. This heavyweight framework makes coding of the
application layer easier, by making a rich functionality readily
available.

1) The FSM Structure: A generic implementation of the
FSM model is coded as a LPF module. This makes it possible
to plug an FSM in an LPF at run time. FSMs are specialized
dynamically by loading a particular FSM definition to an
instance of the FSM module. The FSM definition is coded in
a custom language in a single file.

2) The FSM Interpreter and the FSM Description Language:
The FSM Description Language is a simple description lan-
guage designed to describe, extend and modify FSMs with the
minimum effort. It is stackless, stateless and doesn’t have any
control structure, only assignments and logical connectors.

The language grammar is very simple:
• FSM: [FSM name]: defines the symbolic name of the

FSM;
• begin: [state name]: defines the name of state

where the FSM starts;
• state: [state name] isA: [class name]:

associates a symbolic name to a class name for the state;
• state: [state name] onTransition:
[transition name] do: [method name]:
defines a method name to be called on the object that
represents the class when a certain transition is generated;

• state: [state name] onEntry: [method
name]: defines a method to be invoked on the state
object upon entering in the state;

• state: [state name] onExit: [method
name]: defines a method to be invoked on the state
object upon exiting the state;

• state: [state name] timeout: [seconds]:
associates a generic alarm timeout to this state, to spot
blocked processing early.

• state: [state name] onTimeout: [method
name]: defines an handler to be invoked on the state
object when its timeout expires.

The FSM framework takes advantage of the dynamic typed
nature of the programming language to resolve at run time the
referenced classes, and load them.

G. BaBar Reco Finite State Machines

The RunProcessing (RP) FSM describes the centralized part
of the processing of a single run. For each processed run, a
new instance of the RunProcessing FSM is created, configured,
and started. This implies that all the data structures belonging
to the previous runs are erased, ensuring reproducibility of
the processing, which is an important consistency requirement.
Together with the FSM, all its states are reloaded.

Most of the logic of the Control System is coded as states of
this FSM, or as part of higher level services and then invoked
by proxy states. The complexity of actual RP FSMs is thus
considerable, amounting to over 40 different states. The current
status of the RunProcessing FSM is often the best indication of
the status of the whole processing farm. It allows the operator
to monitor the processing by just observing the transitions
between states. A tunable alarm timeout associated with each
state is also an effective way of spotting problems that are not
caught by specific alarm checks.

The RunProcessing FSM is remotely instantiated, configured
and started by the FarmManager as soon as all the informa-
tion needed to start processing a run is available. The first
states of the RunProcessing FSM are devoted to collection of
information from different sources and consistency checks; a

��

generate
alarm

ElfOprApp
start

EventProcessing
collect

Log statistics

clearup
locks

� �
��

Stay

� �
��

Stay
� �

��

� �
��

�
�

�

	

.

�

�

	

�

�

	

�

�

�

�

	

� �

��

�

�

�

�

	

�
�

StartProcessing

ERROR

OK

ERROR

OK OK

ERROR

ERROR

END
OK

Stay Stay

Fig. 2. A simplified view of the NodeProcessingFSM

new directory is created to host all the logfiles for the current
run. Then, the Logging Manager ([2]) is started, and a monitor
is attached to its log files. The dynamic configuration for the
reconstruction processes (Elves) is then produced and written
on disk. At this point, the duty of local processing on the
nodes is delegated to the NodeProcessing FSMs running on
them. They are started and the relevant part of the run-time
configuration is passed to them. The RP then just waits for all
of them to return. This is the phase where the farms spend
most of their time, and where the nodes are actually used for
distributed computation. After that, the RunProcessing FSM re-
sumes control and takes care of consistency checking, persistent
bookkeeping, and postprocessing, which includes starting the
quality assurance procedures. While the FSM includes checking
and recovery procedures for commonly encountered issues, the
general policy is to avoid blocking if anything goes wrong,
because the final consistency checking is designed to give a
final response about the success of the processing. When the
final state is reached, the RunProcessing FSM instance returns
control to the FarmManager, and is reset before the next run.

The PostProcessing FSM is used only in the Event Recon-
struction pass. The reason for that, is that its main task is to
collect the event data files produced by each Elf, merge them
into the final set of files to be shipped, generate bookkeeping
information about the files, and ship them to the export system,
to make the data available to the collaboration. Many integrity
checks are performed along the way to ensure consistency of
the shipped data. The PostProcessing FSM is implemented as
an independent system, with no run-time interface to the Run-
Processing FSM. This approach implicitly creates a decoupling
buffer between the two steps, which improves flexibility and
resources balancing.

H. User Interface

The user interface makes no use of the LPF and modules.
It is nevertheless designed modularly to assist flexibility and
maintenance.

The user interface and the control system communicate via
messages. User commands prepare messages and deliver them
to some LPF. Higher level commands use a discovery protocol
to locate the destination LPFs. This protocol relies on the
BareLPF being aware of all the services running on all the
LPFs running on its host. The modular design makes the
whole set of commands available by different means; currently
provided are a command line interface and an integrated
shell. Any command is automatically available from both.
A further flexibility mechanism is supplied to code different
sets of commands, called “interfaces”, into separate classes. A
selection of interfaces can be loaded and changed at run-time
in the command executable. Specific interfaces are dedicated
to the highest level commands (User), farm administration
(Farm),debugging (Debug). The ability to send any kind
of message to any module makes the command interface a
powerful tool for interactive debugging and unit testing.

The Control System GUI is a monitoring tool. Its main panel
is displayed in figure 3. It allows to inspect at a glance a set
of farms, giving immediate visual feedback about the current
status of each. More detailed information about a single farm is
available at a mouse click, including the current RunProcessing
FSM state and the nodes status (when applicable), and a contin-
uously updated log messages history. Multiple instances of the
GUI can run at the same time, even on different machines. Any
communication between the GUI and the Control System is
carried by regular messages. The GUI uses the perl/Tk graphics
toolkit and simulates the LPF main loop thread to implement
asynchronous updating of the farms status.

IV. DEVELOPMENT

The focus on flexibility is reflected by the very controlled
evolution of the project. This is detailed in figure 4.

Being a small team of developers, no formal control on the
development process was used. There is however a qualitative
observation we can make from looking at the development
history of the two main code repositries. The core software

Fig. 3. The Control System GUI monitoring the processing farms at SLAC

was developed in a planned requirements - design - prototype
- implement regime, with scheduled milestones and release
cycles. The application software, instead, was developed in a
very necessity-driven regime, because of the frequent need to
quickly adapt and evolve the system. This pressure did not
compromise the design qualities of the system though. We
consider this a success of building flexibility by design. A
more general annotation is that we found that no single formal
process metodology could fit the whole system, but rather, that
different kinds of code (e.g. core, application...) can be best
developed within different process methodologies.

A detailed discussion about the Control System as an ex-
ample of an evolutionarily efficient system is to be found in
[9].

V. CONCLUSIONS

A. Performance

The Control System is not computation intensive software.
This fundamental assumption supports the choice of Object
Oriented (OO) programming with a dynamically typed lan-
guage: OO perl. This combination leads to remarkably slower
code than in non-OO fashion, because of the need for the
interpreter to resolve symbols, like method calls, at run-time,
rather than during bytecode compilation; but, it grants the
greatest expressive power.

More significant performance metrics for the Control System
are, indeed, reliability and flexibility. The experience of over
24 months of continuous running shows that the time lost for
failure of the Control System itself is a negligible fraction of the
total. More frequently, changes in the operating environment,
like new revisions of tools, created conditions that the Control
System was not ready to deal with, until properly adapted
(“fixed”). This is inherent to the glue-like nature of the Control
System itself.

B. Software design summary

The Control System is an active distributed system. This
is a complex programming paradigm, that requires careful
design and attention to many issues typical in concurrent
programming.

This is not unnecessary complexity however. The main task
of the Control System, launching and monitoring external
executables, simply requires an active monitor. The only passive
way to perform this task, even for simple cases like determining
when an external command execution ends, is to poll for lock
files and parsing the command logfiles for specific messages.
This approach is less elegant and reliable: as an example, in
a distributed environment it introduces a considerable burden,
the dependency from the quasi-coherence (in-coherence) borne
by the distributed file system.

Different software engineering techniques were exploited to
manage this complexity. The main focus has been on attaining
modularity by design. A very light framework (LPF) hosts all
the rest of the code in form of dynamically loaded modules,
including core parts, like TCP-IP intercommunication and mod-
ule activation. Hence, anything coded for the Control System
has to run inside a framework module. The OO modeling
approach results in a classification of modules and in good code
reuse among similar modules. A more structured framework,
based on a Finite State Machine abstraction, supports the final
processing code. This support makes it convenient to exploit
the modular interface even for apparently trivial tasks, thus
fostering the developers to design modular code. The main
operative advantage of this design is the ease of adapting the
system to changing environments. In fact, the Control System is
used at any time to execute many different processing models,
in different environments.

The programming interface of the framework and of most
core components have remained stable over time. The main-
tenance and evolution of the system greatly benefit from the

LOC

03/2002 Months09/2002 11/2002 03/2003

Dev
Application

Production

Development

Core

Stable

06/2003 03/2004

CM2 Dev

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

OprProcessingSys (APP):
OprControlSys (CORE):

Fig. 4. The number of lines of code (LOC) in the two packages of the code repository. The plot reflects the different development phases: during Core
Development (1) there is development only on the core package, at high rate. In Application Development (2) the core development slows down, while the
application code grows extremely fast. Three months later the system starts to be used in production: application development slows down, and most of the
new code addresses issues emerging from the real-world test. Both packages see the same amount of activity. Few months later the main development effort is
considered done, and the system is Stable and works in a maintenance only regime. There is very little code contributed in this period, the curves are almost
flat. This also corresponds to developers switching to other projects in the same period. Then, a major change in the experiment’s Computing Model (CM2)
requires a major update to the control system. It is remarkable that very little is done on the Core package, while the Application package grows fast. This
shows how much the core code was reused, and how the flexibility of the core allowed a rapid adaptation of the system to a changed environment.

modular architecture, frameworks and services.

C. Acknowledgements

This work builds on a large body of development by the
BaBar Computing Group, and would not have been possible
without a strong collaborative effort.

REFERENCES

[1] I. Gaponenko, CDB - Distributed Conditions Database of BaBar
Experiment, CHEP2004, Interlaken (Switzerland), 29 Sep 2004
[http://indico.cern.ch/contributionDisplay.py?contribId=316&sessionId=6
&confId=0].

[2] S. Dasu, J. Bartelt, S. Bonneaud, T. Glanzman, T. Pavel, R. White, Event
Logging and Distribution for BaBar Online System, CHEP98, Chicago
(USA), 31 Aug-09 Sep 1998 [http://www.hep.net/chep98/PDF/47.pdf].

[3] T. Ylonen, SSH - Secure Login Connections over the Internet, Usenix 1996,
San Jose, CA (USA) [http://www.usenix.org/
publications/library/proceedings/sec96/ylonen.html].

[4] P. Elmer et al., Distributed Offline Data Reconstruction in
BaBar, CHEP2003, San Diego (USA), 24-28 Mar 2003
[http://www.slac.stanford.edu/econf/C0303241/proc/papers/
MODT012.PDF].

[5] F. Safai Tehrani, The BaBar Prompt Reconstruction manager: A real life
example of a constructive approach to software development, Comput.
Phys. Commun. 140, 56 (2001).

[6] http://www.objectivity.com

[7] P. Elmer, BaBar computing: from collisions to physics
results, CHEP2004, Interlaken (Switzerland), 29 Sep 2004
[http://indico.cern.ch/contributionDisplay.py?contribId=502&sessionId=21
&confId=0].

[8] A. Ceseracciu et al., The new BaBar Data Reconstruction
Control System, CHEP2003, San Diego (USA), 24-28 Mar 2003
[http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUDT011.PDF].

[9] A. Ceseracciu, T. Pulliam, The evolution of the dis-
tributed Event Reconstruction Control System in BaBar,
CHEP2004, Interlaken (Switzerland), 29 Sep 2004
[http://indico.cern.ch/contributionDisplay.py?contribId=210&sessionId=9
&confId=0].

http://indico.cern.ch/contributionDisplay.py?contribId=316&sessionId=6&confId=0
http://www.hep.net/chep98/PDF/47.pdf
http://www.usenix.org/publications/library/proceedings/sec96/ylonen.html
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MODT012.PDF
http://dx.doi.org/10.1016/S0010-4655(01)00255-7
http://www.objectivity.com
http://indico.cern.ch/contributionDisplay.py?contribId=502&sessionId=21&confId=0
http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUDT011.PDF
http://indico.cern.ch/contributionDisplay.py?contribId=210&sessionId=9&confId=0

