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Abstract. Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the
mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success.
We present a novel method for a cluster mass reconstruction which combines weak and strong lensing information
on common scales and can, as a consequence, break the mass-sheet degeneracy. We extend the weak lensing
formalism to the inner parts of the cluster and combine it with the constraints from multiple image systems. We
demonstrate the feasibility of the method with simulations, finding an excellent agreement between the input and
reconstructed mass also on scales within and beyond the Einstein radius. Using a single multiple image system
and photometric redshift information of the background sources used for weak and strong lensing analysis, we find
that we are effectively able to break the mass-sheet degeneracy, therefore removing one of the main limitations
on cluster mass estimates. We conclude that with high resolution (e.g. HST) imaging data the method can more
accurately reconstruct cluster masses and their profiles than currently existing lensing techniques.
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1. Introduction

Clusters of galaxies have long been recognised as excellent
laboratories for many cosmological applications. An espe-
cially important diagnostic is their number density as a
function of mass and redshift. This can only be measured
if reliable mass estimates of the observed clusters can be
obtained. In addition, in the framework of the ΛCDM cos-
mological model, the dark matter distribution in clusters
likely follows the NFW profile (Navarro et al. 1997).

Weak gravitational lensing is one of the most powerful
tools currently available for studying the mass distribu-
tion of clusters of galaxies. The first weak lensing detec-
tion in clusters has been made by Tyson et al. (1990).
However, it was only after the pioneering work by Kaiser
& Squires (1993) that the field began to flourish, and since
then many cluster mass reconstructions have been carried
out (see e.g. Clowe & Schneider 2001, 2002, Gavazzi et al.
2004, Lombardi et al. 2005). A disagreement occurring in
some cases between the cluster mass estimated from the
weak/strong lensing measurements with X-rays is still not
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well understood, although several scenarios have been pro-
posed to resolve this issue (see e.g. Allen 1998, Ettori &
Lombardi 2003).

In the absence of the redshift information, the main
limitation for a precise weak lensing mass estimate is
the mass-sheet degeneracy (Schneider & Seitz 1995). If
the redshifts of background sources and/or lens are not
known, the transformation of the surface mass-density
κ → κ′ = λκ + (1 − λ), where λ 6= 0 is an arbitrary
constant, leaves the expectation value of measured image
ellipticities unchanged. In Bradač et al. (2004b) we show
that this degeneracy can be lifted using information on in-
dividual source redshifts, however only if the weak lensing
reconstruction is extended to the critical parts of the clus-
ter. Strong lensing is affected by this transformation as
well. Namely, the mass-sheet degeneracy does not change
the image positions (since the source position is not an
observable) and flux ratios and therefore can not be bro-
ken if a single redshift multiple-image system is used. The
mass-sheet degeneracy can in principle be broken using
magnification effect (see Broadhurst et al. 1995, 2005). In
order to make full use of this method, the unlensed source
counts at a given magnitude threshold must be known
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accurately. Given the photometric calibration uncertain-
ties, which at the faint magnitudes one is usually deal-
ing with easily amount to 0.1 mag, thus an uncertainty of
∼ 10% in the unlensed source counts is typical. As shown
by Schneider et al. (2000), this level of uncertainty removes
a great deal of the power of the magnification method to
break the mass-sheet degeneracy.

Several attempts have been made recently to measure
the cluster mass profiles with weak lensing. However, as
shown in Clowe & Schneider (2001, 2002), it is extremely
difficult to distinguish e.g. isothermal from NFW profiles
at high significance using weak lensing data alone. The au-
thors also conclude that these difficulties mostly arise as a
consequence of the mass-sheet degeneracy transformation.
Therefore additional information needs to be included,
such as combining the weak lensing data with strong lens-
ing (see e.g. Kneib et al. 2003, Smith et al. 2004). Another
example was given by Sand et al. (2004) using combined
strong lensing and stellar kinematics data of the domi-
nating central galaxy. This approach offers valuable extra
constraints, however a detailed strong-lens modelling is re-
quired (Bartelmann & Meneghetti 2004, Dalal & Keeton
2003).

In this paper we use a combined strong and weak lens-
ing mass reconstruction to determine the mass and the
mass distribution of clusters. We reconstruct the gravi-
tational potential ψ, since it locally determines both the
lensing distortion (for weak lensing) as well as the deflec-
tion (for strong lensing). The method extends the idea
from Bartelmann et al. (1996) and Seitz et al. (1998). Its
novel feature is that we directly include strong lensing
information. Further, weak lensing reconstruction is ex-
tended to the critical parts of the cluster and we include
individual redshift information of background sources as
well as of the source(s) being multiply imaged. This al-
lows us to break the mass-sheet degeneracy and accu-
rately measure the cluster mass and mass distribution.
The method is tested using simulations, and in Bradač
et al. (2004a) (hereafter Paper II) we apply it to the clus-
ter RX J1347.5−1145. In this paper we first briefly present
the basics of gravitational lensing in Sect. 2. In Sect. 3 we
give an outline of the reconstruction method (detailed cal-
culations are given in the Appendix). We test the method
using N-body simulations, and we present the results in
Sect. 4. The conclusions and summary are the subject of
Sect. 5.

2. Gravitational lensing preliminaries

Throughout this paper we follow the notation of
Bartelmann & Schneider (2001), who give a detailed ac-
count of the gravitational lensing theory presented here.

We start by considering a lens having a projected sur-
face mass density Σ(θ), where θ denotes the (angular)
position in the lens plane. We define the dimensionless
surface density κ(θ) for a fiducial source located at a red-

shift z →∞ and a lens (deflector) at z = zd

κ(θ) =
Σ(θ)
Σcr

where Σcr =
c2

4πG
D∞

DdDd,∞
. (1)

D∞, Dd, and Dd,∞ are the angular diameter distances be-
tween the observer and the source at z →∞, the observer
and the lens, and the lens and the source, respectively.
The choice of scaling with Σcr is motivated by the fact
that lenses with Σ ≥ Σcr (i.e. κ ≥ 1) are strong enough
to form multiple images. In this paper, however, strong
lensing refers to multiple imaging only, while weak lensing
means that the lensing effect is treated as statistical in
nature, although it is also applied to the lens region with
κ > 1, traditionally called the strong lensing regime.

We define the deflection potential ψ(θ)

ψ(θ) =
1
π

∫

<2
d2θ′ κ(θ′) ln |θ − θ′| . (2)

which is related to κ via the Poisson equation

∇2ψ(θ) = 2κ(θ) (3)

Also the shear γ = γ1 + iγ2 and the deflection angle α are
related to ψ, where

γ1 =
1
2

(ψ,11 − ψ,22) , γ2 = ψ,12 , α = ∇ψ . (4)

The relations (3) and (4) are written for the source at
redshift z → ∞; we note, however, that they hold for
any redshift. Since we will work with sources at different
redshifts (both for strong as well as for weak lensing), we
factorise the redshift dependence of the lens convergence
κ, the shear γ, and the deflection angle α by

κ(θ, z) = Z(z)κ(θ) , γ(θ, z) = Z(z)γ(θ) ,
α(θ, z) = Z(z)α(θ) . (5)

Z(z) is the so-called “cosmological weight” function:

Z(z) ≡ D∞Dd,s

Dd,∞Ds
H(z − zd) , (6)

where Dd,s and Ds, are the angular diameter distances
between the lens and the source, and the observer and
the source at a redshift z, respectively. H(z − zd) is the
Heaviside step function and accounts for the fact that
galaxies located at z < zd are not lensed.1

In the case of weak lensing, the information on the lens
potential is contained in the transformation between the
source ellipticity ε(s) and image ellipticity ε. It is given as
a function of reduced shear g(θ, z) (see Seitz & Schneider
1997)

ε(s) =



















ε− g(θ, z)
1− g∗(θ, z)ε

for
∣

∣g(θ, z)
∣

∣ ≤ 1 ,

1− g(θ, z)ε∗

ε∗ − g∗(θ, z)
for
∣

∣g(θ, z)
∣

∣ > 1 .

(7)

1 To evaluate the angular diameter distances we assume the
ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, and Hubble con-
stant H0 = 70km s−1 Mpc−1.
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where

g(θ, z) =
Z(z)γ(θ)

1− Z(z)κ(θ)
. (8)

Galaxies are intrinsically elliptical, and therefore one
cannot disentangle the effect of lensing from the intrinsic
properties in (7) using a single galaxy image. Hence, the
weak lensing effect needs to be treated in statistical sense.
More precisely, we can Taylor expand the expression (7)
(e.g. for the case of |g(θ, z)| ≤ 1) and recall that

∣

∣ε(s)
∣

∣ < 1
by definition to obtain

ε(z) =
ε(s) + g(θ, z)

1 + g∗(θ, z)ε(s)

=
(

ε(s) + g(θ, z)
)
∞
∑

k=0

(−1)k(g∗(θ, z))k(ε(s))k . (9)

A similar expansion can be obtained for the case
|g(θ, z)| > 1. If we assume that the intrinsic ellipticity
distribution has moments

〈

ε(s)
k〉

= 0 for each k except
k = 0 we get the known expression for the expectation
value of the image ellipticity at redshift z

〈

ε(z)
〉

=











g(θ, z) if
∣

∣g(θ, z)
∣

∣ < 1 ,

1
g∗(θ, z) otherwise .

(10)

This relation is particularly simple due to the convenient
definition of ε. In the approximation κ� 1, |γ| � 1 (thus
|g| � 1) the expectation value is given by

〈

ε(z)
〉

= γ(θ, z).

3. The cluster mass reconstruction method

The idea of combining strong and weak lensing constraints
is not new, it has been previously discussed by Abdelsalam
et al. (1998), Kneib et al. (2003), Smith et al. (2004), and
others. The method presented here, however, has some
important differences. For example in Abdelsalam et al.
(1998) the authors reconstruct the pixelized version of the
surface mass density κ. A similar method for strong lens-
ing constraints only has recently also been presented by
Diego et al. (2004). We argue, however, that using the po-
tential ψ is favourable, since κ, γ, and α locally depend
upon the potential ψ – c.f. (3), (4) – and all can be quanti-
fied from the latter. γ and α, on the other hand, are non-
local quantities of κ. In other words, the mass density on
a finite field does not describe the shear and the deflection
angle in this field. If a finite field is used, one usually em-
ploys Fourier analysis; in this case, γ in fact corresponds
to original κ plus all its periodic continuations.

Further, even though not easy to implement, we de-
cided to keep the parametrisation of the mass-distribution
as general as possible. In Kneib et al. (2003) and Smith
et al. (2004), on the other hand, the strong and weak lens-
ing constraints were compared in a Bayesian approach in
the form of simple, parametrised models. In addition, the
weak lensing constraints were not used to the very centre
of the cluster and redshifts of individual sources were not
included.

3.1. The outline of the method

The main idea behind the method is to describe the cluster
mass-distribution by a fully general lens, using the values
of the deflection potential ψ on a regular grid. We then
define a penalty function χ2 and minimise it with respect
to the values of ψk. The convergence κ, the shear γ, and
the deflection angle α at an arbitrary position in the field
are obtained by finite differencing and bilinear interpola-
tion methods. The number of grid points we use for ψk is
(Nx + 2) × (Ny + 2); the extension by one row and one
column at each side is needed to perform the finite differ-
encing at each inner Nx ×Ny grid point.

We define the χ2-function as follows

χ2(ψk) = χ2
ε(ψk) + χ2

M(ψk) + ηR(ψk) . (11)

χ2
ε(ψk) contains information from statistical weak lensing,

whereas in χ2
M(ψk) we include the multiple imaging prop-

erties.R(ψk) is a regularisation term multiplied by the reg-
ularisation parameter η. The regularisation is a function
of the potential and disfavours small-scale fluctuations in
the surface mass density.

In order to find the minimum χ2 solution, we solve

∂χ2(ψk)
∂ψk

= 0 . (12)

This is in general a non-linear set of equations, which we
solve in an iterative manner. We linearise this system and
in the first step we start from some trial solution, to calcu-
late its non-linear terms (see the Appendix for details). We
solve the corresponding equations and repeat this proce-
dure until a convergence is achieved. Inverting the result-
ing matrix of ∼ (Nx ×Ny)2 elements for finding a solution
of the linear system is difficult in general even for grids
with a small number of cells. However, as it turns out,
the resulting matrix is sparse and the system is therefore
computationally inexpensive to solve.

The reconstruction is performed in a two-level iteration
process, outlined in Fig. 1. We will refer to the iteration
process mentioned above for solving the linear system of
equations as inner-level, where steps n1 are repeated until
convergence of κ. The outer-level iteration is performed
for the purpose of regularisation (as described in detail
in Sect. 3.3). In order to penalise small-scale fluctuations
in the surface mass density, we start the reconstruction
with a coarse grid (large cell size). Then for each n2 step
we increase the number of grid points in the field and
compare the new reconstructed κ(n2) with the one from
the previous iteration κ(n2−1) (or with the initial input
value κ(0) for n2 = 0). The second-level iterations are per-
formed until the final grid size is reached and convergence
is achieved.

3.2. Technical aspects

In this section we will briefly describe some technical as-
pects of how we calculate the lensing quantities κ, γ, and
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Input: α(0) κ(0) γ(0)

Initial coefficients of the matrix with α(n2) κ(n2) γ(n2)

Recalculate coefficients of the matrix

Using ψk calculate α(n1+1) κ(n1+1) γ(n1+1)

Interpolate α(n2+1) κ(n2+1) γ(n2+1) on a new grid

n2 = 0

Solve the linear
system

Increase the num-
ber of grid points

inner-level
iteration
repeat n1 until
convergence

outer-level
iteration
repeat n2 until fi-
nal grid size

Fig. 1. The outline of the two-level iteration process.

α at an arbitrary position within the field from the po-
tential ψk on a grid.

We use the finite differencing method with 9 grid
points to calculate κ, 5 points for γ, and 4 points for α
(see Abramowitz & Stegun 1972). The coefficients used
for κ and γ are given in Fig. 2, the case of α is discussed
in Appendix A.2. To evaluate κ(θ), γ(θ), and α(θ) at a
position θ within the field, bilinear interpolation is used.

Note, that the dimensionality of the problem is not
(Nx + 2)× (Ny + 2). Because the transformation ψ(θ)→
ψ(θ) + ψ0 + a · θ leaves κ and γ invariant, the poten-
tial needs to be fixed at three points (see Seitz et al.
1998, Bartelmann et al. 1996). These thus fix the con-
stant and linear term in the invariance transformation. If
this is not the case, a minimum in χ2 would correspond
to a three-dimensional subspace of possible solutions. The
choice of the three points, and the corresponding values of
the potential are arbitrary. Although the transformation
ψ(θ) → ψ(θ) + a · θ changes the deflection angle α, it
only causes a translation of the source plane, which is not
an observable. Therefore, even in the presence of strong
lensing, three points of the potential need to be held fixed.

The mass-sheet degeneracy transformation of the po-
tential is given by ψ → ψ′ = (1 − λ)θ2/2 + λψ. However
since we aim at lifting this degeneracy, in contrast to Seitz
et al. (1998) the potential ψk, is not held fixed at an ad-
ditional, fourth point. The dimensionality of the problem
is thus Ndim = (Nx + 2)(Ny + 2)− 3.

3.3. The χ2-function

In this section we will describe contributions to the χ2-
function, starting with the statistical weak lensing.

For Ng galaxies with measured ellipticities εi we define
the χ2

ε as

χ2
ε(ψk) =

Ng
∑

i=1

|εi − 〈ε〉|2

σ2
i

, (13)

where

σ2
i =

(

1−
∣

∣〈ε〉
∣

∣

2
)2

σ2
εs + σ2

err . (14)

Note that 〈ε〉 refers to the expectation value of the ellip-
ticity over redshift space, not to an ensemble average over
different galaxies and is derived from (10).

In Bradač et al. (2004b)2 we argue that χ2
ε can give

biased results for lenses for which many galaxies have |g| '
1. It would be better to work with a log-likelihood function
with a probability distribution that properly describes the
distribution of observed ellipticities. Unfortunately, such
an approach is not viable here (as will become obvious
later on). However, in general clusters do not have a large
fraction of galaxies with |g| ' 1 and we show in Bradač
et al. (2004b) that for these lenses the χ2-minimisation is
sufficient.

One of the major strengths of this statistical weak
lensing reconstruction technique is the possibility to si-
multaneously include constraints from multiple image sys-
tems to the weak lensing data in a relatively straight-
forward manner. The simplest approach to strong lens-
ing is to perform the so-called “source plane” modelling;
i.e. to minimise the projected source position difference.
Consider a multiple image system with the source at red-
shift zs and with NM images located at θm. We define
bm = θm − Z(zs)α(θm) − βs and the corresponding χ2-

2 We would like to point out here that there is a typo in that
paper. All wi = 1/σi in the text and plot labels need to be
replaced by wi = 1/σ2

i , which has been used in the calculations.
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κ → 1
2

1
6∆

+2 −1 +2

−1−1 −4

+2 −1 +2

γ1 → 1
2

1
∆

−1

+1+1

−1

γ2 → 1
4∆

−1

+1

+1

−1

Fig. 2. The finite differencing coefficients for κ (left), γ1 (middle) and γ2 (right). E.g. for κ we use a formula including 9 points,
the multiplicative factor is given at the bottom, the individual coefficients in the circle. Thus for the middle point (0, 0) we get
κ(0, 0) = 1

2
1

6∆

[

2 [ψ(−1, 1) + ψ(1, 1) + ψ(−1,−1) + ψ(1,−1)]− [ψ(0, 1) + ψ(−1, 0) + ψ(1, 0) + ψ(0,−1)]− 4ψ(0, 0)
]

.

function is given by

χ2
M =

NM
∑

m=1

bT
mS−1bm , (15)

where S is the covariance matrix. βs is the average source
position and for simplicity we calculate it using the deflec-
tion angle information from the previous iteration n1−1. If
the measurement errors on image positions are distributed
isotropically, S reduces to a diagonal matrix given by
S = diag(σ2

s,1, σ
2
s,2) with σ2

s,1 = σ2
s,2. σs,1 and σs,2 are

the errors on image positions, projected onto the source
plane. For simplicity, however, we do not perform a pro-
jection of the error ellipse from the image plane onto the
source plane. Instead, we keep S constant throughout the
reconstruction. Therefore we avoided the numerical prob-
lem of a diverging χ2

M function if one of the images lies
at the position of the critical curve for the corresponding
redshift.

We are aware of the fact that the approach we use
is not optimal (see e.g. Kochanek 2004). If only multi-
ple imaging is used, the resulting best-fit model is bi-
ased towards high magnification factors, since errors on
the source plane are magnified when projected back to
the image plane (this information we do not use). In our
case, however, the model also needs to take into account
the constraints from statistical (weak) lensing and there-
fore the high magnification models are in fact discarded.
In addition, if e.g. one considers the errors matrix in the
image plane to be diagonal, the corresponding matrix
in the source plane would have large off-diagonal terms.
Throughout this paper we therefore consider the errors in
the source plane to be isotropic, since this may in fact be
a better approximation, as sources are on average more
circular than their lensed images. In practice the location
of the multiple images are usually known very accurately,
leading to a very narrow minimum of χ2

M in the parameter
space. In practice, multiple image constraints are satisfied
nearly perfectly and exact values of errors on image posi-
tions are of lesser importance.

Since the minimisation of χ2
ε can lead to a potential

that reconstructs the noise in the data, the solution needs
to be regularised. Even without measurement errors, the
intrinsic ellipticities would still produce pronounced small-
scale noise peaks in the final reconstruction. In addition,
the method presented here has an intrinsic invariance if no
multiple imaging information is used and the weak lensing
approximation g ' γ applies. Namely, we can alternately
add/subtract a constant a along diagonals of the potential
(chess-board like structure, as sketched in Fig. 3). This
transformation would on the one hand not affect γ, but on
the other it would cause a similar change (with a constant
2a/3) in κ – compare with Fig. 2. Thus in the |g| � 1
regime, where 〈ε〉 = g ' γ these stripes would show up in
the resulting κ-map. This problem can, however, be very
efficiently cured with regularisation.

+a −a +a

−a−a +a

+a −a +a

Fig. 3. The intrinsic invariance of the method. If we alternately
add/subtract a constant a along the diagonals the shear γ does
not change (cf. Fig. 2), but κ changes in the similar way with
a constant now being 2a/3 .

Since we want to measure the cluster mass, the reg-
ularisation should not influence breaking the mass-sheet
degeneracy. For example, one of the possibilities consid-
ered by Seitz et al. (1998) for regularisation function was
R =

∑Nx,Ny
i,j=1 |∇κ|

2. However, as the authors mentioned,
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such regularisation would tend to flatten the profile and
therefore affect the mass-sheet degeneracy breaking. Their
maximum-entropy regularisation with moving prior (i.e.
the prior in the regularisation is not kept constant, but
adapted in the process of minimisation) does not flatten
the profile, however it is very cumbersome to express its
derivative in linear terms of ψk. Motivated by the success
of moving prior in maximum-entropy regularisation, we
choose a very simple prescription for the regularisation
function. We start off by a relatively coarse grid, since
if the number of grid points Ndim is much smaller than
the number of galaxies, the resulting reconstruction is not
able to follow the noise pattern. In each second-level iter-
ation step we gradually increase the number of grid points
and compare the resulting κ map κ(n2) with that from the
previous iteration κ(n2−1) linearly interpolated on a finer
grid, thus

R =
Nx,Ny
∑

i,j=1

(

κ
(n2)
ij − κ(n2−1)

ij

)2

. (16)

For the case of n2 = 0 we use an initial guess for κ which
can in practice be obtained from strong lensing, direct
finite-field reconstruction, parametrised model fitting to
weak lensing data, or simply set to κ

(0)
ij = 0. This form

of regularisation is relatively easy to implement and is in
addition very efficient in removing the stripes (mentioned
above) in the final reconstruction. If enough n2 iteration
steps are used this form of regularisation also does not
substantially affect the ability to break the mass-sheet de-
generacy, since the information of initial κ(0) is lost and
different initial conditions do not bias the results (if the
signal from lensing is high enough).

Finally a word on the regularisation constant η.
This parameter should, in theory, be set such to ensure
χ2/Ndof ∼ 1. In practice, however, it is difficult to de-
termine its optimal value (in the critical lensing regime).
As outlined in Geiger & Schneider (1998) the probabil-
ity distribution of measured ellipticities is not a Gaussian
and therefore the minimum value of χ2 has no particu-
lar meaning. In practice, setting η such that the resulting
χ2/Ndof ∼ 1 (where Ndof is in our case the number of
galaxies used for strong and weak lensing) is valid is a
good guess for this parameter. In addition, one adjusts
η low enough for the method to have enough freedom to
adapt to the information in the data and large enough for
not allowing the solutions that follow the noise pattern.
As a rule of thumb it is usually better to set η high and
increase the number of iterations and hence allowing κ to
change only slowly. Since the reconstruction is done in a
two-level iteration and in addition multiple-image infor-
mation is included, the method can successfully adapt to
the data and the results are not very sensitive to the pre-
cise value of η. The resulting smoothness level of the mass
maps should reflect the quality of data. The “smoothing
scale” depends upon the combination of the grid size and
regularisation. The final potential map should be void of
any structures on scales smaller than the mean separation

between galaxies used for weak lensing. We will shortly
return to this point in Sect. 4.3.

3.4. Initial conditions

For the purpose of the regularisation, given by (16), we
need to employ the initial conditions. In addition, if a re-
alistic model is used for the initial conditions (and as trial
solution), it is very helpful to break the internal degen-
eracy, i.e. to distinguish galaxies that have |g| ≤ 1 from
those with |g| > 1 in the first step, and thus allow for a
faster convergence. Breaking this degeneracy is desirable,
since otherwise the method has difficulties in “climbing”
over the |g| = 1 region (especially if no multiple-image
systems are included). Since we use individual redshifts of
background galaxies we do not have well-defined critical
curves (i.e. positions in the source plane where |g| = 1),
as their position depends on the source redshift. In spite
of this fact, the transition still poses a difficulty.

In our case different initial conditions are employed.
For the initial model κ(0) we use three different scenarios:
κ(0) = 0 (and α(0) = 0, γ(0) = 0) across the whole field
(hereafter I0), κ(0) taken from the best fit non-singular
isothermal ellipsoid model NIE for the multiple image
system described in Sect. 4.2 (hereafter IM) and a non-
singular isothermal sphere model NIS with scaling and
core radius being the same as in IM (hereafter IC). The
same models are used also to obtain the initial coeffi-
cients of the linear system (see Appendix) (for I0 we use
γ1,2 = 0). These different initial models help us to ex-
plore the effects of regularisation and the capability of the
reconstruction method to adapt to the data.

4. Cluster mass reconstruction from simulated
data

4.1. Mock catalogues

We generate mock catalogues using a cluster from the
high-resolution N-body simulation by Springel et al.
(2001). The cluster is taken from the S4 simulation (for
details see the aforementioned paper) and was simulated
in the framework of the ΛCDM cosmology with density
parameters Ωm = 0.3 and ΩΛ = 0.7, shape parame-
ter Γ = 0.21, the normalisation of the power spectrum
σ8 = 0.9, and Hubble constant H0 = 70 km s−1 Mpc−1.
The cluster simulation consists of almost 20 million parti-
cles, each with a mass of 4.68×107 M� and a gravitational
softening length of 0.7 h−1 kpc. Due to the high mass res-
olution, the surface mass density κ-map can be obtained
by directly projecting the particles (in our case along the
z-axis) onto a 10242 grid (of a side length 4 Mpc) using
the NGP (nearest gridpoint) assignment.

In what follows we try to generate the weak and strong
lensing data to resemble as close as possible the data on
the cluster RX J1347.5−1145 we will use in Paper II. The
surface mass density of the cluster is therefore scaled to
have a sizeable region where multiple imaging is possible
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(a) (b)

Fig. 4. The gravitational lensing properties of a simulated cluster used for generating mock catalogues for statistical weak
lensing and for the multiple image system. a) The surface mass density κ, b) the absolute value of the reduced shear |g|, both
for a source at zs →∞, are given in gray-scale and contours. The stars in a) denote the image positions of a four-image system
at zs = 1.76 which we use for the reconstruction.

within a 3.8 × 3.8 arcmin2 field, for sources at redshifts
z & 1 and a cluster at zd = 0.4. The Einstein radius for
a fiducial source at z → ∞ is roughly θE ∼ 1′, giving a
line-of-sight integrated mass within this radius of ∼ 5 ×
1014M�. The cut-out of the resulting κ map (for z →∞,
thus Z(z) = 1) we use can be seen in Fig. 4a.

The lensing properties are calculated as described in
detail in Bradač et al. (2004c). The Poisson equation
for the lens potential ψ – c.f. Eq. (3) – is solved on
the grid in Fourier space with a DFT (Discrete Fourier
Transformation) method using the FFTW library written
by Frigo & Johnson (1998). The two components of the
shear γ1,2 and the deflection angle α are obtained by fi-
nite differencing methods applied to the potential ψ. These
data are then used to generate the weak lensing catalogues
as well as the multiple image systems. The absolute value
of the reduced shear (again for a source with z → ∞) is
shown in Fig. 4b.

The weak lensing data are obtained by placing Ng

galaxies on a 3.8 × 3.8 arcmin2 field. We have simulated
two different catalogues, one with Ng = 148 galaxies with
positions corresponding to those from R-band weak lens-
ing data of the cluster RX J1347.5−1145 and one with
Ng = 210 galaxies corresponding to the I-band data used
in Paper II. In this way we simulate the effects of “holes”,
resulting from cluster obscuration and bright stars in the
field.

The intrinsic ellipticities εs are drawn from a Gaussian
distribution, each component is characterised by σ =
σεs = 0.2. We use the same redshifts as those measured in
the R and I-band data, respectively. The catalogues have
average redshifts for background sources of 〈zI〉 = 1.18
and 〈zR〉 = 1.14. The corresponding cosmological weights

are evaluated assuming the ΛCDM cosmology (the same
parameters are used as for the cluster simulations).

The measurement errors εerr on the observed elliptic-
ities are drawn from a Gaussian distribution with σ =
σerr = 0.1 (each component) and added to the lensed ellip-
ticities. We considered also the measurement errors on the
redshifts of the galaxies to simulate the use of photometric
redshifts. These have σzerr = 0.1 (1 + zi) (see Bolzonella
et al. 2000); in adding the errors we ensured that the re-
sulting redshifts are always positive. We have also simu-
lated the presence of outliers in the redshift distribution,
10% of our background sources (chosen at random) are
considered outliers, for these we randomly add/subtract
∆z = 1 to their redshifts (which already include random
errors). The lensed ellipticities are obtained using (9) and
interpolating the quantities κ, and γ at the galaxy position
using bilinear interpolation, considering the redshifts in-
cluding errors. In contrast, for the purpose of reconstruc-
tion we then consider galaxies to be at their ”original”
redshifts (thus equal to the observed redshifts in the data
of RX J1347.5−1145).

4.2. Multiple imaging

To obtain a four-image system from the simulation we use
the method described in detail in Bradač et al. (2004c).
With the MNEWT routine from Press et al. (1992) we solve
the lens equation for a given source position inside the
asteroid caustic. The source is assumed at a redshift of
zs = 1.76. Once we have the image positions, their magni-
fications are calculated and the fifth image is eliminated,
since it is usually too dim and would not be observable.

The errors on image positions can be conservatively
estimated (for the data we use in Paper II) to ∼ 0.′′3.
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Since we need errors in the source plane, we set them by
a factor of five smaller (in agreement with the average
magnification factor for this system), i.e. σs,m = 0.′′06 for
both coordinates (see discussion in Sect. 3.3).

We also use this system to obtain one of the κ(0) mod-
els, needed for the purpose of strong and weak lensing re-
construction. We perform image plane minimisation and
fit an NIE model (Kormann et al. 1994), given by

κ(θ′) =
b0

2
√

1+|εg|
1−|εg|

(

r2
c,nis + (θ′1)2

)

+ (θ′2)2

, (17)

where θ′ is calculated w.r.t. the semi-major axis of the
cluster surface mass density. We allow the scaling b0,
ellipticity |εg| and position angle φg to vary. The best
fit model for this system has values of {b0, |εg| , φg} =
{0.′97, 0.30, 1.01}. We fix the core radius rc to 0.′1. For
model fitting we use C-minuit (James & Roos 1975), a
routine which is part of the CERN Program Library.

4.3. Weak lensing mass-reconstruction using simulated
data

The mock catalogues are used to test the performance
of the reconstruction method. We obtain the solution of
the linear system with the UMFPACK routine for solving
asymmetric sparse linear systems (Davis & Duff 1999).
We perform 30 second-level iterations, each time increas-
ing Nx and Ny by one, starting with an initial 20 × 20
grid (since we use regularisation from the first iteration,
we do not need to start the reconstruction with a very
course grid, where the resulting matrix is not sparse and
a different routine should be applied to find a good so-
lution). The results of the reconstructions are shown in
Fig. 5 for Ng = 210 galaxies distributed in the same man-
ner as the I-band data and Ng = 148 galaxies distributed
as the R-band data of the cluster described in Paper II.
The initial regularisation parameter was set to η = 400
for I-band η = 200 for R-band data and adapted in each
step to ensure χ2/Ndof ∼ 1. Two different initial values
for the regularisation parameter are used since the num-
bers of galaxies in the two bands are different. It is very
comforting to observe that the reconstructed maps do not
depend crucially on the initial κ-model we use.

From the reconstructed maps we estimate the mass
within the 1.′5 radius from the centre of the cluster (for
a redshift zd = 0.4 this corresponds to 340h−1 kpc) pro-
jected along the line-of-sight. For this purpose we generate
10 mock catalogues for each band and did the reconstruc-
tion again with the three different initial models. We list
the resulting average mass obtained from the catalogues
in Table 1 for both the I- and R-band mock catalogues.
All the mass estimates are similar; note, however, that the
galaxy catalogues following the I- and R-band data have
galaxies partly in common and the errors are therefore cor-
related. We find the enclosed mass of the simulated cluster
to be (1.0±0.1)×1015M�, which is very close to the input

value of Ms(< 340h−1 kpc) = 0.99×1015M�. The 1-σ er-
ror is estimated from the variance of mass determinations
from different mock catalogues.

The results show that our method is effectively able
to break the mass-sheet degeneracy and is, as a conse-
quence, very efficient in reproducing the cluster mass also
at radii significantly larger than the Einstein radius of the
cluster. It is also very encouraging that the results are
nearly independent of the initial κ(0) used for the regu-
larisation. Note that a single multiple-image system does
not by itself break this degeneracy, we would need at least
two different redshift multiple image systems to break the
mass-sheet degeneracy with strong lensing data alone. In
such a case the strong lensing gives constraints on the mass
enclosed within the Einstein radius for a given source red-
shift and since the critical curves depend on the source
redshift, we can constrain mass at two different radii and
the degeneracy is broken. The combiniation of weak and
strong lensing is the more powerful, the more different the
redshift of the source of the multiple images is from the
median redshift of the galaxies from which the weak lens-
ing measurements are obtained, and the less symmetric
the arrangement of multiple images is w.r.t. the center of
the cluster.

Unfortunately we can not resolve both clumps present
in the simulations. This is due to the fact that the num-
ber density of background sources is low and the inter-
nal smoothing scale (i.e. the average distance between
two source galaxies) is large; with a number density of
∼ 100 arcmin−2 the clumps can be easily resolved.

We have also performed additional reconstructions in
which we multiplied the original values of κ of the simu-
lated cluster by 0.75 and 1.25. This enables us to confirm
that the agreement between input mass and reconstructed
mass is not just accidental. We have generated new mul-
tiple image systems and new mock catalogues as before.
We do not, however, perform a new strong-lensing recon-
struction, for κ(0) we intentionally use the same (i.e. in
this case “wrong”) initial conditions as before. The old
IM model would not fit the image positions any longer,
since they have changed with the scaling of κ. The recon-
structed masses of the increased κ simulation are in good
agreement with the input values. The differences between
different models are comparable (slightly smaller) to the
ones shown in Table 1. For the lower κ simulation, the
reconstructed values are on average the same as the in-
put value, however the scatter is larger. This is expected,
since the lens in this case is weaker and the breaking of
the mass-sheet degeneracy is difficult in this case (with
the quality of data used here).

As an additional test we also consider a redshift distri-
bution with 〈z〉 = 1.6 for the sources used for weak lensing
and regenerate the mock catalogues. The accuracy of the
determination of the enclosed mass increases. However,
more importantly, we also better reconstruct the shape of
the mass distribution, since high-redshift galaxies (when
their shape is measured reliably) contribute most to the
signal and improve the accuracy of the reconstruction.
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(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Fig. 5. κ-maps obtained from combined strong and weak lensing reconstruction of the simulated data. Left panels show the
reconstructions using Ng = 210 galaxies distributed in the same manner as the I-band, while for the right panels we use
Ng = 148 galaxies distributed in the same manner as the R-band weak lensing data for RX J1347.5−1145 (see Paper II). The
galaxies have been lensed by an N-body simulated cluster. Different initial conditions are used for the reconstruction. In a1-a2)
we use best fit model from the multiple image system IM (see Sect. 4.2) in b1-b2) we use the IC model, an NIS model with
the same scaling and core radius as IM and in c1-c2) we use I0, i.e. κ(0) = 0 on all grid points. The positions of the cluster
centre and two major subclumps are plotted as white circles.

5. Conclusions

In this paper we develop a new method based on
Bartelmann et al. (1996) to perform a combined weak and
strong lensing cluster mass reconstruction. The particular

strength of this method is that we extend the weak lens-
ing analysis to the critical parts of the cluster. In turn,
this enables us to directly include multiple imaging in-
formation to the reconstruction. Strong and weak lensing
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reconstructions are performed on the same scales, in con-
trast to similar methods proposed in the past where weak
lensing information on much larger radii than the Einstein
radius θE was combined with strong lensing information
(see e.g. Kneib et al. 2003).

We test the performance of the method on simulated
data and conclude that if a quadruply imaged system com-
bined with weak lensing data and individual photometric
redshifts is used, the method can very successfully recon-
struct the cluster mass distribution. With a relatively low
number density of background galaxies, 15 arcmin−2, we
are effectively able to reproduce the main properties of the
simulated cluster. In addition, with larger number densi-
ties ∼ 100 arcmin−2 of background sources, accessible by
HST, the substructures in the cluster can be resolved and
the mass determination further improved.

We determine the enclosed mass within 340h−1 kpc of
the simulated cluster to be (1.0 ± 0.1) × 1015M�, which
is very close to the input value of Ms(< 340h−1 kpc) =
0.99× 1015M�. We have shown, that with the data qual-
ity we use we are effectively able to break the mass-
sheet degeneracy and therefore obtain the mass and mass-
distribution estimates without prior assumptions on the
lensing potential.

In addition, the reconstruction algorithm can be im-
proved in many ways. First, we use for the multiply im-
aged system only the information of the image positions.
The reconstruction method can, however, be modified to
include the morphological information of each extended
source. Instead of using a regular grid, one would have to
use adaptive grids and decrease the cell sizes around each
of these images. This will be a subject of a future work.
Second, the photometric redshift determination does not
only give the most likely redshift given the magnitudes in
different filters, but also the probability distribution for
the redshift. This information can be included in the re-

Table 1. Reconstructed cluster mass within a cylinder of
340h−1 kpc radius around the cluster centre from simulations
of mock catalogues resembling I-band (left) and R-band (right)
weak lensing data and one 4-image system. Three different ini-
tial conditions are used. We use the best fit model from the
multiple image system IM (see Sect. 4.2), the IC model (NIS
with same scaling and core radius as IM) and I0 with κ(0) = 0
on all grid points. In the last line the input mass Ms from the
simulation is given. The variance of the mass estimate is given
and in brackets we give for comparison the velocity dispersion
of an SIS having the same enclosed mass within 340h−1 kpc.

MI,s [σI,SIS] MR,s [σR,SIS]
[1015M�] [kms−1] [1015M�] [kms−1]

IM 1.07± 0.02 [1720] 1.04± 0.02 [1710]
IC 1.04± 0.02 [1700] 1.00± 0.02 [1670]
I0 0.88± 0.03 [1560] 0.82± 0.03 [1510]

Ms(< 340h−1 kpc) 0.99 [1670]

construction. In addition, source galaxies without redshift
information can be included and different regularisation
schemes can be considered.

Finally, the slight dependence on the initial conditions
is getting weaker the higher the number density of back-
ground galaxies and/or multiple image systems are. In ad-
dition, it is of advantage to have a large spread in the red-
shift efficiency factors Z of the background galaxies. For
example, deep ACS images of clusters with a usable num-
ber density of n ∼ 120 arcmin−2, or future observations
with the James Webb Space Telescope will most likely
make the dependence on the initial conditions negligible.

In Paper II we will show the application of this method
on the cluster RX J1347.5−1145 and confirm that a com-
bination of strong and weak lensing offers a unique tool
to pin down the masses of galaxy-clusters as well as their
mass distributions.
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Czoske for many useful discussions that helped to improve the
paper. We also thank our referee for his constructive com-
ments. This work was supported by the International Max
Planck Research School for Radio and Infrared Astronomy, by
the Bonn International Graduate School, and by the Deutsche
Forschungsgemeinschaft under the project SCHN 342/3–3. MB
acknowledges support from the NSF grant AST-0206286. This
project was partially supported by the Department of Energy
contract DE-AC3-76SF00515 to SLAC.

Appendix A: The linear problem for ψk

In this section we present details of the method outlined
in Sect. 3.

We aim to solve the equation

∂χ2
ε(ψk)
∂ψk

+
∂χ2

M(ψk)
∂ψk

+ η
∂R(ψk)
∂ψk

= 0 . (A.1)

This is in general a non-linear system of equations. We try
to solve it in an iterative way by linearising the equation
in terms of ψk and keeping the non-linear terms fixed at
each iteration step. The resulting system is then written
in the form

Bjkψk = Vj , (A.2)

where the matrix Bjk and vector Vj contain the contribu-
tions from the non-linear part. In the following sections
we will describe the contributions to (A.1) in turn.

A.1. The weak lensing analysis

The χ2
ε for the weak lensing case is given in (13). From

now on we consider in detail only the |g| ≤ 1 case; for
|g| > 1, the calculations are done in the same fashion.
First we plug into (13) the expectation value of observed
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ellipticities (i.e. the reduced shear g) obtaining

χ2
ε(ψk) =

Ng
∑

i=1

∣

∣

∣ε− Zγ
1−Zκ

∣

∣

∣

2

σ2
=

Ng
∑

i=1

|ε− Zεκ− Zγ|2

(1− Zκ)2
σ2

,

(A.3)
where κ, γ, and σ depend on θi only and Z depends on
the redshift of the i-th source. Note that for simplicity we
omit the index i to ε, κ, γ, σ and Z, although these quanti-
ties are different for every galaxy. As described in Sect. 3.2
using finite differencing and bilinear interpolation, we can
write κ and γ at each galaxy position as a linear com-
bination of ψk. This is expressed in the following matrix
notation

γ1(θi) = G(1)
ik ψk , γ2(θi) = G(2)

ik ψk , κ(θi) = Kikψk ,
(A.4)

where the matrices G(1)
ik , G(2)

ik , and Kik are composed of
numerical factors described in Sect. 3.2. Now we consider
the denominator of (A.3) σ̂2

≤ = (1− Zκ)2
σ2 fixed at each

iteration step (the subscript ≤ denotes the |g| ≤ 1 case)
and differentiate the following term of (A.3)

1
2

∂

∂ψk

|ε− Zεκ− Zγ|2

σ̂2
≤

=

− Z

σ̂2
≤

[

(ε1 − Zε1κ− Zγ1)
(

ε1
∂κ

∂ψk
+
∂γ1

∂ψk

)

+ (ε2 − Zε2κ− Zγ2)
(

ε2
∂κ

∂ψk
+
∂γ2

∂ψk

)]

=

Z2

σ̂2
≤

[

G(1)
ij G

(1)
ik + G(2)

ij G
(2)
ik + ε1

(

G(1)
ij Kik +KijG(1)

ik

)

+ ε2

(

G(2)
ij Kik +KijG(2)

ik

)

+
(

ε21 + ε22
)

KijKik
]

ψk

− Z2

σ̂2
≤

[

ε1G(1)
ij + ε2G(2)

ij +
(

ε21 + ε22
)

Kij
]

(A.5)

where ε1 and ε2 are the two components of the measured
ellipticity of galaxy i (again omitting the index and we
divided Eq. (A.1) by two for simplicity). We sum over all
galaxies used for the weak lensing analysis and obtain a
linear problem for ψk at each iteration step. The same
approach can be used for the |g| > 1 case, where σ̂2

> is
kept constant and is given by σ̂2

> = Z2
i |γ|

2
σ2
i .

A.2. The strong-lensing term

Following the prescription from the previous section we
now write the deflection angle in a matrix form

α1(θm) = D(1)
ik ψk , α2(θm) = D(2)

ik ψk . (A.6)

Both matrices give the finite differencing form for the gra-
dient of the potential, in particular we use the central dif-
ferencing formula, i.e. α1(0, 0) = 1

2∆ (ψ(1, 0)− ψ(−1, 0))
and α2(0, 0) = 1

2∆ (ψ(0, 1)− ψ(0,−1)).
The χ2 contribution to strong lensing is given in (15).

The source position βs is kept constant at every iteration

step, and is evaluated using the deflection angle informa-
tion α(n1−1) from the previous iteration

βs =
1
NM

NM
∑

m=1

(

θm − Z(zs)α(n1−1)(θm)
)

. (A.7)

We differentiate the following term in χ2
M (for the x1-

coordinate)

1
2

∂

∂ψk

(θm,1 − Z(zs)α1(θm)− βs,1)2

σ2
s,m(1)

=

−
(θm,1 − βs,1)D(1)

ij − Z(zs)D(1)
ij D

(1)
ik ψk

σ2
s,m(1)

. (A.8)

The expression for the x2-coordinate is obtained by ex-
changing 1 → 2. After summation of both terms over all
images m we get a set of equations which are linear in ψk
and can be readily included in (A.2). In principle we could
also use α(ψk) in (A.7), the expression ∂χ2

M/∂ψk would
remain linear in ψk. However since the first approach is
computationally much simpler, we use the former.

A.3. The final result

In the previous section we describe how we linearise the
contributions of weak and strong lensing, now we can write
the coefficients in the equation (A.2). Note that the con-
tribution of the regularisation term (with χ2-contribution
given in (16)) is already linear in ψk and therefore the full
matrix Bjk is given in the form

Bjk =
Ngal
∑

i=1

[

a11(i)G(1)
ij G

(1)
ik + a22(i)G(2)

ij G
(2)
ik

+a13(i)
(

G(1)
ij Kik + G(1)

ik Kij
)

+a23(i)
(

G(2)
ij Kik + G(2)

ik Kij
)

+a33(i) (KijKik)]

+
NM
∑

m=1

b11(m)D(1)
mjD

(1)
mk + b22(m)D(2)

mjD
(2)
mk

+ η
∑

g

KgjKgk , (A.9)

where the sums over i, g and m denote summation over
all galaxies with ellipticity measurements, all grid points,
and all images in the multiple imaged system, respectively.
The Vj vector carries the information of all constant terms
in (A.1)

Vj =
Ngal
∑

i=1

a1(i)G(1)
ij + a2(i) G(2)

ij + a3(i) Kij

+ η
∑

g

κ(n2−1)Kgj

+
NM
∑

m=1

b1(m)D(1)
mj + b2(m) D(2)

mj . (A.10)
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The coefficients a now differ depending on whether we
are in the |g| ≤ 1 or |g| > 1 regime. For |g| ≤ 1 the
coefficients are given by

a11(i) = a22(i) =
Z2

σ̂2
≤

; a13(i) =
Z2

σ̂2
≤
ε1 ;

a23(i) =
Z2

σ̂2
≤
ε2 ; a33(i) =

Z2

σ̂2
≤
|ε|2 ;

a1(i) =
Z

σ̂2
≤
ε1 ; a2(i) =

Z

σ̂2
≤
ε2 ; a3(i) =

Z

σ̂2
≤
|ε|2 . (A.11)

For |g| > 1 case we get

a11(i) = a22(i) =
Z2

σ̂2
>

|ε|2 ; a13(i) =
Z2

σ̂2
>

ε1 ;

a23(i) =
Z2

σ̂2
>

ε2 ; a33(i) =
Z2

σ̂2
>

;

a1(i) =
Z

σ̂2
>

ε1 ; a2(i) =
Z

σ̂2
>

ε2 ; a3(i) =
Z

σ̂2
>

. (A.12)

The coefficients b are carrying the information about
the multiple imaged system:

b11(m) =
Z2(zs)
σ2

s,m(1)

; b22(m) =
Z2(zs)
σ2

s,m(2)

;

b1(m) =
Z(zs) (θm,1 − βs,1)

σ2
s,m(1)

;

b2(m) =
Z(zs) (θm,2 − βs,2)

σ2
s,m(2)

, (A.13)

where θm,1, θm,2, and σs,m(1,2) are defined in Sect. 3.3. For
the reasons mentioned in Sect. 3.3 we consider the mea-
surement errors projected to the source plane isotropic, we
set σs,m(1,2) equal for the purpose of the reconstruction.
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