Production and decay of Ξ_{c}^{0} at $B A B A R$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc,,${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong,,${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen,,${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan,,${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary,,15 O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill,,17 D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu,,${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner,,18 C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ R. Andreassen, ${ }^{20}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ E. Maly, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert,,${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud,,${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi,,${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger,,${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ G. J. Grenier,,${ }^{33}$ U. Mallik,,${ }^{33}$ A. K. Mohapatra, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau, ${ }^{35}$ M. H. Schune, ${ }^{35}$ A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan,,${ }^{37}$ C. A. Chavez,${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster,,${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet,,${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ C. L. Brown,,${ }^{39}$ G. Cowan, ${ }^{39}$ R. L. Flack, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ M. T. Naisbit, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ H. Kim, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson,,${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ B. Viaud, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, *}$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, *}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio, ${ }^{50}$
P. Paolucci, ${ }^{50}$ D. Piccolo,,${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden, ${ }^{51}$ C. P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ P. D. Jackson, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54} \mathrm{M} . \mathrm{Lu},{ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin,,${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand,,${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo,,${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo, ${ }^{59}$ G. Simi, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ J. Biesiada, ${ }^{61}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ A. D'Orazio, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ S. Christ, ${ }^{63}$ H. Schröder, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F. F. Wilson, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig,,${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth,,${ }^{67}$ H. L. Lynch, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O’Grady, ${ }^{67}$ V. E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff,,${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ A. Soha, ${ }^{67}$ J. Stelzer, ${ }^{67}$ J. Strube, ${ }^{54,}{ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ S. R. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat, ${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ P. Poropat,,${ }^{74,} \dagger$ L. Vitale, ${ }^{74}$ G. Vuagnin, ${ }^{74}$ F. Martinez-Vidal, ${ }^{75}$ R. S. Panvini, ${ }^{76,{ }^{\dagger}}{ }^{\dagger}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(The BABAR Collaboration)

[^0][^1](Dated: April 8, 2005)

Abstract

Using $116.1 \mathrm{fb}^{-1}$ of data collected by the $B A B A R$ detector, we present an analysis of Ξ_{c}^{0} production in B decays and from the $c \bar{c}$ continuum, with the Ξ_{c}^{0} decaying into $\Omega^{-} K^{+}$and $\Xi^{-} \pi^{+}$final states. We measure the ratio of branching fractions $\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}\right) / \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$to be $0.294 \pm 0.018 \pm 0.016$, where the first uncertainty is statistical and the second is systematic. The Ξ_{c}^{0} momentum spectrum is measured on and 40 MeV below the $\Upsilon(4 S)$ resonance. From these spectra the branching fraction product $\mathcal{B}\left(B \rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$is measured to be $(2.11 \pm 0.19 \pm 0.25) \times 10^{-4}$, and the cross-section product $\sigma\left(e^{+} e^{-} \rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$from the continuum is measured to be $(388 \pm 39 \pm 41) \mathrm{fb}$ at a center-of-mass energy of 10.58 GeV .

PACS numbers: 14.20.Lq,14.40.Nd

Considerable progress in the charmed baryon sector [1] has been made over the past two decades with the advent of high-luminosity colliders and flavor factory experiments such as CLEO, FOCUS and SELEX. Today the high-luminosity B-factory experiments BELLE and $B A B A R$ present excellent opportunities to build upon this knowledge and study the production and decay of charmed baryons with high precision.

In this Letter we present a study of the $\Xi_{c}^{0}(c s d)$ [2] charmed baryon through two decay modes: $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$ and $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$. We measure the ratio of branching fractions of these decay modes, which has been predicted to be 0.32 with a spectator quark model calculation [3]. A previous measurement was consistent with this prediction but had a large (40\%) statistical uncertainty [4].

We also study Ξ_{c}^{0} production by measuring the spectrum of the Ξ_{c}^{0} momentum in the $e^{+} e^{-}$center-of-mass frame $\left(p^{*}\right)$. A number of theoretical predictions of the rate of Ξ_{c} production in B decays have been made [58]. Insight into the contributing processes can be gained by studying the shape of the p^{*} spectrum. Evidence for Ξ_{c}^{0} production in B decays was presented previously by the CLEO collaboration, with a statistical significance of $\sim 3 \sigma$ in the $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$decay mode and $\sim 4 \sigma$ in the $\Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$decay mode [9].

The data for this analysis were collected with the BABAR detector at the SLAC PEP-II asymmetric energy $e^{+} e^{-}$collider; the detector is described in detail elsewhere [10]. A total integrated luminosity of $116.1 \mathrm{fb}^{-1}$ is used, of which $105.4 \mathrm{fb}^{-1}$ was collected at the $\Upsilon(4 S)$ resonance [1] (corresponding to 116 million $B \bar{B}$ pairs) and $10.7 \mathrm{fb}^{-1}$ was collected at a center-of-mass energy of 10.54 GeV , which is below the $B \bar{B}$ production threshold. These are referred to as the on-resonance and offresonance data samples, respectively.

The reconstruction of Ξ_{c}^{0} candidates takes place as follows. A Λ candidate is reconstructed by identifying a proton and combining it with an oppositely charged track interpreted as a π^{-}, fitting the tracks to a common vertex. The Λ candidate is then combined with a negatively charged track interpreted as a $\pi^{-}\left(K^{-}\right)$to form a Ξ^{-} $\left(\Omega^{-}\right)$candidate. For each intermediate hyperon, the invariant mass is required to be within 3σ of the central value, where σ is the fitted mass resolution. The invariant mass is then constrained to the nominal value [1].

Each resulting $\Xi^{-}\left(\Omega^{-}\right)$candidate passing the selection criteria is then combined with a positively charged track interpreted as a $\pi^{+}\left(K^{+}\right)$to form a Ξ_{c}^{0} candidate. For the $\Omega^{-} K^{+}$final state, the two $K^{ \pm}$tracks must be identified as kaons. Particle identification is performed with $d E / d x$ and Cherenkov angle measurements [10].

Additional selection criteria, described below, are used to improve the signal-to-background ratio. As a precaution against selection bias, these are optimized with subsamples of the data: $20 \mathrm{fb}^{-1}$ and $40 \mathrm{fb}^{-1}$ for the $\Xi^{-} \pi^{+}$ and $\Omega^{-} K^{+}$final states, respectively. A minimum decay distance of $2.5 \mathrm{~mm}(1.5 \mathrm{~mm})$ between the event primary vertex and the $\Xi^{-}\left(\Omega^{-}\right)$decay vertex in the plane perpendicular to the beam direction is required. The distance between the Ω^{-}and Λ decay vertices is required to be at least 3 mm . In addition, the relative positioning of vertices is required to be causally connected: we reject candidates in which the Ξ^{-}decays further from the primary vertex than its daughter Λ does, or where the displacement vector from the Ω^{-}decay point to the Λ decay point is anti-parallel to the Λ momentum vector. The invariant mass distributions for the Ξ_{c}^{0} candidates satisfying these criteria are shown in Fig. 1 (a) and (b) for $\Xi^{-} \pi^{+}$and $\Omega^{-} K^{+}$combinations, respectively.

Simulated events with the Ξ_{c}^{0} decaying into the two desired final states are generated for the processes $e^{+} e^{-} \rightarrow$ $c \bar{c} \rightarrow \Xi_{c}^{0} X$ and $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B} \rightarrow \Xi_{c}^{0} X$, where X represents the rest of the event. The PYTHIA simulation package [11] is used for the $c \bar{c}$ fragmentation and for B decays to Ξ_{c}^{0}, and GEANT4 [12] is used to simulate the detector response. For $c \bar{c}$ production, samples of 90,000 events for the $\Xi^{-} \pi^{+}$final state and 60,000 for the $\Omega^{-} K^{+}$ final state are generated. For $B \bar{B}$ production, samples of 255,000 and 120,000 events are used, respectively.

Additional generic Monte Carlo events are used to investigate possible background contributions. The sample sizes are equivalent to $245 \mathrm{fb}^{-1}, 64 \mathrm{fb}^{-1}$, and $33 \mathrm{fb}^{-1}$ for $e^{+} e^{-} \rightarrow B \bar{B}, c \bar{c}$, and $q \bar{q}$, respectively, where $q=u, d, s$. Excluding signal contributions, the mass distribution varies smoothly throughout the region near the Ξ_{c}^{0} mass.

To measure the ratio of branching fractions, a further requirement that $p^{*}>1.8 \mathrm{GeV} / c$ is imposed on the Ξ_{c}^{0} candidates, improving the signal purity. Additionally, the candidates are required to be within the region of high Ξ_{c}^{0} reconstruction efficiency $-0.8 \leq \cos \theta^{*} \leq 0.6$,

FIG. 1: Invariant mass distributions for Ξ_{c}^{0} candidates in $116.1 \mathrm{fb}^{-1}$ of data, for (a) $\Xi^{-} \pi^{+}$, and (b) $\Omega^{-} K^{+}$.
where θ^{*} is the polar angle of the Ξ_{c}^{0} candidate with respect to the collision axis in the center-of-mass frame. The efficiency is calculated from signal Monte Carlo events as a function of p^{*} and $\cos \theta^{*}$ for each of the decay modes. For each mode, a fifteen-parameter fit gives a smooth parameterization of the efficiency with small statistical uncertainty. The efficiency is then corrected by weighting each candidate by the inverse of its efficiency, and the efficiency-corrected mass spectrum is fitted with a double Gaussian for signal plus a linear background function. Including efficiency loss due to the Ω^{-}and Λ branching fractions, we obtain 25889 ± 516 events in the $\Xi^{-} \pi^{+}$mode and 7615 ± 443 events in the $\Omega^{-} K^{+}$mode.

We evaluate several sources of systematic uncertainty in the ratio of branching fractions: the fits to the mass spectra (3.4%), the efficiency parameterization (3.1\%), particle identification (2.0\%), finite Monte Carlo statistics (1.4\%), multiple candidates in the same event (1.0\%), charge asymmetries in detection efficiency (1.0%), the $\cos \theta^{*}$ distribution (1.0%), and the Ω^{-}branching fraction (1.0%). No baryon polarization is considered and any systematic uncertainty due to this is neglected. Adding all of the uncertainties in quadrature, we obtain:

$$
\frac{\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}\right)}{\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)}=0.294 \pm 0.018 \pm 0.016
$$

Throughout this Letter, the first uncertainty is statistical and the second is systematic.

After obtaining the ratio of branching fractions, we next measure the p^{*} spectrum of the Ξ_{c}^{0} baryons in order
to study the production mechanisms in both $c \bar{c}$ and $B \bar{B}$ events. The same selection criteria and data samples described above are used, except that no requirement on p^{*} or $\cos \theta^{*}$ is made. Instead, the Ξ_{c}^{0} candidates are divided into intervals of p^{*}. The yield is then measured in each interval with two different methods: first with a fitting method, where the mass spectrum is fitted with a single Gaussian for signal plus a linear background function and the integral of the Gaussian is taken as the yield; second with a counting method, where the background is estimated from mass sidebands and the signal yield is then taken as the statistical excess above this background in a mass window around the peak. The use of two different methods serves as a cross-check.

The efficiency in each p^{*} interval is estimated with signal Monte Carlo events from that p^{*} range. For both methods, the simulated events are reconstructed and the yield is measured, then divided by the number of events generated to obtain the efficiency. Due to the different angular distributions, the efficiencies for Ξ_{c}^{0} produced from $c \bar{c}\left(\varepsilon_{c \bar{c}}\right)$ and from $B \bar{B}\left(\varepsilon_{B \bar{B}}\right)$ differ slightly. In the region $1.2<p^{*}<2.0 \mathrm{GeV} / c$ where both production mechanisms are significant and the difference is approximately 8% (relative), the efficiency is taken to be $\left(\varepsilon_{c \bar{c}}+\varepsilon_{B \bar{B}}\right) / 2$. The systematic uncertainty on the efficiency is then $\left|\varepsilon_{c \bar{c}}-\varepsilon_{B \bar{B}}\right| / \sqrt{12}$. The angular distributions produced in PYTHIA fragmentation are assumed to be correct when calculating the efficiency; the data are fully consistent with these distributions within available statistics. The efficiency-corrected yield in each p^{*} interval is then calculated, including loss of efficiency due to the Λ and Ω^{-}branching fractions. The spectra obtained with the two methods are in good agreement; we use the counting method for the quoted results since it is more stable for low statistics.

A number of systematic uncertainties are considered, the most important of which are the uncertainties associated with the track-finding and particle identification efficiencies (5.8% and 3.5%, respectively). Uncertainties from the simulated Ξ_{c}^{0} mass resolution (1\%), the mass resolutions of the intermediate hyperon states (0.5%), the p^{*} resolution $(\mathcal{O}(1 \%))$, the effect of finite interval width $(\mathcal{O}(2 \%))$, multiple candidates (0%), non-linearity of the background $(\mathcal{O}(1 \%))$, the signal measurement method used (2\%), the finite Monte Carlo statistics available $(\mathcal{O}(3 \%))$, and uncertainties in the Λ and Ω^{-}branching fractions $(0.8 \%, 1.0 \%)$ are all considered individually; the notation $\mathcal{O}(x \%)$ indicates the typical value when the exact uncertainty varies among p^{*} intervals. The total systematic uncertainty for each p^{*} interval is obtained by adding the individual contributions in quadrature. In addition, a systematic correction of 1.0% is applied to account for a known data-Monte Carlo discrepancy in the track-finding efficiency, and small corrections are applied to each interval to account for the broadening effect of the p^{*} experimental resolution on the spectrum. The fi-

FIG. 2: The p^{*} spectrum measurements. In (a), the p^{*} spectrum of Ξ_{c}^{0} decaying via $\Xi^{-} \pi^{+}$is shown for the on-resonance data sample. In (b), the Ξ_{c}^{0} spectra obtained with the $\Xi^{-} \pi^{+}$ and $\Omega^{-} K^{+}$modes are compared after scaling the $\Omega^{-} K^{+}$normalization by the ratio of branching fractions presented in this Letter. In (c), the on-resonance and off-resonance data samples are shown together, with the off-resonance normalization scaled to account for the difference in integrated luminosity and cross-section. In each plot, the inner error bars give the statistical uncertainty and the outer error bars give the sum in quadrature of the statistical and systematic uncertainties. The vertical line at $2.15 \mathrm{GeV} / c$ in (c) shows the kinematic cutoff for Ξ_{c}^{0} produced in B decays at BABAR. Note that the vertical axes show events per unit p^{*}, not events per p^{*} interval as given in Table I.
nal p^{*} spectrum for the on-resonance data set, obtained with the counting method in the $\Xi^{-} \pi^{+}$mode, is shown in Fig. 2(a). Table I shows the corresponding values.

A further check is performed by comparing the two decay modes. The $\Omega^{-} K^{+}$yields are scaled by a factor of ($1 / 0.294$), the ratio of branching fractions previously presented in this Letter. The spectra are shown in Fig. 2(b), with yields measured with the counting method. Because the $\Omega^{-} K^{+}$signal has fewer events, wider p^{*} intervals are used. The spectra of the two modes show good agreement in both shape and normalization; this serves as a cross-check both of the p^{*} spectrum measurement and of

TABLE I: Efficiency-corrected yield and cross-section product including B production $\sigma\left(e^{+} e^{-} \rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$.

p^{*} range (GeV / c)	Corrected yield	Cross-section product (fb)
$0.0-0.2$	$1046 \pm 201 \pm 128$	$10 \pm 2 \pm 1$
$0.2-0.4$	$5889 \pm 446 \pm 483$	$56 \pm 4 \pm 5$
$0.4-0.6$	$10681 \pm 631 \pm 801$	$101 \pm 6 \pm 8$
$0.6-0.8$	$10709 \pm 660 \pm 817$	$102 \pm 6 \pm 8$
$0.8-1.0$	$8811 \pm 647 \pm 679$	$84 \pm 6 \pm 7$
$1.0-1.2$	$6834 \pm 573 \pm 530$	$65 \pm 5 \pm 5$
$1.2-1.4$	$2954 \pm 501 \pm 252$	$28 \pm 5 \pm 2$
$1.4-1.6$	$2429 \pm 470 \pm 212$	$23 \pm 4 \pm 2$
$1.6-1.8$	$2252 \pm 424 \pm 202$	$21 \pm 4 \pm 2$
$1.8-2.0$	$2159 \pm 350 \pm 217$	$20 \pm 3 \pm 2$
$2.0-2.2$	$2375 \pm 347 \pm 205$	$23 \pm 3 \pm 2$
$2.2-2.4$	$2743 \pm 340 \pm 227$	$26 \pm 3 \pm 2$
$2.4-2.6$	$3537 \pm 315 \pm 285$	$34 \pm 3 \pm 3$
$2.6-2.8$	$3920 \pm 282 \pm 306$	$37 \pm 3 \pm 3$
$2.8-3.0$	$4595 \pm 294 \pm 359$	$44 \pm 3 \pm 3$
$3.0-3.2$	$4873 \pm 263 \pm 401$	$46 \pm 2 \pm 4$
$3.2-3.4$	$4442 \pm 244 \pm 348$	$42 \pm 2 \pm 3$
$3.4-3.6$	$4084 \pm 223 \pm 355$	$39 \pm 2 \pm 3$
$3.6-3.8$	$2282 \pm 171 \pm 189$	$22 \pm 2 \pm 2$
$3.8-4.0$	$2095 \pm 155 \pm 166$	$20 \pm 1 \pm 2$
$4.0-4.2$	$1168 \pm 123 \pm 177$	$11 \pm 1 \pm 2$
$4.2-4.4$	$233 \pm 53 \pm 32$	$2.2 \pm 0.5 \pm 0.3$
$4.4-4.6$	$88 \pm 37 \pm 21$	$0.8 \pm 0.3 \pm 0.2$
$4.6-4.8$	$5 \pm 13 \pm 7$	$0.0 \pm 0.1 \pm 0.1$
$4.8-5.0$	$24 \pm 17 \pm 16$	$0.2 \pm 0.2 \pm 0.1$

the ratio of branching fractions.
The double-peak structure seen in the p^{*} spectrum is due to two production mechanisms: the peak at lower p^{*} is due to Ξ_{c}^{0} production in B meson decays and the peak at higher p^{*} is due to Ξ_{c}^{0} production from the $c \bar{c}$ continuum. This is evident from Fig. 2(c), where the p^{*} spectra for the on-resonance and off-resonance data are shown separately (with the off-resonance spectrum scaled to the on-resonance integrated luminosity and corrected for the change in $c \bar{c}$ cross-section). The $c \bar{c}$ peak is present in both samples, but the $B \bar{B}$ peak is only present in the on-resonance sample. Assuming baryon number conservation, the kinematic limit for Ξ_{c}^{0} produced in the decays of B mesons at $B A B A R$ is $p^{*}=2.135 \mathrm{GeV} / c$. We compare the on-resonance and scaled off-resonance samples for $p^{*} \leq 2.15 \mathrm{GeV} / c$ to obtain the yield of Ξ_{c}^{0} produced in B decays. This is scaled by the number of B mesons in the data sample (introducing a further 1.1% systematic
uncertainty) to obtain:

$$
\begin{aligned}
\mathcal{B}(B & \left.\rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right) \\
& =(2.11 \pm 0.19 \pm 0.25) \times 10^{-4}
\end{aligned}
$$

The yield of Ξ_{c}^{0} produced in $c \bar{c}$ events at an energy of 10.58 GeV is calculated from the scaled off-resonance data set (for $p^{*} \leq 2.15 \mathrm{GeV} / c$) and the on-resonance data set (for $p^{*}>2.15 \mathrm{GeV} / c$). The yield is then divided by the integrated luminosity (introducing a further 1.5% systematic uncertainty) to obtain the cross-section from the continuum:

$$
\begin{aligned}
\sigma\left(e^{+} e^{-}\right. & \left.\rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right) \\
& =(388 \pm 39 \pm 41) \mathrm{fb}
\end{aligned}
$$

where both Ξ_{c}^{0} and $\bar{\Xi}_{c}^{0}$ are included in the cross-section. The effect of initial state radiation is not isolated.

In summary, we have studied the Ξ_{c}^{0} charmed baryon at $B A B A R$ through its decays to the $\Omega^{-} K^{+}$and $\Xi^{-} \pi^{+}$final states using $116.1 \mathrm{fb}^{-1}$ of data. The ratio of branching fractions of these decay modes was measured to be $0.294 \pm 0.018 \pm 0.016$. This represents a substantial improvement on the previous measurement [4] and is consistent with a spectator quark model prediction [3]. We have also measured the p^{*} spectrum for Ξ_{c}^{0} produced at the $\Upsilon(4 S)$ resonance. The high rate of Ξ_{c}^{0} production at low p^{*} in B decays (below $1.2 \mathrm{GeV} / c$) is particularly intriguing, implying that the invariant mass of the recoiling antibaryon system is typically above $2.0 \mathrm{GeV} / c^{2}$. This can be explained naturally by a substantial rate of charmed baryon pair production through the $b \rightarrow c \bar{c} s$ weak decay process [5-8] which was observed indirectly in a previous BABAR analysis [13]. In this Letter we measured the branching fraction product $\mathcal{B}\left(B \rightarrow \Xi_{c}^{0} X\right) \times$ $\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$to be $(2.11 \pm 0.19 \pm 0.25) \times 10^{-4}$; the precision is significantly improved over the previous measurement [9]. We have also measured the cross-section product $\sigma\left(e^{+} e^{-} \rightarrow \Xi_{c}^{0} X\right) \times \mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$from the continuum to be $(388 \pm 39 \pm 41) \mathrm{fb}$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
${ }^{\dagger}$ Deceased
[1] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[2] Charge conjugate reactions are implied throughout.
[3] J. G. Körner and M. Krämer, Z. Phys. C 55, 659 (1992).
[4] CLEO Collaboration, S. Henderson et al., Phys. Lett. B 283, 161 (1992).
[5] P. Ball and H. G. Dosch, Z. Phys. C 51, 445 (1991).
[6] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137 (1990).
[7] S. M. Sheikholeslami and M. P. Khanna, Phys. Rev. D 44, 770 (1991).
[8] I. Dunietz, P. S. Cooper, A. F. Falk and M. B. Wise, Phys. Rev. Lett. 73, 1075 (1994).
[9] CLEO Collaboration, B. Barish et al., Phys. Rev. Lett. 79, 3599 (1997).
[10] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A 479, 1 (2002).
[11] T. Sjostrand et al. Comput. Phys. Commun. 135, 238 (2001).
[12] S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).
[13] B. Aubert et al., Phys. Rev. D 70, 091106 (2004).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

[^1]: ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom ${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 ${ }^{45}$ McGill University, Montréal, Quebec, Canada H3A $2 T 8$
 ${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
 ${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 ${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{60}$ Prairie View A \mathcal{M} M University, Prairie View, Texas 77446, USA
 ${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
 ${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{69}$ State University of New York, Albany, New York 12222, USA
 ${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
 ${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
 ${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 ${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
 ${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA

