
SLAC-PUB-11084
April 2005

Dynamic Aperture in Damping Rings with Realistic Wigglers∗

Yunhai Cai

Stanford Linear Accelerator Center

2575 Sand Hill Road, Menlo Park, CA 94025

Abstract

The International Linear Collider based on superconducting RF cavities requires the

damping rings to have extremely small equilibrium emittance, huge circumference, fast

damping time, and large acceptance. To achieve all of these requirements is a very

challenging task. In this paper, we will present a systematic approach to designing

the damping rings using simple cells and non-interlaced sextupoles. The designs of

the damping rings with various circumferences and shapes, including dogbone, are

presented. To model realistic wigglers, we have developed a new hybrid symplectic

integrator for faster and accurate evaluation of dynamic aperture of the lattices.

(Presented at Wiggle 2005 workshop, Frascati, Italy, February 21-22, 2005)

∗Work supported by the Department of Energy under Contract No. DE-AC02-76SF00515.



SLAC–PUB–11084
April 2005

Dynamic Aperture in Damping Rings with Realistic
Wigglers

Yunhai Cai
Stanford Linear Accelerator Center

Menlo Park, CA 94025

Abstract

The International Linear Collider based on superconducting RF
cavities requires the damping rings to have extremely small equi-
librium emittance, huge circumference, fast damping time, and
large acceptance. To achieve all of these requirements is a very
challenging task. In this paper, we will present a systematic ap-
proach to designing the damping rings using simple cells and non-
interlaced sextupoles. The designs of the damping rings with vari-
ous circumferences and shapes, including dogbone, are presented.
To model realistic wigglers, we have developed a new hybrid sym-
plectic integrator for faster and accurate evaluation of dynamic
aperture of the lattices.

Presented at Wiggle 2005 workshop,
Frascati, Italy, February 21-22, 2005



1 Introduction

Nearly all of the existing design of damping rings, including the dogbone
design of the TESLA damping ring [1], are based on the theoretical mini-
mum emittance (TME) cell [2] to achieve the required emittance. Contrasted
with the FODO cell, the TME cell is much more efficient for obtaining an
extremely small emittance. However, its strong focusing nature, combined
with tiny dispersion, often leads very strong sextoples that dramatically de-
grade the dynamic aperture in the rings. As a consequence, when a large
acceptance in the positron damping ring is required, an additional damping
ring of identical circumference is introduced to stage the reduction of emit-
tance and enlarge the acceptance in a chain of two consecutive rings. For
small ring, adding another ring is indeed a cost effective solution to resolve
the conflict between the small emittance and large acceptance in the damp-
ing system. Therefore, the two-ring scheme is widely adopted in the designs
of linear colliders, such as NLC [3].

For the International Linear Collider (ILC), the chosen RF technology,
based on superconducting cavities, requires a long train consisting of 2820
bunches equally separated 400 ns. Even with a compression scheme that
utilizes an extremely fast (20 ns) kicker, the long train still requires a 17-
kilometer circumference ring to store all the bunches and damp their emit-
tance. Clearly, for this kind of huge damping ring, adding another ring of
the same size is not an economical solution to enlarge the acceptance. In
this paper, we will explore other alternatives to increase the dynamic aper-
ture without an additional ring. A similar study based on a FODO cell and
interlaced sextupoles has been carried out by Wolski [4].

The equilibrium beam emittance in a simple electron or positron storage
ring can be written as

εx = CqFcγ
2φ3

d, (1.1)

where Cq = 55h̄c/32
√

3mc2 = 3.84×10−13m, φd is the bending angle in each
dipole magnet, and Fc is a dimensionless factor depending only on the cell
structure. It is well known[5] that the TME cell is the optimum cell structure
that minimizes Fc and its minimum achievable Fmin

c = 1/12
√

15.
Given an energy (γ = E/mc2), it is easy to see from Eq. (1.1) that

there are two ways to reduce the emittance, namely by reducing either Fc or
φd. In this paper we concentrate on the effects of decreasing φd, since the
other road naturally leads to the TME cell [1, 6]. First, to keep the total
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bending angle to 2π in a ring, the number of cells has to be increased when
reducing φd. Usually, a larger number of cells leads to larger circumference
which makes it easier to host the long bunch train. Second, the weaker bend
produces smaller dispersion, which leads to stronger sextupoles. The strong
sextupoles can degrade the dynamic aperture in the ring. So how can we
quantify the effects?

2 A simple storage ring

Let’s start with a simple FODO cell since it is well known that it gives
excellent dynamic aperture in storage rings. We choose 900 phase advance
per cell, which gives Fc = 2.5, twice as large as the achievable value with
any FODO cell. The 900 cell also makes it easier to place non-interlaced
sextupole pairs (separated in 1800) in the lattice.

Parameter Description Value
E (Gev) beam energy 5.0
C (m) circumference 960
εx (nm-rad) horizontal emittance 47.23
τt (ms) damping time 41.13
νx,νy,νs tunes 15.81, 15.68, 0.054
αc momentum compaction 6.24 × 10−3

σz (mm) bunch length 8.90
σe/E energy spread 5.13 × 10−4

U0 (Mev) energy loss per turn 0.79
ξx, ξy natural chromaticity −16.13, −17.71

Table 1: Parameters of storage ring with 900 FODO cells.

A length of the cell of 15 m leads to the maximum β of about 25 m. Sim-
ilar β functions are implemented in the PEP-II lattices [7, 8]. These lattice
functions have been demonstrated to have reasonable values in order to tol-
erate the multipole errors in the dipole and quadrupole magnets in the arcs.
The shape of the accelerator is a racetrack. Each arc consists of 20 regular
cells and ends with half-bend dispersion suppressors. To keep the symmetry,
we used four matching sections to change tunes and matched between the
dispersion suppressors and 900 cells at the middle of the straights. The main
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parameters of the ring are tabulated in Table 1 and its lattice functions are
calculated using MAD [9] and plotted in Fig. 1.

The natural chromaticity is compensated for by two families of inter-
leaved sextupoles next to the quadrupoles in the arcs. Since every four 900

cells make a second-order achromat, all driving terms of the third-order res-
onances generated by the sextupole are cancelled within each arc, which
consists of 20 cells. For the RF system, we used parameters similar to those
in B-factories[10, 11]. Its frequency and voltage are 500 MHz and 10 MV
respectively.
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Figure 1: Lattice functions in a storage ring.

3 Phase advance in straights

As we mentioned in the previous section, the betatron phase advances in the
arcs are locked in order to cancel the excitation of the third-order resonances.
The phase advance in the straight is still a free parameter for optimizing the
dynamic aperture. We can vary the phase by inserting additional 900 cells
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at the middle of the straights. The resulting changes in dynamic aperture
are shown in Fig. 2 in a sequence of the phase change: 00, 900, 1800, and
3600 in the both planes. Shown in plot (b), the best phase advances in the
straight section are nearly a multiple of 3600, which makes the whole straight
section an identity transformation and therefore maximizes the symmetry of
the ring and minimizes the number of excited high-order resonances. One can
clearly see in the plot that the optimized dynamic aperture is nearly 20 σinj

(assuming that the injected positron beam has emittance of εinj
x = εinj

y = 1000
nm-rad).
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Figure 2: Dynamic aperture vs. phase advances in straights.

The dynamic apertures were obtained by tracking particles in 1024 turns
with synchrotron oscillations starting with various initial transverse ampli-
tudes and momenta δ = 0, 0.5% and 1.0% using a six-dimensional symplectic
tracking code LEGO [12].

4 Scaling of dynamic aperture

In this storage ring, 20 σinj dynamic aperture is more than sufficient for the
acceptance. But its equilibrium emittance (εx = 47 nm-rad) is still too large
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to qualify as a damping ring. As we discussed in the introduction, we need to
know how the dynamic aperture degrades as the emittance gets reduced and
the sextupoles become stronger. This storage ring provides us an elegant and
yet simple way to study this effect. By simply inserting a multiple of four 900

cells, which is a unit transformation, in the straight section, we varied the
tune and natural chromaticity of the ring without changing the fractional
part of the tune. Then we changed the two families of sextupoles in the
arcs to correct the total chromaticity to zero. Since the sextupole strengthes
are linearly proportional to the tunes of the ring, the arc sextupoles became
stronger as we inserted more cells into the straight sections.
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Figure 3: Scaling property of dynamic aperture with respect to strength of
sextupoles. a) the circles and crosses represent the calculated dynamic aper-
tures in stretched rings and the solid lines are the one parameter fit to the
inverse function. b) The dots represent the particles that survived 1024 turns
in the tracking.

The result of the study is summarized in Fig. 3: Clearly, the dynamic
aperture is inversely proportional to the strength of the sextupoles. And this
simple scaling property can be explained by perturbation theory when the
dynamic aperture is determined by the location of fixed points in the phase
space dominated by a single resonance.
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5 Reduce emittance

Based on Eq. (1.1) and the scaling property of the dynamic aperture, found
in the last section, we expect the beam emittance and lattice parameters
scaled as the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx → εx/8, (horizontal emittance)
φd → φd/2, (bending angle)
Nc → 2Nc, (number of cells)
ρd → 2ρd, (bending radius)
ηx → ηx/2, (horizontal dispersion)
KSF,SD → 2KSF,SD, (strength of sextupole)
DA− > DA/2. (dynamic aperture)

Here we have assumed that the cell structure ( determined by the quadrupole
magnets and the space between them ) and the length of the dipole are kept
the same as the ring is enlarged.
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Figure 4: Dynamic apertures in three rings scaled to reducing the emittance
(εx = 47, 7, and 1 nm-rad).

According to the scaling law, two additional rings, doubling the number
of arc cell Nc from 40 to 80 and then 160, are designed. We found that
the emittance εx is reduced from 47 to 7 and then to 1 nm-rad while the
circumference C is increased correspondingly from 960 to 1560 and then to
2760 m. The slight deviation from the scaling law is largely due to the fact
that the actual lattices contain dispersion suppressors and straight sections.
The dynamic apertures of all three rings are shown Fig 4. One can see that
the dynamic apertures dropped a factor of two in each step and behaved just
as we expected from the scaling law. Unfortunately, the dynamic aperture
has degraded downward to 3 σinj in the largest ring with 1 nm-rad emittance.
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6 Non-interlaced sextupoles

There are still two obvious problems to make this 160-cell ring into a damping
ring for ILC. First, the damping time is too long because we have weakened
the bending dipole to reduce the emittance. Second, the dynamic aperture
is not quite adequate.

The damping time can be easily reduced by introducing damping wigglers.
To achieve a 21 ms damping time, we add 24 wigglers distributed in twelve
900 cells in the straight sections. Each wiggler has 10 periods and is 4-meters
long. Its peak field reaches 1.68 T. Because of faster damping, the wigglers
further reduce the emittance down to 0.3 nm-rad.
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Figure 5: Comparison between two sextupole schemes: a) interlaced and b)
non-interlaced in a compact damping ring based on a FODO cell.

Since we already arranged the sextupoles in each arc to cancel the excita-
tion of all third-order resonances, the dynamic aperture reduction we saw in
the last section can only be caused by the high-order effects generated from
the concatenation among the sextupoles. The only known way[13] to elimi-
nate this interference is to pair two sextupoles with an −I transformer with-
out any sextupole in between. This arrangement is called the non-interlaced
sextupole scheme, which has been implemented and demonstrated in the B-
factories [8, 11] as an effective method of correcting chromaticity and provid-
ing adequate dynamic aperture. Incidentally, the non-interlaced arrangement
of sextupoles also requires many cells and a large circumference of the ring.
For the ring with 160 cells, that is not a problem. Here, we regroup two
families of sextupoles into a non-interlaced pattern. The resulting dynamic
aperture is significantly improved as shown in Fig. 5.
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Due to the sparse arrangement, the non-interlaced sextupoles are three
times stronger than the interlaced ones. This implies that the alignment tol-
erance of the sextupoles becomes much tighter and some kind of beam-based
alignment may be necessary in the actual accelerator. The main parameters
of the design are listed in Table 2.

Parameter Description Value
E (Gev) beam energy 5.0
C (m) circumference 2820
εx (nm-rad) horizontal emittance 0.3
τt (ms) damping time 21
νx,νy,νs tunes 47.81, 47.68, 0.016
αc momentum compaction 6.0 × 10−4

σz (mm) bunch length 22.0
σe/E energy spread 1.3 × 10−3

U0 (Mev) energy loss per turn 4.5
ξx, ξy natural chromaticity −60.0, −60.0

Table 2: Parameters of a compact damping ring with 900 FODO cells.

In the table, the bunch length σz = 22 mm is too long compared with
the 6 mm achieved in the DESY dogbone damping ring. In order to solve
this problem, one can significantly increase the RF voltage [4] or modify the
FODO cell to reduce the momentum compaction factor.

7 Detuned π cell

We would like to retain most properties of a FODO cell. The simplest way
to reduce the momentum compaction factor is to remove some dipoles in
cells without changing the cell structure. An obvious option is to choose a
so-called π cell , which was studied during the design stage[14] of KEKB.
Basically, a π cell is made of two 900 cells with two missing dipoles. The
bending angles of the two remaining dipoles are doubled to maintain the total
bending in the original two cells. Its optical functions are plotted in Fig. 6.
One can see in the figure that the dispersion is minimized at the location
of the dipoles, which results in a factor of two reduction in the momentum
compaction factor compared with the 900 FODO cell.
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Figure 6: Lattice functions of a detuned π cell.

Again, this cell has nearly the same focusing properties as the FODO
cell. As a result, the dynamic aperture does not change much compared
with FODO lattices. Here, its phase advance is reduced by 10 away from
1800 to improve the dynamic aperture.

8 A compact damping ring

Finally, we completed a design of a compact damping ring based on the
detuned π cell and non-interlaced sextupoles scheme. The ring consists of 80
cells in two arcs, four dispersion suppressors, and nearly 100 meter wigglers
in two straight sections. The main parameters are tabulated in Table 3.

We found that the sextupole pairs placed at the middle of the cells, where
the dispersion is very small, are necessary to retain adequate dynamic aper-
ture for off-momentum particles. They are about a factor four stronger than
the pairs near the ends to compensate for the difference of the dispersion.

The bunch length σz = 8.3 mm is easily reduced to 6 mm by increasing
the RF voltage from 10 to 12 MV. For a 500 MHz RF system, the harmonic
number is 4700. Clearly, there are enough buckets to store 2820 bunches in
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Parameter Description Value
E (Gev) beam energy 5.0
C (m) circumference 2820
εx (nm-rad) horizontal emittance 0.49
τt (ms) damping time 20
νx,νy,νs tunes 47.81, 47.68, 0.021
αc momentum compaction 2.83 × 10−4

σz (mm) bunch length 8.3
σe/E energy spread 1.27 × 10−3

U0 (Mev) energy loss per turn 4.70
ξx, ξy natural chromaticity −60.0, −60.0

Table 3: Parameters of a compact damping ring with detuned π cells.

the ring. Of course, the smaller bunch space implies that we will need much
a faster kicker for extraction. We can easily stretch the straight sections to
make the ring a little larger and store all bunches in every two buckets. That
makes that the bunch spacing equal 4 ns. If one can make a 4-ns kicker, this
design of a compact damping ring should be seriously considered.

9 A dogbone damping ring

Given a 20-ns kicker, we have to extend this compact ring to a skinny dogbone
with a 17-km circumference. Immediately, we face two competing effects.
First, when a ring is stretched in straight sections, increased chromaticity
results in stronger sextupoles in the arcs. That degrades dynamic aperture
as we have shown in Sec. 4. Second, to achieve the same damping time in a
much longer ring requires many more damping wigglers. Since the damping
wigglers also reduce the emittance, these extra wigglers allow us to relax
the emittance, generated by the bending cell in the arcs, to a larger value.
That leads to a large dynamic aperture. These two effects on the dynamic
aperture of on-momentum particles roughly cancelled each other. For the
off-momentum particles, the dynamic aperture in the dogbone ring is worse,
largely because of a lack of symmetry.

Similar to the DESY design [1], we use each arc to bend the beam 2400

positively and then 600 negatively to close the ring. Given this geometric
constraint, there are a few discrete solutions to configure cells. To achieve the
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parameters similar to those in the DESY design, we select the configuration
that contains 35 positive bending π cells, 8 negative bending cells, and 4
half-bend dispersion suppressors in each arc. Finally, to retain the two-fold
symmetry in the ring, we placed two joins of the dogbone on the opposite
side of the parallel long straights. The layout of the ring is shown in Fig. 7
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Figure 7: Layout of the dogbone damping ring.

Aside from regular cells, dispersion suppressors, and wiggler cells, the ring
contains long and weakly focusing cells in straight sections to cover most of
the distance and a few matching sections. The parameters of both the DESY
ring and the new dogbone ring are listed in Table 4 for comparison. Almost
all parameters of the two rings are identical except the betatron tunes and the
natural chromaticity. The different type of cell used, one TME and another
π cell, explains the difference.

The dynamic apertures of both ring using “linear wigglers”, approximated
with segmented dipoles, are shown in Fig. 8. The scales of the two plots
are different because of difference in β functions at the position where the
tracking particles are launched. One can still compare the results by referring
to the beam size of the injected beam (εx = εy = 1000 nm-rad). Clearly, the
newly designed ring has significantly improved the dynamic aperture. But
its dynamic aperture for the off-momentum particles may require further
optimization. This improvement may be accomplished by using every pair
of sextupoles as an independent family.
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Parameter DESY SLAC
Energy E (Gev) 5.0 5.0
Circumference C (m) 17000 17014
Emittance εx (nm-rad) 0.5 0.62
Damping time τt (ms) 28 27
Tunes νx,νy,νs 76.31, 41.18, 0.071 83.73, 83.65, 0.072
Momentum compaction αc 1.22 × 10−4 1.11 × 10−4

Bunch length σz (mm) 6.04 5.90
Energy spread σe/E 1.29 × 10−3 1.30 × 10−3

Chromaticity ξx, ξy −125, −62.5 −105.27, −106.70
Energy loss per turn U0 (Mev) 20.4 21.0
RF voltage VRF (MV) 50 50

Table 4: Parameters of two dogbone damping rings.

For the dogbone ring, the number of wigglers has been increased to 112
to reduce the damping time. Since actual wigglers are intrinsically nonlinear
due to the variation of their magnetic fields, how much nonlinearity can the
ring tolerate? Before we can answer this question, we need to know how to
describe the magnetic field of a wiggler and then how to integrate through
the field.

10 Intrinsic field

In Cartesian coordinate, the intrinsic magnetic field of a wiggler can be de-
rived from a scalar potential that satisfies the Laplace’s equation and be
written as

By =
Ns∑
n=1

B(n)
y cosh(k(n)

s y) sin(k(n)
s s + φ(n)

y ),

Bs =
Ns∑
n=1

B(n)
y sinh(k(n)

s y) cos(k(n)
s s + φ(n)

y ]), (10.1)

and Bx = 0, where k(n)
s = (2n − 1)kw, kw = 2π/λw, and λw is the period

of the wiggler. Each mode, described by an amplitude B(n)
y and phase φ(n)

y ,
independently satisfies Maxwell’s equation in vacuum:

∇ · �B = 0,∇× �B = 0. (10.2)

13



−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

x(cm)

y(
cm

)

(a)

3σ
inj

10σ
inj

δp/p = 0
δp/p = 0.5%
δp/p = 1.0%

−5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(cm)

y(
cm

)

(b)

Figure 8: Dynamic apertures of both dogbone damping rings with linear wig-
glers: a) DESY’s design b) SLAC’s new design.

This property ensures that a finite expansion of harmonics in Eq. (10.1) does
not violate Maxwell’s equations.

Its vector potential, defined by �B = ∇× �A, can be easily derived in the
axial gauge: As = 0. It can be written as

Ax =
Ns∑
n=1

−(B(n)
y /k(n)

s ) cosh(k(n)
s y) cos(k(n)

s s + φ(n)
y ), (10.3)

and Ay = 0. Note that the only non-vanishing component, Ax, does not
depend on the coordinate x. This makes the integration much simpler, which
will be discussed in the next section. Incidentally, this vector potential also
satisfies the Coulomb gauge condition: ∇ · �A = 0.

11 Symplectic integrator

Under the small-angle approximation, the Hamiltonian that describe the
motion of a charged particle in a static magnetic field is given by [15]

H(x, px, y, py, δ, l; s) = −(1+δ)+
1

2(1 + δ)
[(px−ax)

2+(py−ay)
2]−as, (11.1)

where �a = e �A(x, y, s)/cp0. Since H explicitly depends on s, we have to
integrate through the system in many segments. Using the notation of Lie
algebra, we can write it formally as

e−
∫

:H:ds ≈
n∏

i=1

e−:H(si):∆s, (11.2)
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where ∆s is the length of the segment. In each integration step, we can split
H(si) into three exactly solvable parts:

⎧⎪⎪⎨
⎪⎪⎩

H0 = −(1 + δ) + 1
2(1+δ)

(p2
x + p2

y), (drift)

H1 = 1
2(1+δ)

(a2
x + a2

y) − as, (kick)

H2 = − 1
(1+δ)

(pxax + pyay). (special case)

H2 is explicitly solvable for the case of the intrinsic field because it does not
depend on the coordinate x and thus has an extra constant of motion px. As
a result of the splitting, a second-order integrator:

e−:H(si):∆s = e−
:H0:

2
∆se−

:H1:

2
∆se−:H2:∆se−

:H1:

2
∆se−

:H0:

2
∆s + O(∆s3), (11.3)

can be used to approximate the integration in each step. This kind of inte-
grators can be easily derived [16] by applying the Baker-Cambell-Hausdorf
formula. It is obvious that the solution becomes an exact one at the limit
of an infinite number of segments. It also preserves the symplecticity during
the integration since each Lie factor is symplectic.

12 Effect of single-mode wigglers

For simplicity, let’s investigate a single-mode wiggler that has only the first
mode: n = 1 in Eqs. (10.1) and (10.3). In this simplified case, we apply
the second-order symplectic integrator in Eq.(11.3) for the integration of
the wiggler selected according to the DESY’s design: period λw = 0.4 m,
peak field B0 = 1.68 T, and 10 periods. To center the wiggled orbit inside
the wiggler, we replace the half pole at both ends with a full pole with a
period λw/2 and the same peak field B0. The centered orbit and dispersion
are plotted in Fig 9. Moreover, we found that the wiggled orbit caused an
increase of path length of 40 microns in the 4-meter wiggler.

This single-mode wiggler is implemented in LEGO to replace the linear
wiggler in both dogbone lattices that have been discussed in previous sections.
The linear tune shift of the vertical tune, caused by the substitution, is barely
noticeable and therefore it needs not to be compensated with quadrupoles.
The total tune shift, including the nonlinear one, caused by the wiggling field
can be calculated using the Hamiltonian perturbation theory. Starting from
the vector potential in Eq.(10.3) and the Hamiltonian in Eq. (11.1), we find
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Figure 9: Wiggled orbit and dispersion inside a wiggler.

that, for a single-mode wiggler with Np periods, the tune shift is given by

∆νy =
Npλw

8π(1 + δ)ρ2
0

[βy + k2
wβ2

yJy + ...], (12.1)

where βy is the average beta function at the wiggler, Jy is the action, and ρ0

is the bending radius of the peak field B0. The nonlinear tune shift can also
be computed numerically using the differential algebra [17] and the normal-
form analysis [18]. The numerical results are tabulated in Table 5 for the
new damping ring with two different models of wiggler. The only change
of ∂νy/∂εy in the table can be compared with the contribution from the
second term in Eq. (12.1). Of course one has to take the number of wigglers
Nw = 112 and βy = 12 m into account. The agreement is within a few
percent.

wiggler model: linear single-mode
∂νx/∂εx −1583 −1583
∂νx/∂εy,∂νy/∂εx −320 −320
∂νy/∂εy −860 +2609

Table 5: Nonlinear tune shifts in the new dogbone damping ring. Here εx,y

are the emittance of the beam (εx,y = 2Jx,y).

The dynamic aperture of both dogbone lattices with the single-mode wig-
glers are plotted in Fig. 10. Compared with Fig. 8, one can see that the
single-mode wigglers made little decrease in the dynamic aperture in the
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vertical plane for the new dogbone lattice. However for the old one, the
degradation is more pronounced, presumably due to an excited resonance
near its working point.
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Figure 10: Dynamic apertures of both dogbone damping rings with single-
mode wigglers: a) DESY’s design b) SLAC’s new design.

13 Field due to pole width

For a realistic wiggler with a finite pole width, we have Bx �= 0. In addi-
tion to the intrinsic field described by Eq. (10.1), we need the harmonic
expansion [19]:

Bx =
Nsy∑
n=1

Ny∑
m=1

B(n,m)
x sinh(kn,m

x x) sin(k(m)
y y) sin(k(n)

s s + φ(n,m)
x ),

By =
Nsy∑
n=1

Ny∑
m=1

B(n,m)
y cosh(kn,m

x x) cos(k(m)
y y) sin(k(n)

s s + φ(n,m)
x ),

Bs =
Nsy∑
n=1

Ny∑
m=1

B(n,m)
s cosh(kn,m

x x) sin(k(m)
y y) cos(k(n)

s s + φ(n,m)
x ),

(13.1)

where B(n,m)
y = k(m)

y B(n,m)
x /k(n,m)

x , B(n,m)
s = k(n)

s B(n,m)
x /k(n,m)

x , k(m)
y = mπ/h,

k(n,m)
x =

√
k

(n)
s + k

(m)
y , and the h is the height of the pole. It is easy to see

from Eq.(13.1) that Bx(x, h, s) = 0, which implies that the magnetic field
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enters perpendicular into the pole. It is not hard to show that its vector
potential, in the axial gauge As = 0, is given by

Ax =
Nsy∑
n=1

Ny∑
m=1

A(n,m)
x cosh(kn,m

x x) cos(k(m)
y y) cos(k(n)

s s + φ(n,m)
x ),

Ay =
Nsy∑
n=1

Ny∑
m=1

A(n,m)
y sinh(kn,m

x x) sin(k(m)
y y) cos(k(n)

s s + φ(n,m)
x ), (13.2)

where A(n,m)
x = −k(m)

y B(n,m)
x /k(n,m)

x k(n)
s and A(n,m)

y = B(n,m)
x /k(n)

s .
A map of the three-dimensional field in a quarter period of the wiggler

was obtained using a magnetic design code for the DESY’s dogbone damping
ring. The field map includes all three components: Bx, By, and Bs on a grid
of 11 × 11 × 51 with cubic dimension: 1 mm×1 mm×2 mm. We fit all data
points in the field map with the superposition of the intrinsic and pole-width
field in Eqs. (10.1) and (13.1). The residual of the fitting in rms is reduced to
a few Gauss. Here, we show the residual of By in the x-z planes at y = 0, 6
mm in Fig. 11. The peak field B0 = 1.68 T is reached at z = 100 mm in the
field map.
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Figure 11: Residual of fitting to a three-dimensional field map. a) By in x-z
plane at y = 0 and b) y = 6 mm.

There are 44 modes, with each mode having two free parameters, used in
the fitting. The wiggler parameters used are λw = 0.4 m and h = 0.025 m. It
can be seen from plot (b) that there is a bump near the pole, which is largely
due to the field saturation. One can always reduce the residual further by
introducing other types of harmonic expansions [20] or more terms in the
field expansions. But that could significantly slow down the tracking.
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14 A hybrid integrator

For a wiggler with finite pole width, e−:H2:∆s/2 in Eq. (11.3) can not be solved
explicitly. Some kind of approximation is required. Here we introduce a mix-
variable generating function:

F2 =
3∑

i=1

qip̄i + H(q, p̄)∆s, (14.1)

to make a canonical transformation:

q̄i =
∂F2

∂p̄i

= qi +
∂H(q, p̄)

∂p̄i

∆s,

pi =
∂F2

∂qi

= p̄i +
∂H(q, p̄)

∂qi

∆s. (14.2)

In general, these equations can only be solved numerically. It is commonly
referred as the inexplicit integration. However for some special forms of
Hamiltonian H, such as H2 which has linear dependency upon px and py,
they can be solvable analytically. For the Lie transformation: e:−H2:∆s, with
a substitution of H = −(pxax + pyay)/(1 + δ) into Eq. (14.2) and simple
algebra, we obtain

x̄ = x − ax

1 + δ
∆s,

p̄x = [(1 − ∂yay

1 + δ
∆s)px +

∂xay

1 + δ
∆spy]/ det,

ȳ = y − ay

1 + δ
∆s,

p̄y = [
∂yax

1 + δ
∆spx + (1 − ∂xax

1 + δ
∆s)py]/ det,

δ̄ = δ,

l̄ = l − (p̄xax + p̄yay)

(1 + δ)2
∆s, (14.3)

where

det = 1 − (∂xax + ∂yay)∆s

1 + δ
+

∂xax∂yay∆s2

(1 + δ)2
. (14.4)

To be precise, this approximation is only a first-order integrator. However,
in this particular application to a realistic wiggler, it is a pretty good ap-
proximation since the intrinsic potential in Eq. (10.3) dominates the total
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expansion; also, for the intrinsic potential alone, this first-order integrator
becomes the exact solution.

The transformation defined by Eq. (14.3) is also symplectic since it orig-
inated from a canonical transformation. Of course, it is not so hard to show
its symplecticity directly. In addition, this hybrid integrator, starting from
an inexplicit scheme and ending up with an explicit solution, allows us to ex-
tract a nonlinear map of an arbitrary order by simply tracking the truncated
power series as if it were an explicit symplectic integrator.

15 Dynamic aperture with realistic wigglers

After we implemented these integration schemes in LEGO, we used the fit-
ted vector potential in the 44-mode expansion presenting the wigglers and
computed the dynamic aperture of the DESY’s dogbone damping ring. The
dynamic aperture for the on-momentum particles was reduced significantly
to 1-2σinj. This result, shown in Fig. 12, indicates that there could be too
much loss during the injection of positrons. Similar results were obtained
separately by Venturini [21] and Urban [22] using different presentations of
field, integration methods, and tracking codes.
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Figure 12: Dynamic aperture of DESY’s dogbone damping ring with realistic
wigglers.

Actually, the insufficient dynamic aperture of DESY’s ring was the main
motivation for us to initiate our study of a new design. We have not com-
pletely solve the problem because the dynamic aperture with the full nonlin-
ear wigglers in the newly designed dogbone damping ring is about the same
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as shown in Fig. 12. That is not too surprising since the good field region
of the wigglers is so small that the 450-meter long wigglers acted as if they
were physical collimators.

Obviously, the wiggler’s nonlinear field has to be significantly reduced to
achieve an adequate acceptance in the damping ring. Given how little impact
on the dynamic aperture in the newly designed dogbone damping ring by the
single-mode wigglers shown in plot (b) of Fig. 10. There should be a good
and realistic design of a wiggler that could satisfy our stringent requirement
on the acceptance. A further study is needed to make a reasonable and
achievable specification of the wigglers.

16 Conclusion

The hybrid integrator developed in this paper is symplectic and very general.
It can also be applied to the integration of the fringe field at the end of a
magnet. Compared with the conventional explicit integrator [23], it is much
simpler and therefore faster in tracking. In addition, it retains an important
property: obtaining a high-order map using the differential algebra. The
integration method developed in this paper is fully self-consistent. It allows
us to study the effects of misalignment inside the wiggler with a nonlinear
field.

It is very encouraging to see almost the same degraded dynamic aperture
when the same field map of the wiggler and the dogbone lattice are applied
by several authors using different methods of tracking. Our work on the
single-mode wiggler has demonstrated that the degradation by the damping
wigglers is not a fundamental limitation of the lattices and it is solvable with
more engineering efforts.

We have designed two new damping rings: compact and dogbone, based
on the π cell and non-interlaced sextupoles. We believe that their accep-
tances will be adequate once their damping wigglers are improved in terms
of the field quality. The chromatic effects in these rings are under further
optimization. A realistic specification of wigglers and analysis of lattice toler-
ance remain to be carried out in addition to the study of space-charge effects
and the coupling bumps.
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