Improved Measurement of the CKM Angle α Using $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$Decays.

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc,,${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ V. Poireau,,${ }^{1}$ V. Tisserand,,${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen,,${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch,,${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin,,${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli,,13 M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich,,${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu,,${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ R. Andreassen, ${ }^{20}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ E. Maly, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert,,${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger,,${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ M. J. Charles, ${ }^{33}$ G. J. Grenier, ${ }^{33}$ U. Mallik, ${ }^{33}$ A. K. Mohapatra, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux,,${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz,,${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau,,${ }^{35}$ M. H. Schune, ${ }^{35}$ A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster,,${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ R. L. Flack, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi,,${ }^{39}$ F. Salvatore, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis,,${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ M. T. Naisbit, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ H. Kim, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ B. Viaud, ${ }^{48}$ H. Nicholson, ${ }^{49}$
N. Cavallo, ${ }^{50, *}$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, *}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio, ${ }^{50}$ P. Paolucci, ${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek,,${ }^{51}$ L. Wilden, ${ }^{51}$ C. P. Jessop,,${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ P. D. Jackson, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54} \mathrm{M} . \operatorname{Lu},{ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos,,${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo,,${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo, ${ }^{59}$ G. Simi, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ J. Biesiada, ${ }^{61}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith,,${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ A. D’Orazio, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Safai Tehrani,,${ }^{62}$ C. Voena, ${ }^{62}$ S. Christ, ${ }^{63}$ H. Schröder, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F. F. Wilson, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig,,${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast,,${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ S. Kazuhito, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ V. E. Ozcan, ${ }^{67}$ A. Perazzo,,${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff,,${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ A. Soha, ${ }^{67}$ J. Stelzer, ${ }^{67}$ J. Strube, ${ }^{54,}{ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ S. R. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat, ${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed,,${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen,,72 I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ P. Poropat,,${ }^{74,}{ }^{\dagger}$ L. Vitale, ${ }^{74}$ G. Vuagnin, ${ }^{74}$ F. Martinez-Vidal, ${ }^{75}$ R. S. Panvini, ${ }^{76,}{ }^{\dagger}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(The BABAR Collaboration)

[^0][^1](Dated: March 29, 2005)

Abstract

We present results from an analysis of $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$using 232 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We measure the longitudinal polarization fraction $f_{L}=0.978 \pm 0.014$ (stat) ${ }_{-0.029}^{+0.021}$ (syst) and the $C P$-violating parameters $S_{L}=-0.33 \pm 0.24$ (stat) ${ }_{-0.14}^{+0.08}$ (syst) and $C_{L}=-0.03 \pm 0.18$ (stat) ± 0.09 (syst). Using an isospin analysis of $B \rightarrow \rho \rho$ decays we determine the unitarity triangle α. The solution compatible with the Standard Model is $\alpha=(100 \pm 13)^{\circ}$.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

In the Standard Model, $C P$-violating effects in the B meson system arise from a single phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. Interference between direct decay and decay after $B^{0} \bar{B}^{0}$ mixing in $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$results in a time-dependent decay-rate asymmetry that is sensitive to the angle $\alpha \equiv$ $\arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]$ in the unitarity triangle of the CKM matrix. This decay proceeds mainly through a $b \rightarrow u \bar{u} d$ tree diagram. The presence of penguin loop contributions introduces additional phases that shift the experimentally measurable parameter $\alpha_{\text {eff }}$ away from the value of α. However, measurements of the $B^{+} \rightarrow \rho^{+} \rho^{0}$ branching fraction and the upper limit for $B^{0} \rightarrow \rho^{0} \rho^{0}[2,3]$ show that the penguin contribution in $B \rightarrow \rho \rho$ is small with respect to the leading tree diagram, and $\delta \alpha_{\rho \rho}=\alpha_{\text {eff }}-\alpha$ is constrained at $\pm 11^{\circ}$ at $1 \sigma[3]$. This Letter presents an update of the time-dependent analysis of $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$ and measurement of the CKM angle α reported in [4].

The $C P$ analysis of B decays to $\rho^{+} \rho^{-}$is complicated by the presence of a mode with longitudinal polarization and two with transverse polarization. The longitudinal mode is $C P$ even, while the transverse modes contain $C P$-even and $C P$-odd states. Empirically, the decay is observed to be dominated by the longitudinal polarization [4], with a fraction f_{L} defined by the fraction of the helicity zero state in the decay. The angular distribution is

$$
\begin{align*}
& \frac{d^{2} \Gamma}{\Gamma d \cos \theta_{1} d \cos \theta_{2}}= \tag{1}\\
& \frac{9}{4}\left[f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}\right]
\end{align*}
$$

where $\theta_{i=1,2}$ is the angle between the π^{0} momentum and the direction opposite the B^{0} in the ρ rest frame, and we have integrated over the angle between the ρ decay planes.

The analysis reported here is improved over our earlier publication [4] by a change in selection requirements that results in an increased signal efficiency; introduction of a signal time dependence that accounts for possible misreconstruction; and use of a more detailed background model. Our data sample is more than double that used previously [4]. This measurement uses 232 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR [5] detector at the PEP-II asymmetric-energy B Factory at SLAC.

We reconstruct $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$candidates $\left(B_{\text {rec }}\right)$ from combinations of two charged tracks and two π^{0} candidates. We require that both tracks have particle identification information inconsistent with the electron, kaon, and proton hypotheses. The π^{0} candidates are formed from pairs of photons each of which has a measured energy greater than 50 MeV . The reconstructed π^{0} mass must satisfy $0.10<m_{\gamma \gamma}<0.16 \mathrm{GeV} / c^{2}$. The mass of the ρ candidates must satisfy $0.5<m_{\pi^{ \pm} \pi^{0}}<1.0 \mathrm{GeV} / c^{2}$. When multiple B candidates can be formed, we select the one that minimizes the sum of $\left(m_{\gamma \gamma}-m_{\pi^{0}}\right)^{2}$ where $m_{\pi^{0}}$ is the true π^{0} mass. If more than one candidate has the same π^{0} mesons, we select one at random.

Combinatorial backgrounds dominate near $\left|\cos \theta_{i}\right|=$ 1 , and backgrounds from B decays tend to concentrate at negative values of $\cos \theta_{i}$. We reduce these backgrounds with the requirement $-0.90<\cos \theta_{i}<0.98$.

Continuum $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ events are the dominant background. Continuum background is reduced by requiring that the absolute value of the cosine of the angle between the B thrust axis and that of the rest of the event, ROE, $\left(\cos B_{T R}\right)$ be less than 0.8. To distinguish signal from continuum we use a neural network (\mathcal{N}) to combine ten discriminating variables: the event shape variables that are used in the Fisher discriminant in Ref [6]; the cosine of the angle between the direction of the B and the collision axis (z) in the $e^{+} e^{-}$center-of-mass (CM) frame; the cosine of the angle between the B thrust axis and the z axis, $\left|\cos B_{T R}\right|$; the decay angle of each π^{0} (defined in analogy to the ρ decay angle, θ_{i}); and the sum of transverse momenta in the ROE relative to the z axis.

Signal events are identified kinematically using two variables, the difference ΔE between the CM energy of the B candidate and $\sqrt{s} / 2$, and the beam-energysubstituted mass $m_{\mathrm{ES}}=\sqrt{\left(s / 2+\mathbf{p}_{i} \cdot \mathbf{p}_{B}\right)^{2} / E_{i}^{2}-\mathbf{p}_{B}^{2}}$, where \sqrt{s} is the total CM energy. The B momentum \mathbf{p}_{B} and four-momentum of the initial state $\left(E_{i}, \mathbf{p}_{i}\right)$ are defined in the laboratory frame. We accept candidates that satisfy $5.23<m_{\mathrm{ES}}<5.29 \mathrm{GeV} / c^{2}$ and $-0.12<\Delta E<0.15 \mathrm{GeV}$. The asymmetric ΔE selection reduces background from higher-multiplicity B decays.

To study the time-dependent asymmetry one needs to measure the proper-time difference, Δt, between the two B decays in the event, and to determine the flavor of the other B meson $\left(B_{\mathrm{tag}}\right)$. We calculate Δt from the
measured separation Δz between the $B_{\text {rec }}$ and $B_{\text {tag }}$ decay vertices [7]. We determine the $B_{\text {rec }}$ vertex from the two charged-pion tracks in its decay. The $B_{\text {tag }}$ decay vertex is obtained by fitting the other tracks in the event, with constraints from the $B_{\text {rec }}$ momentum and the beam-spot location. The RMS resolution on Δt is 1.1 ps . We only use events that satisfy $|\Delta t|<20 \mathrm{ps}$ and for which the error on Δt less than 2.5 ps . The flavor of the B_{tag} meson is determined with a multivariate technique [6].

Signal candidates may pass the selection requirement even if one or more of the pions assigned to the $\rho^{+} \rho^{-}$ state belongs to the other B in the event. These self-cross-feed (SCF) candidates constitute 50% (26\%) of the accepted signal for $f_{L}=1\left(f_{L}=0\right)$. The majority of SCF events have both charged pions from the $\rho^{+} \rho^{-}$final state, and unbiased $C P$ information (correct-track SCF). There is a SCF component (14% of the signal) where at least one track in B_{rec} is from the rest of the event. These wrong track events have biased $C P$ information, and are treated separately for the $C P$ result. The probability density function (PDF) describing wrong track events is used only in determining the signal yield and polarization. A systematic error is assigned to the $C P$ results from this type of signal event.

We obtain a sample of 68703 events that enter a maximum-likelihood fit. These events are dominated by backgrounds: roughly 92% from $q \bar{q}$ and 7% from $B \bar{B}$ events. The remaining 1 We distinguish the following candidate types: (i) correctly reconstructed signal; (ii) SCF signal, split into correct and wrong track parts; (iii) charm $B^{ \pm}$background ($b \rightarrow c$); (iv) charm B^{0} background $(b \rightarrow c)$; (v) charmless B backgrounds; and (vi) continuum background. The dominant charmless backgrounds are B decays to $\rho \pi,\left(a_{1} \pi\right)^{ \pm},\left(a_{1} \pi\right)^{0}$, and longitudinally polarized $a_{1} \rho$ final states. For these decays we use the inclusive branching fractions (in units of 10^{-6}), $34 \pm 4[8], 42 \pm 42,42 \pm 6$ [9] and 100 ± 100, respectively. The corresponding expected number of events in the sample are $82 \pm 13,87 \pm 87,65 \pm 9$, and 202 ± 202. We also account for contributions from higher kaon resonances (112 ± 112 events) and $\rho^{+} \rho^{0}(82 \pm 19$ events). In addition we expect $2551 \pm 510(1316 \pm 263)$ charged (neutral) B decays to final states containing charm mesons. The B-background decays are included as separate components in the fit.

Each candidate is described with the eight $B_{\text {rec }}$ kinematic variables: $m_{\mathrm{ES}}, \Delta E$, the $m_{\pi^{ \pm} \pi^{0}}$ and $\cos \theta_{i}$ values of the two ρ mesons, Δt, and \mathcal{N}. For each fit component, we construct a PDF that is the product of PDFs for these variables, neglecting correlations. This introduces a fit bias that is corrected with the use of MC simulation. The continuum-background yield and its PDF parameters for $m_{\mathrm{ES}}, \Delta E, \cos \theta_{i}$, and \mathcal{N} are floated in the fit to data. The continuum $m_{\pi^{ \pm} \pi^{0}}$ distribution is described by a Breit-Wigner and polynomial shape, and is derived from m_{ES} and ΔE data sidebands. For all other fit
components the PDFs are extracted from high-statistics Monte Carlo (MC) samples. The $\cos \theta_{i}$ distributions for the background are described by a non-parametric PDF derived from the MC samples, as the detector acceptance and selection modify the known vector-meson decay distribution. The true signal distribution is given by Eq. 1 multiplied by an acceptance function determined from signal MC samples, whereas SCF signal is modeled using non-parametric PDFs.

The signal decay-rate distribution for both polarizations $f_{+}\left(f_{-}\right)$for $B_{\mathrm{tag}}=B^{0}\left(\bar{B}^{0}\right)$ is given by
$f_{ \pm}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left[1 \pm S \sin \left(\Delta m_{d} \Delta t\right) \mp C \cos \left(\Delta m_{d} \Delta t\right)\right]$,
where τ is the mean B^{0} lifetime, Δm_{d} is the $B^{0} \bar{B}^{0}$ mixing frequency, and $S=S_{L}$ or S_{T} and $C=C_{L}$ or C_{T} are the $C P$-asymmetry parameters for the longitudinally and transversely polarized signal. The parameters S and C describe B-mixing induced and direct $C P$ violation, respectively. S and C for the longitudinally polarized wrong-track signal are fixed to zero. The Δt PDF takes into account incorrect tags and is convolved with the resolution function described below. Since f_{L} is approximately 1 , the fit has no sensitivity to either S_{T} or C_{T}. We set these parameters to zero and we vary them in the evaluation of systematic uncertainties.

The signal Δt resolution function consists of three Gaussians ($\sim 90 \%$ core, $\sim 9 \%$ tail, $\sim 1 \%$ outliers), and takes into account the per-event error on Δt from the vertex fit. The resolution is parameterized using a large sample of fully reconstructed hadronic B decays [7]. For wrong-track SCF we replace the B-meson lifetime by an effective lifetime obtained from MC simulation to account for the difference in the resolution. The nominal Δt distribution for the B backgrounds is a non-parametric representation of the MC samples; in the study of systematic errors we replace this model with the one used for signal. The resolution for continuum background is described by the sum of three Gaussian distributions whose parameters are determined from data.

We perform an unbinned extended maximum likelihood fit. The results of the fit are 617 ± 52 signal events, after correction of a 68 event fit bias, with $f_{L}=$ $0.978 \pm 0.014, S_{L}=-0.33 \pm 0.24$ and $C_{L}=-0.03 \pm 0.18$. The measured signal yield, polarization, and $C P$ parameters are in agreement with our earlier publication [4], with significantly improved precision. Figure 1 shows distributions of $m_{\mathrm{ES}}, \Delta E, \cos \theta_{i}$ and $m_{\pi^{ \pm} \pi^{0}}$ for the highest purity tagged events with a loose requirement on \mathcal{N}. The plot of m_{ES} contains 14% of the signal and 1.5% of the background. For the other plots there is an added constraint that $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$; these requirements retain 11.5% of the signal and 0.4% of the background. Figure 2 shows the Δt distribution for B^{0} and \bar{B}^{0} tagged events. The time-dependent decay-rate asym-

FIG. 1: The distributions for the highest purity tagged events for the variables $m_{\mathrm{ES}}(\mathrm{a}), \Delta E(\mathrm{~b})$, cosine of the ρ helicity angle (c) and $m_{\pi^{ \pm} \pi^{0}}$ (d). The dotted lines are the sum of backgrounds and the solid lines are the full PDF.

FIG. 2: The Δt distribution for a sample of events enriched in signal for B^{0} (a) and \bar{B}^{0} (b) tagged events. The dotted lines are the sum of backgrounds and the solid lines are the sum of signal and backgrounds. The time-dependent $C P$ asymmetry (see text) is shown in (c), where the curve is the measured asymmetry.
metry $[N(\Delta t)-\bar{N}(\Delta t)] /[N(\Delta t)+\bar{N}(\Delta t)]$ is also shown, where $N(\bar{N})$ is the decay-rate for $B^{0}\left(\bar{B}^{0}\right)$ tagged events.

We have studied possible sources of systematic uncertainties on the values of f_{L}, S_{L} and C_{L}. The dominant systematic uncertainties for f_{L} come from floating the B background yields $\left({ }_{-0.02}^{+0.00}\right)$, non-resonant events (0.015) and fit bias (0.01). The dominant systematic uncertainty on the $C P$ results comes from the uncertainty
in the B-background branching ratios and possible unaccounted decay modes. This results in a shift on S_{L} $\left(C_{L}\right)$, as large as ${ }_{-0.12}^{+0.00}\left({ }_{-0.003}^{+0.008}\right)$. Additional uncertainties on the $C P$ results come from possible $C P$ violation in the B background, calculated as in Ref. [4]. We allow for a $C P$ asymmetry up to 20% in B decays to final states with charm, resulting in an uncertainty of 0.027 (0.045) on $S_{L}\left(C_{L}\right)$. Allowing for possible $C P$ violation in the transverse polarization results in an uncertainty of $0.02\left({ }_{-0.016}^{+0.002}\right)$ on $S_{L}\left(C_{L}\right)$. We estimate the systematic error on our $C P$ results coming from neglecting the interference between $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$and other 4π final states: $B \rightarrow a_{1} \pi, \rho \pi \pi^{0}$ and $B \rightarrow \pi \pi \pi^{0} \pi^{0}$. Strong phases and $C P$ content of the interfering states are varied between zero and maximum using uniform prior distributions, and the RMS deviation of the parameters from nominal is taken as the systematic error; this is found to be 0.02 on S_{L} and C_{L}. Other contributions that are large include knowledge of the vertex detector alignment $0.034(0.005)$ on $S_{L}\left(C_{L}\right)$, and possible $C P$ violation in the doubly-Cabibbo-suppressed decays on the tag side of the event [10]. We allow $C P$ violation in the wrongtrack SCF to vary between -1 and +1 , which results in change of $0.007(0.012)$ in $S_{L}\left(C_{L}\right)$. The nominal fit does not account for non-resonant background. If we add a non-resonant component of $B \rightarrow \rho \pi \pi^{0}$ events to the likelihood, we fit 83 ± 59 non-resonant events and observe only a $(6 \pm 4) \%$ drop in signal yield. This effect is included in our total systematic uncertainty. Possible contributions from $\sigma(400) \pi^{0} \pi^{0}$ decays are neglected due to the small reconstruction efficiency (0.4%).

Our results are

$$
\begin{aligned}
f_{L} & =0.978 \pm 0.014(\text { stat })_{-0.029}^{+0.021}(\text { syst }) \\
S_{L} & =-0.33 \pm 0.24(\text { stat })_{-0.14}^{+0.08}(\text { syst }) \\
C_{L} & =-0.03 \pm 0.18(\text { stat }) \pm 0.09(\text { syst })
\end{aligned}
$$

where the correlation between S_{L} and C_{L} is -0.042 .
We constrain the CKM angle α from an isospin analysis [11] of $B \rightarrow \rho \rho$. The inputs to the isospin analysis are the amplitudes of the $C P$-even longitudinal polarization of the $\rho \rho$ final state, as well as the measured values of S_{L} and C_{L} for $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$. We use the measurements of f_{L}, S_{L} and C_{L} presented here; the branching fraction of $B^{0} \rightarrow \rho^{+} \rho^{-}$from [4], which uses information from [12]; the combined branching fraction and f_{L} for $B \rightarrow$ $\rho^{+} \rho^{0}$ from Ref. [2]; the central value corresponding to the upper limit of $\mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right)$ from Ref. [3]. We ignore electroweak penguins and possible $I=1$ amplitudes [13].

To interpret our results in terms of a constraint on α from the isospin relations, we construct a χ^{2} that includes the measured quantities expressed as the lengths of the sides of the isospin triangles and we determine the minimum χ_{0}^{2}. As the isospin triangles do not close with the current central values of the branching ratios, we have adopted a toy MC techniques to compute the confidence level (CL) on α; our method is similar to the
approach proposed in Ref. [14]. For each value of α, scanned between 0 and 180°, we determine the difference $\Delta \chi_{\text {DATA }}^{2}(\alpha)$ between the minimum of $\chi^{2}(\alpha)$ and χ_{0}^{2}. We then generate MC experiments around the central values obtained from the fit to data with the given value of α and we apply the same procedure. The fraction of these experiments in which $\Delta \chi_{\mathrm{MC}}^{2}(\alpha)$ is smaller than $\Delta \chi_{\text {DATA }}^{2}(\alpha)$ is interpreted as the CL on α. Figure 3 shows $1-$ CL for α obtained from this method. Selecting the solution closest to the CKM combined fit average [15, 16] we find $\alpha=100^{\circ} \pm 13^{\circ}$, where the error is dominated by $\delta \alpha_{\rho \rho}$ which is $\pm 11^{\circ}$ at 1σ. The 90% CL allowed interval for α is between 79° and 123°.

FIG. 3: Confidence level on α obtained from the isospin analysis with the statistical method described in [15]. The dashed lines correspond to the 68% (top) and 90% (bottom) CL intervals.

In summary we have improved the measurement of the $C P$-violating parameters S_{L} and C_{L} in $B^{0}\left(\bar{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$ using a data-sample 2.6 times larger than that in Ref. [4]. We do not observe mixing-induced or direct $C P$ violation. We derive a model-independent measurement of the CKM angle α, which is the most precise to date.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and

NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
${ }^{\dagger}$ Deceased
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); Belle Collaboration, J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003).
[3] BABAR Collaboration, B. Aubert et al., hep-ex/0412067, to appear in Phys. Rev. Lett.
[4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 231801 (2004).
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[8] Belle Collaboration, A. Gordon et al., Phys. Lett. B 542, 183 (2002); BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 201802 (2003); BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 051802 (2004); Belle Collaboration, J. Zhang et al., Phys. Rev. Lett. 94, 031801 (2005).
[9] BABAR Collaboration, B. Aubert et al., hep-ex/0408021 (SLAC-PUB-10597).
[10] O. Long et al., Phys. Rev. D 68, 034010 (2003).
[11] M. Gronau, D. London, Phys. Rev. Lett. 65, 3381 (1990).
[12] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 031102 (2004).
[13] A. Falk et al., Phys. Rev. D 69, 011502 (2004).
[14] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873 (1998).
[15] J. Charles et al., hep-ph/0406184 (submitted to Eur. Phys. J. C).
[16] M. Bona et al., hep-ph/0501199

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA

[^1]: ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 ${ }^{45} \mathrm{Mc}$ Gill University, Montréal, Quebec, Canada H3A $2 T 8$
 ${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C $3 J 7$
 ${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 ${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{60}$ Prairie View A $\mathfrak{G M}$ University, Prairie View, Texas 77446, USA
 ${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
 ${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{69}$ State University of New York, Albany, New York 12222, USA
 ${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
 ${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
 ${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 ${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
 ${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA

