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We discuss observable form of the radiation emitted from a surface of a collapsing object using a simplified
model in which a radiation of massless particles has a sharp in time profile and it happens at the surface at
the same moment of comoving time. Its redshift and bending angle are affected by the strong gravitational
field. We obtain a simple expression for the observed flux of the radiation as a function of time. To find an
explicit expression for the flux we develop an analytical approximation for the bending angle and time delay for
null rays emitted by a collapsing surface at R > 2Rg . We obtain an approximate analytical expression for the
observed flux and study its properties.

1. Introduction

Light propagating in the vicinity of compact rela-
tivistic objects like neutron stars and black holes are
is affected by a strong gravitational field. For the de-
scription of the photon propagation under these condi-
tions the general relativity is required. it was demon-
strated recently that general relativistic effects might
be important for understanding the features of the
radiation coming from these objects [2]-[6]. In partic-
ular, according to the general relativity, because of the
gravitational bending of light rays, a distant observer
can see a part of the opposite side of the neutron star
which is invisible in a flat spacetime. The radiation
emitted from this part gives an important contribu-
tion and has a visible impact on the form of the signal
from the X-ray burst.

The effects of the general relativity also modify con-
siderably light curves for continuous in time radiation
from the surface of a collapsing star as seen by a dis-
tant observer[7] [8][9]. The main attention was fo-
cused on the details connected with light emitted near
(unstable) circular photon orbits at 3rg/2, where rg

is a gravitational radius of a collapsing star. In such
considerations there were usually adopted a number
of simplifying assumptions, such as: (1) Spherical ge-
ometry; (2) Dust-like (pressure free) equation of state;
(3) Radiation comes only from the (free-falling) sur-
face of the star; and (4) It is continuous in time.

In this work we would like to discuss a slightly dif-
ferent set up, when the assumption (4) is changed.
Namely we assume that the radiation emitted from
the surface of a collapsing spherically symmetric stel-
lar object has a profile of a sharp in time pulse. Such
radiation may occur in different situations. For ex-
ample, suppose a neutron star or a proto-neutron star
looses its stability as a result of the accretion of matter
onto it or due to the softening of equation of state [10]

at the center which is supposed to be already several
times higher than the nuclear density . During the col-
lapse, the matter density of a compact object is grow-
ing and the whole system evolves into the much higher
density than the normal nuclear density [11]–[12], be-
yond which new hadronic phase transitions might take
place [13]. One might expect a possible sharp-in-time
emission of massless particles (photons and neutrino)
during such phase transition [14].

In this work we assume that a radiation of massless
particles has a sharp in time pulse profile and it hap-
pens at the surface at the same instant of time (from
a point of view of a comoving observer). The time
required for the radiation to reach a distant observer
depends on the position of a radiative region on the
collapsing surface. For this reason the pulse emission
results in a continuous flux received by the observer
during some finite interval of time. During this inter-
val the flux as well as the redshift factor changes. In
principle, knowing the redshift and light curves allows
one to obtain direct information about the collapsing
body at the moment when the radiation occurs.

We consider a photon emitted from a collapsing
spherical surface and propagating to the observer at
infinity in the background of Schwarzschild metric

ds2 = −fdt2 + f−1dr2 + r2dΩ , (1)

where f = f(r) = 1 − 2M/r and M is the mass of
the collapsing object. We adopt the natural units,
c = G = h̄ = 1. In [7] and [11] the motion of a
spherical surface during the gravitational collapse was
discussed under assumption that the dynamical role
of the pressure can be neglected [15], while the surface
follows a radial geodesic in the Schwarzchild geometry
[16].

Denote by τ the proper time as measured by an
observer comoving with the collapsing surface. We
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suppose that the collapse starts at τ = 0 and the
initial surface radius is R0. For a freely falling surface
the invariant radial velocity at the moment when its
radius is R is given by

vi = f−1(R)
dR

dt
= −

√
2M

R

√
1 − R/R0√

1 − 2M/R0

. (2)

Consider a photon emitted from the surface. Its tra-
jectory lies in the plane. Without loss of generality we
assume that it coincides with a plane of the fixed coor-
dinate φ, so that the vector of the 4-momentum of the
photon is pµ = (pt, pr, pθ, 0) Because of the symmetry
of the Schwarzschild metric, E = −pt (the energy at
infinity) and L = pθ (the angular momentum) are con-
stants of motion. Instead of the angular momentum
L we shall use the impact parameter l = L/E. The
radial momentum pr is given by pr = σEZ, where
Z = Z(l, r) =

√
1 − l2f(r)/r2. Here and later σ de-

notes a sign function which takes the values + and −
for a forward (pr > 0) and backward (pr < 0) emis-
sion, respectively.

There is an upper limit for the impact parameter,
lmax, given by lmax = R√

f(R)
. We consider only the

light with the emission angle, β ≤ π/2, as measured
by an observer comoving with the surface. For a tan-
gentially emitted photon with respect to a comoving
observer(β = π/2) the corresponding impact param-
eter l = lT is determined by the condition Z = −vi :
lT = R√

1−2M/R0
. To escape delicacies connected with

more complicated behavior of the photon orbit we as-
sume that R > 3

√
3
√

1 − 2M/R0M . In this case
for a photon which reaches the infinity the possible
ranges of an impact parameter are 0 ≤ l ≤ lmax and
lT ≤ l ≤ lmax for a forward and backward emission,
respectively. A discussion of the allowed ranges of
the impact parameter for the smaller radius up to
R ∼ 2M , can be found in [7] and [8].

For a given ray, the redshift factor Φ is defined as
the ratio of the emitted frequency ν(e) to the observed
at infinity frequency ν(o)

Φ =
ν(e)

ν(o)
=

1 − σviZ(l, R)
√

f
√

1 − v2
i

(3)

for a ray with the impact parameter l emitted from
the surface of the radius R.

We use the freedom in the choice of spherical co-
ordinates to put the angle θ in the direction to an
observer at infinity to be equal to zero, θ(o) = 0. Con-
sider a null ray emitted by the collapsing surface when
its radius is R and which reaches the distant observer.
Suppose its impact parameter is l. Then such a ray
is emitted by the collapsing surface from the region
at the angle θ(e). For forward emission this bending
angle is

θ
(e)
+ = Θ(l, R) = l

∫ ∞

R

dr

r2Z(l, r)
. (4)

For a backward-emission a photon before it reaches
the infinity should pass through a turning point, rt <
R, which is determined by Z(l, rt) = 0. One can see
that, for l = lmax = R2/(1 − 2M/R), rt = R as
expected. Then we get

θ
(e)
− = 2Θ(l, rt) − Θ(l, R) . (5)

Consider a null ray with the impact parameter l
emitted from the collapsing surface at the moment τ

when it has the radius R(τ). Denote by t
(o)
± the time

when it reaches a distant observer at radius r(o) for
the forward/backward ray. It is evident that t(o) → ∞
when r0 → ∞. For this reason it is more convenient
to consider a finite quantity, the time difference be-
tween arrival of two null rays emitted at two different
moments of proper time, τ and τe, respectively. For
the second ray, emitted at τe, we put l = 0. Such a
ray goes radially. We denote this time difference by
∆t(l; τ, τe). In the limit when r(o) → ∞ this quantity
remain finite. For the forward ray it is given by the
following expression

∆t+(l; τ, τe) = t(e)(τ) − t(e)(τe) + T (l, R(τ))

+R(τe) − R(τ) + 2M ln
R(τe) − 2M

R(τ) − 2M
, (6)

where

T (l, R) ≡
∫ ∞

R

dr

f(r)

[
1

Z(l, r)
− 1

]
. (7)

Similarly for the backward ray one has

∆t−(l; τ, τe) = t(e)(τ)− t(e)(τe)+2T (l, rt)−T (l, R(τ))
(8)

+R(τe)+R(τ)−2rt+2M ln
(R(τ) − 2M)(R(τe) − 2M)

(rt − 2M)2
.

The integrals for Θ and T (see relations (4) and
(7), respectively) can be expressed in terms of the el-
liptic functions. However, for practical calculations it
is very convenient to have approximations for these
quantities in terms of simple elementary functions. In
the next section, we develop high accuracy analytic
approximations, for the integrals Θ(l, R) and T (l, R).

2. Analytic Approximation

It is convenient to use the dimensionless quantities

x = M/r , q ≡ M/R , l̂ = l/M . (9)

We also denote

Ẑ = Ẑ(l̂, x) =
√

1 − l̂2x2(1 − 2x) , (10)
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so that

Θ =
∫ q

0

dx
l̂

Ẑ(l̂, x)
. (11)

In a flat metric with f = 1, one can calculate the
integral (11) analytically to get

Θflat = arccos(
√

1 − l̂2q2). (12)

Leahy [3] discovered that in a wide range of its ar-
guments the exact integral for the bending angle can
be approximated by a simple analytical expression.
A simple elegant form of the approximative expres-
sion was proposed later by Beloborodov [4]: Θ0 =
arccos

[
Ẑ−2q
1−2q

]
. We shall refer to this relation as to

Beloborodov–Leahy (or BL–) approximation.
The typical accuracy of the BL–approximation is of

order of 1% for the light rays emitted from the sur-
face R = 6M . For smaller R the accuracy of the
BL–approximation is worse. For example it becomes
of order of 10% for R = 4M . In order to use this ap-
proximation for our purposes we first slightly modify
it to improve the accuracy.

Comparing expansions of Θ and Θ0 at small values
of l̂, we propose an ansatz as follows

Θ̂(l̂, q) = arccos

[
Ẑ(L̂, q) − 2q

1 − 2q

]
+ b5q

2Z5 , (13)

where

Z ≡ 1 − Ẑ(l̂, q)
1 − 2q

. (14)

Numerical calculations show that the accuracy of the
approximation is very good for b5 = 0.0884 . Thus the
approximate expression for the forward-emitted rays
is

θ
(e)
f ≈ Θ̂(l, q = M/R) . (15)

The relative error ∆θ = (θ(e)
f − Θ̂)/θ(e) of the approx-

imate expression is very small. It is less than 0.5% for
R ≥ 4.5M for all the allowed values of l. For R = 4M
the error ∆θ is slightly larger. It is still less than 0.8
% every where excluding a narrow vicinity of s = 1
where it reaches 2%.

We shall use the formula (13) to approximate the
bending angle for the forward emission. For the back-
ward emission the approximate formula is

θ
(e)
b (l, R) ≈ 2Θ̂(l̂, M/rt) − Θ̂(l̂, M/R) . (16)

Now we consider the arrival time. Using the dimen-
sionless version of T , T = T/M , we can rewrite the
expression (7) in the following form:

T = T (l̂, q) =
∫ q

0

dx
l̂2

Ẑ(l̂, x)(1 + Ẑ(l̂, x))
. (17)

We want to obtain an analytic approximation for T .
For f =const in the integral (17), this integral can

be calculated exactly :T0 = 1−
√

1−l̂2 q2 f
f q . We restore

the dependence f on q and use this expression with
f = 1 − 2q as a starting point for our approximation.
The corresponding expression can be written as

T0 =
Z
q

. (18)

One can check that this approximation is very good for
small q. Our ansatz for the improved approximation
is

T̂ = T0 + Q(Z) , (19)

where

Q(Z) =
1
4
Z2 + a3Z3 + a4Z4 . (20)

Numerical calculations show that the accuracy of
the approximation is very good for the following choice
of the parameters: a3 = 1/15 , a4 = 1/25 .

The relative error ∆T = (T − T̂ )/T of the approx-
imate expression is is less than 0.5% for R ≥ 4.5M
for all the allowed values of l. For R = 4M the error
∆T is slightly larger. It is still less than 1 % every
where excluding a narrow vicinity of s = 1 where it
reaches 3%. On the other hand the approximation
for the derivative T̂,l̂ works slightly worse than the
approximation for T̂ . We denote

∆T,l
= (T,l̂ − T̂,l̂)/T,l̂ (21)

the relative error. It is found that the maximum value
of the relative error (for R = 4.5M) reached 5% near
s = 1.

3. Flux and intensity for a short flash

We shall use superscripts (e) and (o) for emitted
and observed radiation, respectively.

Consider a light ray with the impact parameter l
emitted from the collapsing surface at the moment
of the proper time τ , and let t be the time when it
reaches a distant observer at r0. One can show (see
e.g. Exercise 22.17 in [18]), that the quantity Iν(ν)/ν3

remains constant along a photon’s world line.
The specific flux as measured by a distant observer

at time t is

F (o)
ν0

(t) =
2π

r2
0

∫
ldlΦ−3I(e)

νe
(l, νe, τ(t, l)) . (22)

Here Φ = Φ(l, R) is given by eq.(3). The integral over
l in eq.(22) can be rewritten as an integral over the
proper time, τ :

F (o)
ν0

(t) =
2π

r2
0

∫
dτWΦ−3I(e)

νe
(l, νe, τ) , (23)
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where W ≡ l
∣∣ dl
dτ

∣∣ .
For a very short in time flash from the surface at

the moment τe, the intensity can be approximated as

I(e)
νe

(l, νe, τ) = I(e)
νe

(l, νe)δ(τ − τe) (24)

and we get

F (o)(t) =
2π

r2
0

WeΦ−4
e I(e)(le) , (25)

where the intensity I(e)(l) is

I(e)(l) =
∫

dνeI
(e)
νe

(le, νe) . (26)

This form radically simplifies the study of the light
curves.

We denote the flux registered by the distant ob-
server at the moment t as F (o)(t) and we denote by
F (o)(0) the flux at the moment when the first ray ar-
rives to the distant observer. It is convenient to nor-
malize the observed time-dependent flux F (o)(t) to the
value F (o)(0). We denote this ratio

F(t) =
F (o)(t)
F (o)(0)

=
We(t)
W0

(
Φe(t)
Φ0

)−4

I , (27)

where I = I(e)(le)
I(e)(0)

.
The intensity of the radiation from the surface of

star can be written [20] as

I(e)(l) = a + b cos(β(l)), (28)

where a and b depend on the details of the emission
process. In this work, we calculate two extreme cases:
(A) a 	= 0, b = 0, and (B) a = 0, b 	= 0.

4. Flash from a collapsing surface

To illustrate the obtained results, we consider now
special examples. As a first example, we consider a
neutron star which looses its stability. In this case an
initial radius R0 is RNS = 12−20 km and the mass is
of order of M ∼ 1.5M� [21], and hence R0/M = 5.4−
9. Another example is a proto neutron star RPNS ∼
20 km and M ∼ 1.5M� [1]. In this case R0/M = 9. In
this section, we discuss in detail two cases with initial
radii: R0 = 5.4M and R0 = 9M .

For a freely falling surface with R0 = 5.4M , the
turning point rt on the trajectory of a backward ray
lies within the valid range of the analytic approxima-
tion, rt > 4.5M , provided Re ≥ 4.8M . In accordance
with this we choose Re = 4.8M (case I).

For a freely falling surface with R0 = 9M , the ana-
lytic approximation can be applied to the emission at
Re ≥ 5.5M . In this case we calculate a bending angle,
redshift and a fluxes registered by a distant observer

for the following 3 values of Re/M = 5.5, 6.5, 7.5
(cases IIa, IIb, and IIc, respectively).

The maximum arrival time difference is assigned for
the backward ray emitted with an impact parameter
lT , and it is

∆tmax = ∆t−(lT ; τe, τe) = 2T (lT , rt) − T (lT , Re),

+2Re − 2rt + 4M ln
(Re − 2M)
(rt − 2M)

. (29)

In the case I, for R0/M = 5.4 and Re/M = 4.8,
the time delay is calculated is ∆tmax/M = 13.8. In
the case II, for R0/M = 9 the time delay for different
values of Re is given in the Table.

Time delay for R0/M = 9

Case IIa IIb IIc

Re/M 5.5 6.5 7.5

∆tmax/M 16.9 15.4 14.4

In what follows it is convenient to use a normalized
arrival time difference defined as δ ≡ ∆t/∆tmax. We
shall call this quantity the time parameter. The time
parameter is always changes in the interval [0, 1]. The
time parameter for forwardly emitted light increases
as l increases from l = 0 to lmax. The backward emis-
sion starts with lmax and ends at lT and the time
parameter for a backward emission is increasing as l
changes from lmax to lT .

The bending angle as a function of the time pa-
rameter is a monotonously increasing function. The
smaller is Re/M , the faster is the radial motion of the
radiating surface, and the larger is the observed region
with the backward emission. As a result the range of
bending angle for smaller values of Re/M becomes
larger for a given R0.

The frequency observed at infinity is different from
the frequency at emission because of two reasons: (1)
Difference of the gravitational potential at the point
of emission and observation, (gravitational redshift),
and (2) The velocity of the emitting surface (Doppler
shift). The photons emitted from the surface of Re ex-
perience the same gravitational redshift independent
of their angular positions (bending angle) of emission.
However Doppler shift depends on the relative velocity
of the surface of emission with respect to the distant
observer, and hence it depends on the bending angle
(or the impact parameter l). Since the arrival time de-
pends on the impact parameter as well, the frequency
shift then can be plotted as a function of the arrival
time. The calculated ratio of emitted frequency to the
observed one, Φ, for a short flash as a function of the
time parameter δ is shown in Fig. 1. Three curves
which meet one another at δ = 1 correspond to the
three cases IIa,b,c. The forth curve corresponds to
the case I.

It is interesting that the redshift due to the gravity
is substantially cancelled by the Doppler shift for the
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IIa

IIb

IIc
I

1.2

1.4

1.6

1.8

Φ

0 0.2 0.4 0.6 0.8 1

δ

Figure 1: Redshift factor for a freely collapsing surface as
a function of the time parameter δ for the cases I, and
IIa,b,c [22].

tangentially emitted light. For a free fall from the ra-
dius R0 one has ΦT = 1√

1−2M/R0
. It means that for

the “last rays” (that is for rays with l = lT ), the red-
shift depends only on the initial radius R0 and does
not depend on the radius of emission Re. For this
reason the three curves IIa,b,c in Fig. 1 merge at the
same value 3/

√
7 ≈ 1.134 at δ = 1 (that is for l = lT ).

Relation (4) also shows that for R0 = ∞ the gravi-
tational redshift is exactly cancelled by the Doppler
shift [8].

Since for direct radial rays (l = 0) both effects
“work” in the same direction, one can expect that
for a given R0 the redshift will be larger for smaller
values of Re. The Fig. 1 clearly demonstrates this.

5. Light curves

Let us discuss now normalized flux as a function
of the time parameter δ. We call the corresponding
graph a light curve.

For the case II (R0 = 9M) the light curves for A
and B type of the radiating surface are shown in Fig. 2
and Fig. 3, respectively. Each of the figures contains
3 curves corresponding to IIa,b,c cases.

Let us discuss now qualitative behavior of the light
curves. The observed normalized flux F(t) is a prod-
uct of 3 factors: (1) a kinematic term We(t)/W0, (2)
a redshift factor (Φe(t)/Φ0)−4, and (3) a normalized
intensity of the emission I. The third factor depends
on the model of the radiating surface and it does not
depend on the arrival time. The first two factors are
time dependent. The arrival time dependence of We

is essentially determined by the factor of |Z − σvi| ,
which is a decreasing function of δ and vanishes for

IIc

IIb

IIa

0

0.2

0.4

0.6

0.8

1

F

0.2 0.4 0.6 0.8 1

δ

Figure 2: Light curves for I = 1 for the cases IIa,b,c[22].

IIc

IIb

IIa

0

0.2

0.4

0.6

0.8

1

F

0.2 0.4 0.6 0.8 1

δ

Figure 3: Light curves for I = cos β(l) for the cases
IIa,b,c[22].

δ = 1. Hence every light curves should cross the zero-
flux axis at δ = 1. For a static surface vi = 0 and Z
(and hence We(t)) vanishes at δ = 1, where l = lmax.
For a collapsing surface vi < 0 and the observable
flux vanishes not for lmax (where Z = 0) but for the
backward emission with l = lT . Hence one can expect
longer duration of observed flux for the emission from
a collapsing surface compared to the emission from a
static surface. The effect of motion of the collapsing
surface becomes stronger for larger vi. For example
for a given R0 = 9M , ∆tmax is calculated to be larger
for smaller Re for which vi is larger (see Table).

The redshift factor Φ depends basically on the rel-
ative receding velocity of the emitting region (deter-
mined by the bending angle) with respect to the dis-
tant observer. The relative receding velocity is de-
creasing as the bending angle is increasing. Since the
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arrival time difference becomes larger for a ray with
larger bending angle, one can expect the enhancement
of a factor, Φ−4, for larger δ. The main effect of the
frequency shift for the observed flux due to the collaps-
ing surface is the enhancement of the flux for lately ar-
riving rays. As a result the shape of the light curve for
a collapsing surface is changing from that of a static
surface in such way that the flux decreasing in δ is
delayed and the sharp forward peak at δ = 0 becomes
a rather smooth peak. For sufficiently large collapsing
velocity, for example for R0 = 9M and Re = 5.5M ,
one can observe that position of the peak in the light
curve also changes from δ = 0 to a later arrival time
δ 	= 0 for the isotropic intensity profile(A) as shown
at Fig. (2). The emission angle with respect to the
normal to the surface, β, varies from 0 to π/2 as the
impact parameter l varies from 0 to lmax and fur-
ther to lT . Hence the intensity profile of (B) with
I(e) = b cos(β(l)) suppresses the enhancement due to
the factor Φ−4 for lately arriving rays substantially as
shown in Fig. 3.

Comparison to the light curves from the static sur-
face is in order. Even for a static object the effects of
the General Relativity allows one to ”see” a part of its
opposite side surface. For a collapsing object this ef-
fect is more profound. As a result, the duration of the
flux is elongated. Another difference is that the sharp
decrease in time for the static surface is delayed and
”smoothed out” so that the peak becomes broader.
For a sufficiently large collapsing velocity the peak
position can even be shifted to δ > 0. We demon-
strated these features by considering two examples of
collapses starting at R0 = 5.4M and R0 = 9M .

Though in this paper we focused on a model of brief
in time flash emission, some of its results (improved
analytic approximation) might be of the interest for
other astrophysically interesting problems.
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