
SLAC-PUB-11052

March 2005

Resistive Wall Impedance of an Insert∗

Gennady Stupakov
Stanford Linear Accelerator Center, Stanford University, Stanford, CA

94309

Abstract

The standard theoretical formulae for resistive wall impedance
are usually derived in a model which assumes an infinitely long
pipe. In practice, one often has to deal with resistive inserts with
a conductivity different from the rest of the pipe. To address
this case, we calculate the resistive wall impedance when the wall
conductivity varies along the axis of the pipe. We show that
at not very high frequencies the impedance of an insert per unit
length is given by the same formulae as for an infinitely long pipe.
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1 Introduction

The standard theoretical formulae for resistive wall impedance (see, e.g. [1])
are derived in a model of an infinitely long pipe. The longitudinal impedance
per unit length of the pipe, in CGS system of units, is given by the following
equation

Zlong pipe(ω) =
1 − i

cb

√

ω

2πσ
, (1)

where ω is the frequency, b is the pipe radius, and σ is the conductivity of
the pipe wall. Eq. (1) is valid for not very large frequencies,

ω ≪ ω0 , (2)

where ω0 = (4πc2σ/b2)1/3. This condition is usually satisfied in practice,
except for extremely short bunches (see discussion in [2]).

In practice, one often has to deal with resistive inserts with a conductivity
different from the rest of the pipe. The question then arises whether Eq. (1)
can be used in such cases. In this paper we calculate the resistive wall
impedance when the wall conductivity varies along the axis of the pipe in
the regime when condition (2) is satisfied. In Section 2 we study the case
of a perfectly conducting round pipe with an insert of finite length L and
conductivity σ. In Section 3 we generalize the result for an arbitrary cross
section of the pipe, and for a transverse impedance.

In a recent paper [3], the problems of the impedance of an insert with a
different conductivity has been studied for a more general case, without the
assumption (2), although for a cylindrical geometry only. In the last Section
of this paper we discuss the relation of our results to that of Ref. [3].

2 Longitudinal impedance of an insert in a

round pipe

Consider a perfectly conducting pipe which has an infinite conductivity every-
where except for a short piece of length L with the wall conductivity σ (see
Fig. 1). Assume also that the pipe has a round cross section of radius b.
Our goal is to calculate the longitudinal impedance of such pipe at frequency
ω. We assume that the skin depth in the metal is small compared to the
pipe radius and the wall thickness, and use the Leontovich boundary condi-
tion relating the longitudinal electric field on the metal surface Ez with the
magnetic field Hφ [4]

Ez = −ζHφ , (3)

where ζ = (1 − i)
√

ω/8πσ (we use CGS units throughout the paper). As is
known, for impedance calculation, the beam can be represented as a filament
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Figure 1: Round pipe with an insert of length L (shown in red) having the
wall conductivity σ. The rest of the pipe (shown in black) has an infinite
conductivity.

current I(z, t) on the axis of the pipe,

I(z, t) = I0e
−iωt+ikz , (4)

with k = ω/c. The impedance is then given by the Fourier transform of the
longitudinal electric field generated by the wall currents on the axis of the
pipe:

Z(ω) = −
1

I0

∫

∞

−∞

Ez|r=0e
−ikzdz , (5)

[in Eq. (5) and below, we drop the time dependent factor e−iωt].
Our approach is based on a perturbation theory which assumes that the

magnetic field on the wall of the pipe with finite conductivity is approxi-
mately equal to its value for a perfectly conducting wall:

Hφ =
2I0

bc
eikz . (6)

Note that this is exactly the approximation that results in Eq. (1) for an
infinitely long pipe [5]. When we use the relation (3) at r = b, 0 < z < L,
the mathematical problem reduces to the following one: find a solution of
Maxwell’s equations that satisfies the boundary condition

Ez|r=b = −ζ
2I0

bc
eikz, 0 < z < L ,

Ez|r=b = 0, z < 0, L < z . (7)

For calculation of the longitudinal impedance, we will only need the longitu-
dinal component of the electric field Ez(r, z) inside the pipe.

The solution can be found using a Green function method. We define
the Green function, G(r, z), as the z-component of the electric field, Ez(r, z),
satisfying Maxwell’s equations with the boundary condition

Ez|r=b = δ(z) . (8)
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With this Green function the solution satisfying the boundary conditions (7)
is given by

Ez(r, z) = −
2I0ζ

bc

∫ L

0

dz′G(r, z − z′)eikz′ . (9)

In a round pipe, the Green function can be represented as a superpo-
sition of axisymmetric TM0,m modes propagating in forward and backward
directions in the regions of positive and negative values of z, respectively:

G =

{ ∑

∞

m=1 a+
mE+

z,m, for z > 0 ,
∑

∞

m=1 a−

mE−

z,m, for z < 0 ,
(10)

where E±

z,m is the z-component of the electric field in the TM0,m mode of
frequency ω,

E±

z,m =
µ2

m

b2
J0

(

µm
r

b

)

e±ikmz , (11)

with km =
√

k2 − (µm/b)2, J0—the Bessel function of zeroth order, and
µm—the mth root of J0. We denote modes propagating in the positive and
negative directions with the plus and minus signs, respectively, and define km

so that above the cutoff km > 0, and below the cutoff km is purely imaginary
with Im km > 0.

The amplitude of each mode, a±

m, can be found using standard methods
of electrodynamics (see, e.g., [6]):

a±

m = am ≡
i

kmµmJ1(µm)
. (12)

Using Eqs. (9) and (5) we can now calculate the impedance of the insert

Z =
2ζ

bc

∫

∞

−∞

e−ikzdz

∫ L

0

dz′G(0, z − z′)eikz′

=
2Lζ

bc

∑

m

amµ2
m

b2

(
∫ 0

−∞

e−i(k+km)ζdζ +

∫

∞

0

e−i(k−km)ζdζ

)

= −
2Lζ

bc

∑

m

2ikmamµ2
m

(k2 − k2
m)b2

=
4Lζ

bc

∑

m

1

µmJ1(µm)
. (13)

Using the identity
∞

∑

m=1

1

µmJ1(µm)
=

1

2
, (14)

we arrive at the following expression for the impedance

Z =
2Lζ

bc
= L

1 − i

cb

√

ω

2πσ
, (15)
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which is exactly equal to LZlong pipe(ω). We see that the impedance per unit
length (of the resistive part) is given by the same Eq. (1) as in the case of
an infinitely long pipe.

We can now justify the requirement Eq. (2). In our derivation we assumed
that the magnetic field on the wall is the same as in the case of perfect
conductivity. However, the magnetic field is generated not only by the beam
current, but also by the displacement current,

jdisp
z =

1

4π

∂Ez

∂t
, (16)

(this current vanishes in the limit of perfect conductivity when Ez = 0). To
be able to neglect the corrections to Hφ due to jdisp

z , we require the total
displacement current to be much less then the beam current. In the Fourier
representation, the time derivative ∂/∂t reduces to multiplication by −iω,
and the requirement becomes

πb2 1

4π
ωEz ≪ I0. (17)

Using the relation Ez ∼ ζHφ ∼ 2ζI0/bc we easily obtain from Eq. (17) the
condition (2). Note that for very short inserts the above expression for Ez

overestimates its value and the actual requirement is looser than stated by
Eq. (2). We will return to the discussion of this condition in the last section
of the paper.

3 Generalization for arbitrary cross section

and transverse impedance

The result of the previous section can be derived in a simpler way, which also
allows generalization to the case of arbitrary cross section of the pipe. We
now assume that the shape of the two–dimensional cross section of the pipe
does not vary with z and is given by equations x = x(s) and y = y(s) where
s is a parameter. We also assume that the conductivity of the pipe wall is
equal to σ for 0 < z < L and σ = ∞ for z < 0 and z > L.

First, we need to find the magnetic field H on the wall generated by the
current (4) in the limit of perfect conductivity (σ → ∞). This magnetic field
is tangential to the wall and has only x and y components. It can be written
as H = H0(ρ)e−iωt+ikz where ρ = (x(s), y(s)) is a vector perpendicular
to the z axis indicating a position on the wall. With the given magnetic
field on the wall, the tangential electric field is found through the Leontovich
boundary condition,

Ez = ζ ẑ · (H × n) , for 0 < z < L ,

Ez = 0 , for z < 0 , L < z , (18)
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where n is the vector normal to the wall surface and directed into the metal,
and ẑ is the unit vector along the z axis. To find a solution of Maxwell’s
equations satisfying the boundary conditions (18) we, again, introduce the
Green function G(x, y, z) as the z-component of the electric field, Ez(x, y, z),
satisfying Maxwell’s equations with the boundary condition

Ez|x=x(s), y=y(s) = δ(z) . (19)

With this Green function the solution satisfying the boundary conditions
(18) is given by

Ez(x, y, z) = −
2I0ζ

bc

∫ L

0

dz′G(x, y, z − z′)eikz′ , (20)

and the impedance of the insert is

Z =
2ζ

bc

∫

∞

−∞

e−ikzdz

∫ L

0

dz′G(0, 0, z − z′)eikz′

=
2ζ

bc
LS , (21)

with

S =

∫

∞

−∞

e−ikτdτG(0, 0, τ) . (22)

We see that the impedance per unit length does not depend on L, and hence
is equal to it value in the limit of an infinitely long pipe, L → ∞.

In Eq. (21) we used the Green function G(0, 0, z−z′) corresponding to the
zero offset of the trailing particle. Our conclusion about the ratio Z/L being
independent on L is also valid for a more general case when the impedance
is calculated with the function G(x, y, z − z′), corresponding to the trailing
particle moving with the offset (x, y) in the transverse direction. Through the
Panofsky-Wenzel theorem [7] this longitudinal impedance is directly related
to the transverse one. Hence, we conclude that the transverse impedance per
unit length of an insert, as well as the longitudinal one, will also be given by
the formula derived in the limit of an infinitely long pipe.

4 Discussion

Using the Green function technique it is straightforward to generalize our
result for the case when the conductivity of the pipe is an arbitrary function
of longitudinal coordinate, σ = σ(z). For the round pipe, one obtains

Z(ω) =
1 − i

cb

√

ω

2π

∫

dzσ(z)−1/2 , (23)
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and for a pipe of arbitrary cross section one finds

Z(ω) =
1 − i

cb
S

√

ω

8π

∫

dzσ(z)−1/2 , (24)

with S given by Eq. (22). We emphasize here that the formfactor S can
be obtained from the impedance calculated in the limit of an infinitely long
pipe. Such impedance for a rectangular and elliptic cross sections of the pipe
can be found in Ref. [8].

For a particular case of a round pipe, the impedance of a resistive insert
was recently calculated in Ref. [3] for a general case of arbitrary frequencies
without requiring Eq. (2). In the limit when Eq. (2) is satisfied, the result
of this paper reduces to our result. Moreover, analysis of the solution in Ref.
[3] shows that for very short inserts the condition of validity of Eq. (15) is
less stringent than that given by Eq. (2). Specifically, the condition Eq. (2)
is only necessary for L ≫ (σb4/c)1/3; in the opposite limit L ≪ (σb4/c)1/3 it
should be replaced by the following one

ω ≪ ω0

(

σb4

cL3

)1/6

∼

√

σc

L
. (25)
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