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The nonlinear fields in insertion devices can have a significant impact on the beam dynamics in
storage rings. Various tools have been developed which allow the dynamical effects of a wiggler to
be predicted, based on a detailed model of the magnetic field. The wigglers in the KEK-ATF have
recently been commissioned, and provide an opportunity for benchmarking some of the analysis
tools. We report on initial studies of the nonlinear effects of the KEK-ATF wigglers, based on
studies of the change in betatron tunes with change in orbit through the wigglers, and compare the
results with the predictions based on detailed field models.

I. INTRODUCTION

The nonlinear fields in insertion devices can have a sig-
nificant impact on the beam dynamics in storage rings.
In some cases, it has been necessary to install additional
magnets to compensate the more severe effects [1]. The
effects of the wigglers in the damping rings for a future
linear collider are of particular concern for three reasons.
First, present designs require a high-field wiggler with
total length much greater than usually found in storage
rings (more than 400 m in some designs [2]). Second, the
injected positron beam will have a very large emittance,
and the effects of fields at large amplitudes from the mag-
netic axis can be expected to be significant. Third, the
average injected beam power will be very large (of the or-
der of 200 kW), and any particle losses from limited dy-
namic acceptance could cause serious operational prob-
lems.

Various tools are available for predicting the dynamical
effects of a wiggler, based on a detailed field map. In one
possible approach [3], the wiggler field is decomposed into
a set of transverse and longitudinal modes; the mode rep-
resentation allows the construction of a dynamical map in
analytical form (e.g. as a Taylor series, or the generator
of a Lie transformation); finally, the dynamical map can
be used in a tracking code to study the effect of the wig-
gler on the dynamics. This procedure allows a judgement
to be made as to whether the quality of the wiggler field
is sufficiently good, or whether design modifications need
to be made, e.g. shaping or widening the poles to reduce
the field roll-off in the transverse direction. Starting from
an idealized model of the wiggler field, the analysis is ca-
pable of determining the systematic effects of the wiggler;
however, there are also random effects from construction
tolerances, which may not be accurately known. There
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are also a variety of technical issues, including the chal-
lenge of obtaining a good fit to the field map. For these
reasons, it is important to benchmark the analysis tools
in as many cases as possible.

Four wigglers have recently been commissioned in the
KEK-ATF damping ring test facility. The KEK-ATF is
a 1.28 GeV storage ring with circumference 138 m. The
wigglers are electromagnetic, with a 400 mm period, a
gap of 20 mm and a peak field around 1.3 T. Each wig-
gler has 9 poles, plus two half-length poles at the entrance
and exit, giving a total length of 2 m (measuring between
the outside faces of the end poles). They are arranged in
pairs, with one pair in the north straight, and the other
in the south straight. In operation, the wigglers reduce
the damping times (horizontal, vertical and longitudinal)
from (17.0 ms, 28.5 ms, 21.5 ms) to (13.8 ms, 20.5 ms,
13.5 ms); the natural emittance is reduced from a little
over 1.1 nm to a little below 1.0 nm. Design specifications
of the wigglers are available that allow the construction
of a detailed field model, suitable for an analysis of the ef-
fect on the beam dynamics as described above. In Section
II we describe a field model for the wigglers calculated
using the code RADIA [4]. In Section III we outline the
construction of a dynamical model based on the detailed
field map. Finally, in Section IV we compare some pre-
dictions of the dynamical model with experimental data
that were recently obtained.

II. WIGGLER FIELD MODEL

A model of the KEK-ATF wigglers was constructed in
the magnet modeling code RADIA, using the geometry
shown in Fig. 1 [5].

The model is constructed with blocks and current-
carrying coils, with the geometry of the blocks and
coils, and the magnetic properties of the blocks speci-
fied. When the field is calculated, each block acquires a
magnetization that is uniform within its volume, so the
accuracy of the final field map depends on dividing the
steel into sufficiently small blocks. However, the amount
of computer memory needed for the field computation
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FIG. 1: Geometry of the KEK-ATF wigglers. Clockwise from top left: front elevation; side elevation, showing an end-pole and
the adjacent full-length pole; cross-sections of an end-pole and the adjacent full-length pole; full wiggler model in RADIA. All
dimensions are in mm.

increases rapidly as the number of blocks increases, and
some compromises need to be made in defining the model.
We are particularly interested in the transverse roll-off of
the field, which is responsible for the horizontal focusing,
and some of the nonlinear effects (including the dynamic
octupole). We therefore use a relatively fine division (2.5
mm) of the blocks in the transverse horizontal direction,
and keep the memory usage within limits by dividing the
blocks less finely (12 mm) in the longitudinal direction.

The blocks are assumed to be composed of magnetic
nonlinear, isotropic material; the magnetic properties are
specified in terms of partial susceptibilities and satura-
tions. The values used in the model of the KEK-ATF
wigglers have been chosen to give the correct dependence
of peak field on current. In particular, at the nominal
operating current of 600 A, the peak field on-axis in the
wiggler model is 1.36 T.

Modifications were made recently to the ends of each
wiggler to correct steering effects. As we do not at
present have a detailed description of the changes that

were made, they were not included in our model. For
this reason, we concentrate on the field map in the body
of each wiggler, assumed to be perfectly periodic. The
end effects may be significant, and will require more de-
tailed future studies.

III. MODEL OF DYNAMICAL EFFECTS

Analysis of the dynamical effects of the wigglers pro-
ceeds in three steps:

• An analytic series is fitted to the detailed field
map produced from the wiggler model.

• A differential algebra code is used to track
through the field defined in terms of the analytic
series. This step produces a dynamical map in
Taylor form.

• The dynamical map is used in a tracking code to
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simulate the dynamics in the storage ring with the
wigglers turned on.

We consider each of these steps in turn. It should be
noted that we assumed the field in the wiggler is truly
periodic, so our map will represent the dynamics through
each full period of the wiggler. In our lattice model, the
end poles (and half of each adjacent full-width pole) will
be represented by linear elements. Our assumption is
valid if the nonlinear effects from the ends of the wig-
glers are small compared to the effects from the central
portions. Accurate modeling of the ends of the wigglers
requires some development of the tools that we presently
have available; this work will be completed at a later
date, and a more thorough analysis of the KEK-ATF
wigglers will then be possible.

A. Analytic Fit to Numerical Field Map

The magnetic field components in a periodic section of
a wiggler can be written in cylindrical polar co-ordinates
as:

Bρ =
∑
m,n

αmnI′m(nkzρ) sin(mφ) cos(nkzz) (1a)

Bφ =
∑
m,n

αmn
m

nkzρ
Im(nkzρ) cos(mφ) cos(nkzz) (1b)

Bz = −
∑
m,n

αmnIm(nkzρ) sin(mφ) sin(nkzz) (1c)

Here, Im(x) are modified Bessel functions, and kz =
2π/λw where λw is the wiggler period. The coefficients
αmn for a particular field may be found from a two-
dimensional Fourier analysis of the radial field compo-
nent (1a) on a cylinder centered on the magnetic axis of
the wiggler (i.e. a surface with a fixed value of ρ). The
radius of the cylinder is, in principle, arbitrary. However,
because of the radial dependence of the field, the resid-
uals of the fit diverge exponentially outside the cylinder,
and converge towards the axis. It is therefore desirable
to choose a cylinder with a large radius, with the restric-
tion that the original field calculation sometimes lacks
accuracy close to the pole tips. In the present case, we
have used a cylinder of radius 7 mm (the half-gap of the
wiggler is 10 mm). Experimentally, we were able to move
the orbit ±4 mm in the wigglers, so a cylinder of 7 mm
is more than sufficient for our purposes.

We obtained a good fit to the numerical field map us-
ing 175 modes, with mode numbers up to 9 radially and
69 longitudinally. The variation of the vertical field com-
ponent in the transverse and longitudinal directions is
shown in Fig. 2. The residuals of the vertical field com-
ponent are shown on the mid-plane, and on a horizontal
plane 6 mm above the mid-plane, in Fig. 3. On the
mid-plane, the error in the fit is a fraction of a Gauss.
Note that given the vertical field component on the mid-
plane, all field components throughout the wiggler are

constrained by Maxwell’s equations, and can be recon-
structed using Eqns. (1).

FIG. 2: Variation of vertical field component in the KEK-
ATF wigglers. Top: variation with transverse horizontal co-
ordinate. Middle: variation with vertical co-ordinate. Bot-
tom: variation with longitudinal co-ordinate through one
quarter period of the wiggler. The blue circles indicate values
from the numerical field map generated in RADIA, and the
red lines show the field reconstructed from the analytic fit.

B. Construction of the Dynamical Map

Having obtained an analytic expression for the mag-
netic field in the wiggler, we use the differential algebra
code COSY [6] to produce a dynamical map by integrat-
ing through the field. The order of the map produced
is limited only by the processor time taken to calculate
the map; we calculate maps that include terms up to
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FIG. 3: Residuals of analytic fit to numerical field data in the
KEK-ATF wigglers. Left: residuals on the mid-plane. Right:
residuals on a horizontal plane 6 mm above the mid-plane.

fifth order. The dynamical map is in the form of Tay-
lor series in the dynamical variables. COSY includes a
Runge-Kutta routine for integrating the equations of mo-
tion of a relativistic particle in a magnetic field, but the
resulting map is not constrained by symplecticity. We
therefore compare the results of the Runge-Kutta inte-
gration with those of an explicit symplectic integrator [7]
available for use with COSY. The explicit symplectic in-
tegrator produces a map that is symplectic up to a given
order. The disadvantage with the explicit symplectic in-
tegrator is that the paraxial approximation needs to be
made in the equations of motion, so some terms in the
map are underestimated.

A comparison between the map produced by the
Runge-Kutta integrator and that produced by the ex-
plicit symplectic integrator is shown in Fig. 4. There
is close agreement between the two integration methods,
except for those terms that are omitted in the paraxial
approximation made in the explicit symplectic integra-
tor.

The symplecticity of a map may be verified by cal-
culating the Jacobian J of the map algebraically, and
constructing Z = JT · S · J − S, where S is the usual an-
tisymmetric form. A symplectic map will satisfy Z = 0.
For a map that is symplectic to order n, only terms of or-
der n and higher will occur in Z. We can then estimate
the symplectic error in a map by looking at the coeffi-
cients of terms of different order in Z. A comparison
between the maps produced by Runge-Kutta integration
and the explicit symplectic integrator is shown in Fig. 5.

We see that for both maps, the errors in the low or-
der terms are generally small; for higher-order terms, the
errors in the map produced using the explicit symplec-
tic integrator are nearly two orders of magnitude smaller
than the errors in the map produced using the Runge-
Kutta integrator. In fact, the symplectic error in the
map from either integrator is small enough not to be sig-
nificant for the present studies, and both maps produce

FIG. 4: Coefficients of terms in the Taylor series maps
through one period of the KEK-ATF wigglers. Only the maps
for the transverse variables are shown, but the full map in-
cludes the longitudinal variables. The coefficients of terms of
different orders are grouped together and separated by the
vertical green broken lines. The maps include terms up to
fifth order.

FIG. 5: Coefficients of terms in Z = JT · S · J − S, grouped
according to the order of the term.

essentially the same results.
The closed orbit through one wiggler period, calculated

using the symplectic integrator in COSY, is shown in Fig.
6. Note that the design of the ends of the wigglers leads to
a trajectory that lies entirely to one side of the wiggler
axis. The amplitude x̂ of the orbit oscillation may be
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FIG. 6: Closed orbit through one period of a wiggler, calcu-
lated using the symplectic integrator in COSY.

estimated from a sinusoidal model for the wiggler field:

x̂ =
B̂

Bρk2
z

(2)

where B̂ is the peak wiggler field, Bρ is the beam rigidity,
and kz = 2π/λw where λw is the wiggler period. For a
beam energy of 1.28 GeV, a wiggler peak field of 1.36 T,
and a wiggler period of 0.4 m, the expected amplitude of
the orbit oscillation is 1.29 mm, or 2.58 mm peak-to-peak.
This is in good agreement with the COSY calculation.

The linear focusing from one wiggler period may be
estimated from the coefficients R21 and R43, for the hor-
izontal and vertical planes respectively. The horizontal
focusing is principally a result of the sextupole compo-
nent of the wiggler poles, which feeds-down to a linear
focusing component as a result of the oscillation of the
closed orbit through the wiggler. The vertical focusing is
principally a result of the closed orbit crossing the longi-
tudinal fringe-fields of the poles at an angle. From both
the symplectic integrator and the Runge-Kutta integra-
tor in COSY, we obtain values R21 = 8.56 × 10−4 m−1

and R43 = −2.00×10−2 m−1. We can compare these val-
ues with those obtained by fitting the focusing in a lattice
model to give the measured tunes. For this comparison,
we determined the strengths of the main multipoles in
the model from the settings in the machine, and then ad-
justed the edge focusing and quadrupole focusing in the
wigglers to give the correct tunes. From this “empirical
linear model” we obtained the values R21 = 25.1× 10−4

m−1 and R43 = −1.93 × 10−2 m−1. In relative terms,
the vertical focusing from the COSY integration agrees
well with the empirical model, but the horizontal focus-
ing is about a factor of 3 too small. In absolute terms,
the error in both cases is of the order 10−3 m−1. Al-
though the absolute focusing error is fairly small, better
agreement between the two models is desired. The rea-
son for the discrepancy is unclear. It is likely that the
field in the RADIA model does not accurately represent
the field in the actual wigglers, or the end effects (which
have not been properly included) are somewhat stronger
than might be expected. It is also possible that the em-

pirical linear model of the wigglers is not accurate, and
that the focusing effects included in the wigglers to match
the tunes in the machine are compensating for errors else-
where in the model. The tune error from the difference in
the horizontal focusing between the two models, is given
by:

∆νx =
1
4π
β̄x∆R21Nλ (3)

where β̄x ≈ 8 m is the average horizontal beta function in
the wigglers, and Nλ = 20 is the total number of periods
in the four wigglers. With ∆R21 ≈ 16 × 10−4 m−1, we
find ∆νx ≈ 0.021; a small but significant tune error.

The oscillation in the closed orbit through the wiggler
leads to a feed-down of the decapole component in the
wiggler poles to give a “dynamic octupole” component
in the map. From Fig. 4 we see that the coefficients
of the third order terms in the map are of order 1 or
less. This suggests that the nonlinear effects from the
wigglers will be very small. Specifically, the dynamic
octupole component is characterized by the coefficient of
the x3 term in the map for px; this is around 0.8 m−3.
This means that a particle with a 1 mm horizontal offset
will receive a horizontal kick of less than 10−9 radians
from this term in traversing one wiggler period. The
small nonlinear effects are emphasized by inspection of
the transfer functions, shown in Fig. 7. The deviations
from a linear relationship between initial transverse offset
and resulting transverse kick are very small. Also plotted
in Fig. 7 are the linear focusing from the empirical linear
model, showing good agreement in the vertical plane, but
a factor of 3 difference in the horizontal plane. Where the
sextupole component in the wiggler poles is small, as in
the present case, the vertical focusing is generally much
stronger than the horizontal.

C. Simulations of Effects of KEK-ATF Wigglers on
Beam Dynamics

We used the maps produced by COSY to simulate the
impact of the KEK-ATF wigglers on the chromaticity,
and on the change of betatron tune with horizontal orbit
bump through the wigglers. Here, we outline the proce-
dures used in the simulations.

We constructed three lattice models for comparison
with experimental data:

• Model A is a lattice model with the wigglers off.
The magnet strengths are determined from the ma-
chine settings at the time the measurements (with
wigglers off) were made. Small changes (around
2%) were made to the sextupole strengths in the
model to fit the measured chromaticity.

• Model B is a lattice model with the wigglers on.
The wigglers are represented by linear elements.
The magnet strengths were taken from the time the
measurements (with wigglers on) were made. The
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FIG. 7: Transfer functions showing the transverse kicks re-
ceived as a function of initial transverse offset for a particle
passing through one period of the KEK-ATF wigglers. Top:
horizontal transfer function. Bottom: vertical transfer func-
tion. The solid blue lines show the transfer functions from
a fifth-order Taylor map calculated using a symplectic inte-
grator in COSY; the broken red lines show the focusing in a
linear model fitted to the observed machine tunes.

parameters of the wigglers were adjusted (by in-
cluding small quadrupole focusing and dipole edge
focusing effects) to reproduce the measured beta-
tron tunes. The same scaling factors for the sex-
tupoles as in Model A were applied.

• Model C is identical to Model B, except that each
full period within each wiggler is represented by a
fifth-order Taylor map. The Taylor map was pro-
duced by the explicit symplectic integrator. The
ends of the wiggler are the same as in Model B.

Simulations were carried out using the tracking code
MERLIN [8]. For each model, we calculated the variation
in betatron tunes with energy. Horizontal orbit bumps
were calculated for each of the two pairs of wigglers, using
four orbit correctors for each wiggler pair. The bumps
were found to close correctly in both the model and the
machine. Since the orbit varies slightly through the wig-
glers, the amplitude of the bump was defined to be the

horizontal offset at the BPM between the two wigglers
in a given pair. A range of bump settings over ±5 mm
were applied in the model, and for each bump setting, the
tunes were calculated from the eigenvalues of the single-
turn transfer matrix around the closed orbit.

IV. EXPERIMENTAL RESULTS

Fig. 8 shows the chromaticity in the KEK-ATF with
the wiggler off. Magnet strengths for the model were
taken directly from the machine settings, with a correc-
tion of the order of 2% in the sextupoles to match the
measured chromaticity. Fig. 9 shows the chromaticity
with wigglers on. The same correction factor was ap-
plied to the sextupoles as in the case with wigglers off.
With the wigglers on, the measured chromaticity appears
to be significantly different from the chromaticity in the
model; however, the chromaticities in this case are ex-
tremely small, and the horizontal tune shifts being mea-
sured are of the order 10−3. In this regime, even small
errors in the model may appear to have significant im-
pact. We note, however, that the fit to the data in Fig.
9 from the nonlinear wiggler model is a little better than
that from the linear wiggler model.

The only magnets within the orbit bumps (apart from
the wigglers themselves) are quadrupoles and correctors.
With the wigglers off, there are four possible sources of
tune variation with orbit bump: chromatic effects; edge
focusing from the corrector magnets; higher-order mul-
tipoles in the quadrupoles and correctors; and residual
closed-orbit distortion outside the orbit bump. The first
two effects are systematic, and are included in the mod-
els. The last two effects are the result of random errors
that are not well characterized, and are not included in
the models. We can judge the likely signficance of each
of these effects, by estimating the parameters necessary
to produce a tune change of 10−3 with a horizontal orbit
bump of 4 mm. This magnitude of tune change corre-
sponds roughly to the observed effects.

Chromatic effects. The bump causes a change in
the circumference, which leads to a small change in the
beam energy, which in turn causes a change in the beta-
tron tunes because of the chromaticity. As the first two
(and last two) corrector magnets used in the bumps are
roughly ∆s =3 m apart, a bump ∆x =4 mm through one
pair of wigglers causes a change in circumference of the
order ∆x2/∆s ≈5 µm. Since the nominal circumference
is 138 m, and the momentum compaction is 2.1×10−3,
the energy change resulting from a change in circumfer-
ence of 8 µm is roughly ∆p/p ≈ 2×10−5. To give a tune
change of 10−3, a chromaticity of the order of 50 would
be needed. The measured chromaticities are of order 1,
so chromatic effects resulting from the orbit bumps in the
wigglers are small.

Edge focusing from the corrector magnets. With
a 3 m separation between the corrector magnets, the an-
gular kick needed to give a 4 mm bump is ∆θ =1.3 mrad.
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FIG. 8: Chromaticity with wigglers off. ξ1 is the linear chro-
maticity fitted to the data points; ξ2 is the second-order chro-
maticity.

The edge focusing from the corrector magnets is of the or-
der ∆k1l = h tanψ, where h = 1/ρ = ∆θ/L for a bending
radius of ρ in a corrector magnet of length L, and ψ ≈ ∆θ
is the orbit angle with respect to the pole-face of a cor-
rector. As the corrector magnets are 6 cm long, for a 4
mm bump, the focusing is roughly ∆k1l ≈ 3×10−5 m−1.
With a typical beta function in the correctors of 5 m, the
change in tune is roughly ∆ν ≈ (1/4π)β∆k1l ≈ 10−5.
In the horizontal plane, since the edge effects of the cor-
rector magnets are defocusing, a reduction in tune is ex-
pected. The tune change is quadratic in the bump ampli-
tude, because of the dependence of the focusing on both
the orbit angle with respect to the corrector pole face,
and the strength of the corrector.

Higher-order multipoles in the quadrupoles and
correctors. Sextupole components in the quadrupoles
will cause linear changes in tune with the size of the orbit
bump; octupole components will cause quadratic changes
in tune with the size of the orbit bump. If a corrector
magnet at the center of the bump contains a sextupole
component with strength proportional to the strength of
the corrector, then this will result in quadratic changes in
tune with the size of the orbit bump. With an integrated
sextupole strength k2l, the linear focusing from an orbit

FIG. 9: Chromaticity with wigglers on. ξ1 is the linear chro-
maticity fitted to the data points; ξ2 is the second-order chro-
maticity.

bump of ∆x will be ∆xk2l, and the tune change will be
∆ν ≈ (1/4π)β∆x∆k2l. To give a tune change of 10−3

with an orbit bump of 4 mm, an integrated sextupole
component of roughly 0.6 m−2 is needed. At a reference
radius r, a sextupole component k2 gives a field strength
Bρk2r

2/2. Therefore, with a corrector length of 6 cm,
an integrated sextupole component 0.6m−2 gives a field
strength of a little under 0.01 T at a reference radius of
2 cm. The corrector dipole field with an orbit bump of
4 mm is roughly 0.1 T. This means that with an orbit
bump of 4 mm, the sextupole field component needs to
be around 10% of the dipole field component to give a
tune shift of 10−3.

Residual closed-orbit distortion outside the or-
bit bump. Small changes in horizontal orbit around the
ring will cause linear changes in horizontal and vertical
tune with changes in the size of the orbit bump, because
of changes in the horizontal offset of the beam with re-
spect to the centers of the sextupoles. A rough estimate
of the tune change that might be expected from a closed
orbit distortion (uncorrelated with the sextupole posi-
tions) with rms σx is given by ∆ν ≈

√
Nsextβk2lσx/4π,

where Nsext = 68 is the number of sextupoles in the ring.
With a beta function of 5 m, and an integrated sextupole
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strength k2l ≈ 30 m−2, a tune change of 10−3 will result
from a closed orbit distortion with rms 10 µm.

The chromatic and edge focusing effects are expected
to be small. The random effects, particularly the closed
orbit distortion, may be significant.

Fig. 10 shows the variation of the tunes with orbit
bump in the north wigglers, with wigglers on and wig-
glers off. Fig. 11 shows the variation of the tunes with
orbit bump in the south wigglers, with wigglers on and
wigglers off. Results from the three models are plotted
on the same axes as the experimental data. Note that we
suppress differences in tunes when the bumps are turned
off, by plotting the tune change with respect to the zero-
bump value. The lattices used with the wigglers off are
different from those with the wigglers on and have slightly
different tunes. Also, as discussed in Section III B, the
focusing obtained from integrating through the modeled
wiggler field is slightly different from that needed to fit
the tunes in the model to the measured tunes.

FIG. 10: Tune variations with orbit bump in the north wig-
glers. The model with the wiggler off is Model A; the lin-
ear wiggler model is Model B; the nonlinear wiggler model is
model C.

The models do not fit the data particularly well. Even

FIG. 11: Tune variations with orbit bump in the south wig-
glers. The model with the wiggler off is Model A; the lin-
ear wiggler model is Model B; the nonlinear wiggler model is
model C.

with the wigglers off, we observe significantly larger tune
changes with orbit bump than expected from the lattice
model. However, as we discussed above, tune changes of
the magnitudes observed may arise from multipole com-
ponents in the corrector magnets of the order of a few
% of the corrector dipole field, or from a residual closed
orbit distortion of a few microns outside of the bump.
As these effects are not well characterized, they have not
been included in the models. From the models, we expect
turning on the wigglers to have a relatively small effect
on the tune variations with orbit bumps, compared with
the effects of orbit distortions, for example. In the data
we collected, it is not possible to separate the nonlinear
effects of the wigglers from other effects causing changes
in tune with with orbit bumps through the wigglers.
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V. CONCLUSIONS

We have constructed a magnetic field map for the
KEK-ATF wigglers, and have used this map to produce a
model of the effects of these wigglers on the beam dynam-
ics in the storage ring. The transverse profile of the field
in the wigglers is rather flat, which means that the linear
and nonlinear effects are weak. Beyond this, it is difficult
to draw any clear, general conclusions from comparisons
between the models and the measured data. The hori-
zontal linear focusing does appear to be underestimated
in the model, which suggests the transverse field roll-off
could be a little larger than predicted from solving the
magnetic model. There is reasonable agreement between
the chromaticity in the models and the chromaticity mea-
sured in the machine, after making small (roughly 2%)
adjustments to the sextupole strengths in the models.

We attempted to characterize the dynamic octupole ef-
fects in the wigglers by measuring the tune changes with
orbit bumps; however, it appears that the results are
dominated by other effects, possibly higher-order multi-
poles in the quadrupoles and steering magnets, or resid-

ual closed orbit distortions outside of the bumps. Other
techniques for studying the nonlinear effects of the wig-
glers can be used which would allow a more precise analy-
sis. For example, if one applies a kick to the bunch on
a single turn and obtains the tunes as a function of kick
amplitude using turn-by-turn BPMs, there should not
be any effects from the closed orbit distortion, since the
closed orbit is not changing.

It is also possible that there are significant effects from
the ends of the wigglers, which have not been correctly
described in the models. To determine these effects prop-
erly, models need to be constructed that include the re-
cent modifications made to correct the steering effects of
the ends.
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