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Abstract

Most studies of coherent synchrotron radiation (CSR)
have considered only the radiation from independent dipole
magnets. However, in the damping rings of future lin-
ear colliders and many high luminosity factories, a large
fraction of the radiation power will be emitted in damp-
ing wigglers. In this paper, the longitudinal wakefield and
impedance due to CSR in a wiggler are derived in the limit
of a large wiggler parameter K. After an appropriate scal-
ing, the results can be expressed in terms of universal func-
tions, which are independent of K. Analytical asymptotic
results are obtained for the wakefield in the limit of large
and small distances, and for the impedance in the limit of
small and high frequencies.

INTRODUCTION

Many modern advanced accelerator projects call for
short bunches with low emittance and high peak current
where coherent synchrotron radiation (CSR) effects may
play an important role. CSR is emitted at wavelengths
longer than or comparable to the bunch length whenever
the beam is deflected [1]. The stringent beam requirements
needed for short wavelength Self-Amplified Spontaneous
Emission (SASE) free-electron lasers have led to intensive
theoretical and experimental studies [2] over the past few
years where the focus has been on the magnetic bunch com-
pressors required to obtain the high peak currents. In addi-
tion to these single-pass cases, it is also possible that CSR
might cause a microwavelike beam instability in storage
rings. A theory of such an instability in a storage ring has
been recently proposed in Ref. [3] with experimental evi-
dence published in [4].

The previous study of the CSR induced instability as-
sumed that the impedance is generated by the synchrotron
radiation of the beam in the storage ring bending magnets
[3]. In some cases (e.g. the Next Linear Collider (NLC)
damping ring [5]), a ring will include magnetic wigglers
which introduce an additional contribution to the radiation
impedance. The analysis of the microwave instability in
such a ring requires knowledge of the impedance of the
synchrotron radiation in the wiggler. Although there have
been earlier studies of the coherent radiation from a wig-
gler or undulator [6, 7], the results of these papers cannot
be used directly for the stability analysis.

In this paper, we derive the CSR wake and impedance
for a wiggler. We focus our attention on the limit of a large
wiggler parameter K because this is the most interesting
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case for practical applications. It also turns out that, in
this limit, the results can be expressed in terms of universal
functions of a single variable after an appropriate normal-
ization.

ENERGY LOSS AND LONGITUDINAL
WAKE IN WIGGLER

The longitudinal wake is directly related to the rate of
energy loss dE/dt of an electron in the beam propagating
in a wiggler. For a planar wiggler, a general expression for
dE/dt as a function of the position s of the electron in the
bunch and the coordinate z in the wiggler was derived in
Ref. [7]. We reproduce here the results of that work using
the authors’ notation:

d E
c dt

= e2 kw

∫ s

−∞
d s′ D(ŝ − ŝ′,K, ẑ)

d λ(s′)
ds′

, (1)

where λ(s) is the bunch linear density,

D(ŝ, K, ẑ) =
1
ŝ
− 2 ×

∆ − K2 B(∆, ẑ) [sin ∆ cos ẑ + (1 − cos ∆) sin ẑ]
∆2 + K2 B2(∆, ẑ)

, (2)

B(∆, ẑ) = (1 − cos ∆ − ∆sin ∆) cos ẑ

+ (∆cos ∆ − sin ∆) sin ẑ, (3)

and ∆ is the solution of the transcendental equation

ŝ =
∆
2

(
1 +

K2

2

)
+

K2

4∆
{[2(1 − cos ∆) − ∆sin ∆]

× (cos ∆ cos 2ẑ + sin ∆ sin 2ẑ) −2(1 − cos ∆)}. (4)

In the above equations, we use the following dimension-
less variables: ŝ = γ2 kw s and ẑ = kw z. The parameter
∆ is equal to kw (z − zr), where z and zr are the pro-
jected coordinates on the wiggler axis of the current po-
sition of the test particle and the retarded position of the
source particle, respectively. The internal coordinate s is
defined so that the bunch head corresponds to a larger value
of s than the tail. The wiggler parameter K is approxi-
mately K ≈ 93.4Bw λw, with Bw the peak magnetic field
of the wiggler in units of Tesla and λw the period in meters.
In addition, γ is the Lorentz factor, e is the electron charge,
c is the speed of light in vacuum, and kw = 2π/λw is the
wiggler wave number. Note that the function D is a peri-
odic function of ẑ with a period equal to π. Also note that,
despite assuming K � 1, we still assume a small-angle
orbit approximation, i.e., K/γ � 1.

We introduce the longitudinal wake W (s) of the bunch
as the rate of the energy change averaged over the z coor-
dinate:

W (s) = − 1
e2

d Ē
c dt

= −kw

∫ s

−∞
ds′G(s − s′)

d λ(s′)
ds′

, (5)Contract No. DE-AC02-76SF00515.
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where G(s) =
1
π

∫ π

0

d ẑ D(ŝ, K, ẑ), (6)

and we dropped K from the list of arguments of the func-
tion G. The positive values of W correspond to the energy
loss and the negative values imply the energy gain. The
usual longitudinal wake w(s) corresponding to the interac-
tion of two particles is then defined as

w(s) = −kw
dG(s)

d s
, (7)

so that W (s) =
∫ s

−∞
ds′ w(s − s′)λ(s′). (8)

Note that the wake Eq. (7) is localized in front of the parti-
cle and vanishes behind it; w = 0 for s < 0.

In the limit of large K, we can neglect unity in the first
bracket of Eq. (4), assuming that K2/2 � 1. Such an
approximation is valid, if we are not interested in the very
short distances of order of (K kw γ2)−1 (0.5Å for the NLC
damping ring wiggler [5]). We also introduce a new vari-
able ζ ≡ ŝ/K2 which eliminates the parameter K from
Eq. (4):
ζ(∆, ẑ) =

∆
4

+
1

4∆
{[2(1 − cos ∆) − ∆sin ∆]

×(cos ∆ cos 2ẑ + sin ∆ sin 2ẑ) − 2(1 − cos ∆)}. (9)

In this limit, the expression for D, Eq. (2), can also be
simplified:

D(ζ, ẑ) = 2
sin ∆ cos ẑ + (1 − cos ∆) sin ẑ

B(∆, ẑ)
, (10)

as long as ∆ is not too small, ∆ � 1/K. Again, the pa-
rameter K is eliminated from this equation.

WAKEFIELD

Using Eq. (6) and (10) we find

G(ζ) =
2
π

∫ π

0

d ẑ
sin ∆ cos ẑ + (1 − cos ∆) sin ẑ

B(∆, ẑ)
, (11)

where ∆ = ∆(ζ, ẑ) is implicitly determined by Eq. (9).
The integrand in this equation has singularities at points
ẑ = ẑs where B(∆(ζ, ẑs), ẑs) = 0. It could be checked
that in the vicinity of a singular point B(∆(ζ, ẑ)) ∝ (ẑ −
ẑs)1/3, and the singularity is integrable.

We plot the function G(ζ) calculated by numerical inte-
gration in Fig. 1. A characteristic feature of the function G
is the presence of cusp points, at which the function reaches
local maxima and minima. Approximately, they are

G(ζ)=

{
− 4 (2 n−1) π

4+[(2 n−1) π]2 ; at ζ ≈ (2n−1) π
4 − 1

(2n−1) π

0; at ζ = n π
2

(12)

with n = 1, 2, · · ·. These are the “×” points in Fig. 1,
showing very good agreement with the numerical result.
The longitudinal wake given in Eq. (7) will reach infinity
when approaching the maxima and minima from one side,
and negative infinity on the other side.

In the limit ζ � 1, it follows from Eq. (9) that ∆ � 1
as well. Equation (9) can then be solved using a Taylor

expansion of the right-hand side: ∆ =
(
24 ζ/cos2 ẑ

)1/3
.

Expanding the integrand in Eq. (11), keeping only the first
nonvanishing term in ∆ yields

G(ζ) = − 1
π

2
(3 ζ)1/3

∫ π

0

dẑ cos2/3 ẑ

= −4 32/3 Γ
(

11
6

)
5
√

π Γ
(

4
3

) ζ−1/3 ≈ −0.99 ζ−1/3. (13)

The above result can also be obtained if one considers a
wiggler as a sequence of bending magnets with the bending
radius R = γ/kwK| cos ẑ|, since in this limit the formation
length of the radiation is much shorter than the wiggler pe-
riod, and one can use a local approximation of the bending
magnet for the wake. In the limit ζ � 1, the parameter ∆
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Figure 1: The solid curve represents the G(ζ) defined in
Eq. (11) as a function of the normalized coordinate 2ζ/π.
The (×) signs are the approximation given in Eq. (12).

is also large, and Eq. (9) can be further simplified:

ζ =
∆
4

− sin∆ cos(∆ − 2ẑ)
4

. (14)

In Eq. (3), we keep only the largest term B(∆, ẑ) =
−∆ sin(∆ − ẑ). For D, one now finds, D(ζ, ẑ) ≡
F (ζ, ẑ)/ζ, with

F (ζ, ẑ) ≡ sin ẑ

2 sin(ẑ − ∆(ζ, ẑ))
− 1

2
, (15)

where the function ∆(ζ, ẑ) is implicitly determined by Eq.
(14). Averaging over one wiggler period, we find G(ζ) ≡
F̄ (ζ)/ζ, with

F̄ (ζ)≡1
π

∫ π

0

dẑF (ζ, ẑ)=
1

2π

(
−π+

∫ π

0

dẑ
sin ẑ

sin(ẑ − ∆)

)
. (16)

It is easy to check that the function F̄ is periodic, F̄ (ζ +
π/2) = F̄ (ζ), and F̄ (0) = 0, F̄ (π/4) = −1 in agree-
ment with Eq. (12). The average value F̄ (ζ) is equal to
−1/2. Since F̄ is periodic in ζ with a period of π/2, using
Eq. (16), we can obtain a Fourier series representation for
F̄ (ζ). The corresponding long-range wake is then

G(ζ) = − 1
2ζ

+

1
2ζ

∞∑
n=0

[
Jn

(
2n + 1

2

)
−Jn+1

(
2n + 1

2

)]2

cos(4(2n + 1)ζ). (17)
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Figure 2: The imaginary part of the normalized impedance
Z(k)/kw as a function of the normalized wave number
k/k0. Solid line: numerical solution from Eq. (18);
dotted line: analytical low-frequency asymptotic behavior
from Eq. (19); and dashed line: analytical high-frequency
asymptotic behavior from Eq. (20).
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Figure 3: The real part of the normalized impedance
Z(k)/kw as a function of the normalized wave number
k/k0. Solid line: numerical solution from Eq. (18);
dotted line: analytical low-frequency asymptotic behavior
from Eq. (19); and dashed line: analytical high-frequency
asymptotic behavior from Eq. (20).

IMPEDANCE

The impedance Z(k) is defined as the Fourier transform
of the wake,

Z(k)=
∫ ∞

0

dsw(s)e−iks=
−ikK2

γ2

∫ ∞

0

dζG(ζ)e−4i(k/k0)ζ, (18)

where k0 ≡ 4γ2kw/K2 is the wiggler fundamental radia-
tion wave number.

We evaluated the integral in Eq. (18) using numeri-
cally calculated values of the function G(ζ) in the interval
[ζmin, ζmax], where ζmin ≈ 10−3 and ζmax ≈ 50. The con-
tribution to the integral outside of this interval was calcu-
lated using asymptotic representations Eqs. (13) and (17).
The resulting imaginary and real parts of the impedance are
shown in Figs. 2 and 3, respectively.

Simple analytical formulas for the impedance can be
obtained in the limit of low and high frequencies. The
low-frequency impedance corresponds to the first term in
Eq. (17) for function G which does not oscillate with ζ:
G(ζ) = −1/(2ζ). Using the definition in Eq. (18), we

then obtain the low-frequency asymptotic behavior of the
impedance as

Z(k) = − i 2 kw
k

k0

[
γE + log

(
4k

k0

)
+ i

π

2

]

≈ π kw
k

k0

[
1 − 2 i

π
log

(
k

k0

)]
, (19)

where, γE ≈ 0.5772 is the Euler gamma constant.
Since we have an analytical expression for the short-range
G(ζ) in Eq. (13), we get the asymptotic high-frequency
impedance as

Z(k) = −i
6Γ

[
11
6

]
5
√

π Γ
[
4
3

] A

(
Kkw

γ

)2/3

k1/3

≈ − 0.71 i A

(
Kkw

γ

)2/3

k1/3, (20)

with A = 3−1/3Γ(2/3)(
√

3 i−1) ≈ 1.63 i−0.94 [3]. The
asymptotic low- and high-frequency impedance are plotted
in Figs. 2 and 3 for comparison with the numerical solu-
tion.

DISCUSSION AND CONCLUSION

In this paper, we derived the wakefield and the
impedance for wigglers with K2/2 � 1 due to the syn-
chrotron radiation. Analytical asymptotic results are ob-
tained for the wakes in the limit of small and large dis-
tances and for the impedance in the limit of small and high
frequencies. The results obtained in this paper are used for
the beam instability study due to the synchrotron radiation
in wigglers [8].
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