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Abstract 
 This paper reviews an efficient implementation of the 

software ‘middle layer’ that resides between high-level 
accelerator control applications and the low-level 
accelerator control system. The middle layer software is 
written in MATLAB and includes links to the EPICS 
Channel Access Library. Functionally, the middle layer 
syntax closely parallels the Family/Index naming scheme 
used in many accelerator simulation codes and uses the 
same convention to communicate with both the online 
machine and the accelerator model. Hence, machine 
control, machine simulation and data analysis tools are 
integrated into a single, easy-to-use software package.  

INTRODUCTION 
   As shown in Fig. 1, the middle layer provides a set of 
functions that communicate with machine hardware via 
the MATLAB Channel Access toolbox MCA [1]. At the 
heart of the middle layer is a data structure containing 
Accelerator Objects or Families of hardware elements 
with various attributes: element names, element indices, 
i/o channel names, unit conversions, etc. The naming 
scheme mimics the Family/Index convention commonly 
used in accelerator simulation codes. Hence, the language 
of simulation codes can be used to communicate directly 
with either online accelerator components or the model. 
    The middle layer family definitions are contained in a 
text file for easy editing. Typical families include dipoles, 
quadrupoles, sextupoles, correctors and BPMs. An 
additional Accelerator Data structure contains default 
directory specifications, file names and basic accelerator 
parameters. Execution of a simple MATLAB script loads 
both the Accelerator Object (AO) and the Accelerator 
Data (AD) blocks into memory - all routines in the 
middle layer toolbox have direct access to the AO and AD 
data. 
   Middle layer functions are used to communicate with 
accelerator hardware and access different family 
attributes. At present, hardware communications occurs 
via EPICS Channel Access. In this case, the middle layer 
provides channel names and keeps track of integer 
handles for each device thereby buffering the user from 
detailed Channel Access calls with complicated channel 
names. Other communication protocols are also possible. 
The middle layer also accommodates an accelerator 
model in the MATLAB Accelerator Toolbox (AT) [2,3] 
or can communicate with a MATLAB model server 
operating in an EPICS ioc [4]. The ability to switch 
between ‘simulator’ and ‘online’ modes is useful for 
program development and analysis.  
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        Figure 1: Middle Layer Software Flow Diagram  
 
   By design, the middle layer is machine independent – 
communication with different machines requires the user 
to reconfigure the Accelerator Object file, revise the 
Accelerator Data structure and update the model. Special 
functions may be required for machine-specific hardware.  

USE OF MATLAB 
   One key feature of our approach to the middle layer is 
the use of MATLAB. MATLAB provides an active 
variable workspace, a built-in math library, powerful 
graphics capabilities and on-going development of new 
software features.  Just as MATLAB can be augmented 
with commercial 'toolboxes', the Accelerator Toolbox 
(physics) [2,3], the MATLAB Channel Access Toolbox 
(EPICS interface) [4] and the Middle Layer Toolbox 
(controls & data organization) [5] facilitate accelerator 
simulation and control. All of these functions make use of 

   At the application level, script-based control sequences 
and graphical interfaces utilize the middle layer to 
standardize and simplify programming. At the highest 
level, MATLAB and the associated toolboxes can be used 
to control the accelerator - at the Advanced Light Source 
MATLAB is used for energy ramp, configuration 
save/restore, global orbit correction, insertion device 
compensation and beam-based alignment [6]. Response 
matrix analysis routines are in turn used for accelerator 
calibration and lattice studies [7]. Several of the high-
level ALS functions have been ported to SPEAR 3 and 
upgraded to the middle layer formalism. Well before 
SPEAR 3 start-up, the MATLAB tools were used for 
physics studies and simulated commissioning [8,9]. 

the array processing capabilities inherent in MATLAB. 
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MIDDLE LAYER NOMENCLATURE 
   In the EPICS environment each hardware device has a 
unique set of identifiers or Process Variables (PV).  
Accelerator physicists, however, often think in terms of 
hardware families (dipoles, quadrupoles) and attributes of 
the family elements (length, strength, etc). In the middle 
layer, each family has a nominal set of structure fields 
(element names, element indices, channel names, etc). 
Specific hardware elements in a family are referred to by 
{Family, DeviceList} where DeviceList is an integer 
doublet {Sector, Index}. A further division of the family 
structure into Monitor and Setpoint sub-structures keeps 
element attributes well organized and fits neatly into the 
middle layer function architecture. The EPICS setpoint 
PV names, for instance, are found in 
Family.Setpoint.Channelnames. 
   Middle layer function names are characterized by a 
prefix to indicate action: get=[retrieve value]; set=[deposit 
value]; meas=[measure]; calc=[calculate]. getsp retrieves 
a setpoint, whereas measchro measures chromaticity. 
Step- and ramp- functions are wrappers for the ‘set’ 
routine. Wherever possible, functions are written in 
machine-independent format. 

MODES OF OPERATION 
   Middle layer software can be run in several modes of 
operation. The online mode broadcasts get/set calls to 
EPICS Channel Access servers. The servers can be 
connected to live hardware modules or a model server [4]. 
The simulation mode directs get/set calls directly to the 
local AT model [2,3]. This mode is useful to develop and 
test control programs prior to deployment and for 
programs not intended for online use. In practice, get/set 
calls check if the mode is 'online', 'simulator', 'manual', or 
'special.'  The 'manual' mode prompts the user for manual 
data input (e.g. tunes) while the 'special' mode allows the 
user to define an in-line function to numerically process 
data.  

MIDDLE LAYER FUNCTIONS 
   The middle layer function toolbox is well established 
and continues to expand. At present, it contains about 100 
functions.  
 
Get and Set Functions 
   These core functions communicate with Channel Access 
Servers or the MATLAB Accelerator Toolbox. The two 
main functions are getpv (get EPICS PV) and setpv (set 
EPICS PV). Both functions accept a variety of input 
formats via the Family/Index convention.  Rather general 
calls are permitted and timing requests are possible. It is 
important to note that the MCA toolbox communicates 
with the .val field of an EPICS record. Nevertheless, each 
Accelerator Object family can contain many PV channel 
names for a given hardware device. A quadrupole magnet 
family, for instance, can have setpoint, monitor, voltage, 

and status PV channel names that refer to the .val field in 
the associated EPICS records. 
 
Utility Functions  
   Utility functions allow easy conversion between fields 
in an Accelerator Object family. Examples include 
family2common (convert family name to element 
common names), common2dev (convert common names 
to numerical device indices) and common2channel 
(convert common names to PV channel names). 
getfamilydata is a particularly important utility function 
used to access information from an Accelerator Object 
family. 
 
 
Shortcut Functions 
   Shortcut functions are designed to reduce number of 
parameters required in a function call. Examples include 
getsp and setsp which communicate with setpoint PV's, 
and getx/gety which return horizontal and vertical beam 
position values. Reference to the channel access handles 
is performed in the base routines getpv/setp. 
 
Unit Conversion Functions  
   Unit conversions play an important role in modeling the 
on-line machine. For this purpose, the middle layer 
supplies two functions HW2Physics (hardware-to-
physics) and Physics2HW (physics-to-hardware). Both 
functions accept the Family/Index naming convention but 
refer to the Accelerator Object database to retrieve the  
numerical conversion algorithm and associated 
parameters. For SPEAR 3, polynomial current-to-field 
transfer functions are used for each magnet family. Each 
individual magnet has an additional numerical scaling 
factor for detailed modeling applications. 
 
Simulator Functions 
   These functions only communicate with the AT model 
to return simulated physics parameters. Examples include  
getbeta=(calculate beta functions), getchro=(calculate 
chromaticity) and getdisp=(calculate dispersion). 
MATLAB functions in the AT toolbox can also be used 
directly to augment the set. 
 
Special Functions 
      Some devices do not conform neatly with the 
Family/Index formalism so special functions are created 
to access the data. An  example is getid/setid for insertion 
device gap control. Alternatively, since it is easy to create 
Accelerator Object families, special families can be added 
for a specific task.  The storage ring tunes, for instance, 
can be represented by a family structure containing fields 
for the common names, channel access handles and 
golden tunes.  For ramping applications an Accelerator 
Object with every magnet involved in the ramp can be 
created.   
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DATA MANAGEMENT 
    Robust data management for accelerator control and 
accelerator measurements can be a challenging task. The 
Accelerator Objects framework organizes element names 
and attributes in a local database. In principle, much of 
the AO data can be loaded from a master site-wide 
database if it exists. But this is not always the case - 
SPEAR 3 studies in MATLAB commenced years before a 
database was available. The Accelerator Data structure 
contains machine- and middle layer specific data that 
resides outside of the site-wide database. Examples 
include calculated physics parameters and directory 
locations to store measured data. 

APPLICATION PROGRAMS 
A primary reason for middle layer software is to 

simplify script construction and high-level application 
programming. Scripts rely heavily on middle layer 
software to perform correlated perturb/measure studies. 
Application programs can be dominated by user-interface 
software but again benefit from the middle layer for 
machine control and data handling.  In both cases the 
middle layer buffers the user from detailed Channel 
Access calls. The middle layer also provides high-level 
functions for common accelerator physics tasks. 
Examples include: 

(1) measrespmat - measure response matrix  
(2) getrespmat - read response data from files  
(3) measdisp - measure the dispersion function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
 The MATLAB middle layer provides convenient and 

easy-to-use ‘glue’ for experimentalists and application 
programmers to access online hardware, model programs 
and data analysis tools. In conjunction with the inherent 
flexibility of MATLAB, the middle layer allows rapid 
software development and testing. Due to the machine-
independent nature of the software, it is readily adapted to 
other accelerators, particularly storage rings and LINACS 
which feature magnet families and repetitive cells. In 
principle, the middle layer can be adapted to other 
applications in experimental physics and industrial 
control.  
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