
Chemical Sciences.

ACCELERATOR CONTROL MIDDLE LAYER*

J. Corbett, G. Portmann and A. Terebilo, SLAC, Stanford, CA 94309, USA

Abstract
 This paper reviews an efficient implementation of the

software ‘middle layer’ that resides between high-level
accelerator control applications and the low-level
accelerator control system. The middle layer software is
written in MATLAB and includes links to the EPICS
Channel Access Library. Functionally, the middle layer
syntax closely parallels the Family/Index naming scheme
used in many accelerator simulation codes and uses the
same convention to communicate with both the online
machine and the accelerator model. Hence, machine
control, machine simulation and data analysis tools are
integrated into a single, easy-to-use software package.

INTRODUCTION
 As shown in Fig. 1, the middle layer provides a set of
functions that communicate with machine hardware via
the MATLAB Channel Access toolbox MCA [1]. At the
heart of the middle layer is a data structure containing
Accelerator Objects or Families of hardware elements
with various attributes: element names, element indices,
i/o channel names, unit conversions, etc. The naming
scheme mimics the Family/Index convention commonly
used in accelerator simulation codes. Hence, the language
of simulation codes can be used to communicate directly
with either online accelerator components or the model.
 The middle layer family definitions are contained in a
text file for easy editing. Typical families include dipoles,
quadrupoles, sextupoles, correctors and BPMs. An
additional Accelerator Data structure contains default
directory specifications, file names and basic accelerator
parameters. Execution of a simple MATLAB script loads
both the Accelerator Object (AO) and the Accelerator
Data (AD) blocks into memory - all routines in the
middle layer toolbox have direct access to the AO and AD
data.
 Middle layer functions are used to communicate with
accelerator hardware and access different family
attributes. At present, hardware communications occurs
via EPICS Channel Access. In this case, the middle layer
provides channel names and keeps track of integer
handles for each device thereby buffering the user from
detailed Channel Access calls with complicated channel
names. Other communication protocols are also possible.
The middle layer also accommodates an accelerator
model in the MATLAB Accelerator Toolbox (AT) [2,3]
or can communicate with a MATLAB model server
operating in an EPICS ioc [4]. The ability to switch
between ‘simulator’ and ‘online’ modes is useful for
program development and analysis.

Middle Layer (MATLAB)

High Level Script
and Control Applications

MCA

SPEAR 3
Channel Access

Accelerator Toolbox
Model

Simulated SPEAR 3
Model

AO AD

(Hardware)

MATLAB ENVIRONMENT

 Figure 1: Middle Layer Software Flow Diagram

 By design, the middle layer is machine independent –
communication with different machines requires the user
to reconfigure the Accelerator Object file, revise the
Accelerator Data structure and update the model. Special
functions may be required for machine-specific hardware.

USE OF MATLAB
 One key feature of our approach to the middle layer is
the use of MATLAB. MATLAB provides an active
variable workspace, a built-in math library, powerful
graphics capabilities and on-going development of new
software features. Just as MATLAB can be augmented
with commercial 'toolboxes', the Accelerator Toolbox
(physics) [2,3], the MATLAB Channel Access Toolbox
(EPICS interface) [4] and the Middle Layer Toolbox
(controls & data organization) [5] facilitate accelerator
simulation and control. All of these functions make use of

 At the application level, script-based control sequences
and graphical interfaces utilize the middle layer to
standardize and simplify programming. At the highest
level, MATLAB and the associated toolboxes can be used
to control the accelerator - at the Advanced Light Source
MATLAB is used for energy ramp, configuration
save/restore, global orbit correction, insertion device
compensation and beam-based alignment [6]. Response
matrix analysis routines are in turn used for accelerator
calibration and lattice studies [7]. Several of the high-
level ALS functions have been ported to SPEAR 3 and
upgraded to the middle layer formalism. Well before
SPEAR 3 start-up, the MATLAB tools were used for
physics studies and simulated commissioning [8,9].

the array processing capabilities inherent in MATLAB.

*work supported in part by Department of Energy Contract DE-AC02-76SF00515 and Office of Basic Energy Sciences, Division of

SLAC-PUB-10724

To appear in the Proceedings of Particle Accelerator Conference (PAC 03), Portland, OR, 12-16 May 2003.

1Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

MIDDLE LAYER NOMENCLATURE
 In the EPICS environment each hardware device has a
unique set of identifiers or Process Variables (PV).
Accelerator physicists, however, often think in terms of
hardware families (dipoles, quadrupoles) and attributes of
the family elements (length, strength, etc). In the middle
layer, each family has a nominal set of structure fields
(element names, element indices, channel names, etc).
Specific hardware elements in a family are referred to by
{Family, DeviceList} where DeviceList is an integer
doublet {Sector, Index}. A further division of the family
structure into Monitor and Setpoint sub-structures keeps
element attributes well organized and fits neatly into the
middle layer function architecture. The EPICS setpoint
PV names, for instance, are found in
Family.Setpoint.Channelnames.
 Middle layer function names are characterized by a
prefix to indicate action: get=[retrieve value]; set=[deposit
value]; meas=[measure]; calc=[calculate]. getsp retrieves
a setpoint, whereas measchro measures chromaticity.
Step- and ramp- functions are wrappers for the ‘set’
routine. Wherever possible, functions are written in
machine-independent format.

MODES OF OPERATION
 Middle layer software can be run in several modes of
operation. The online mode broadcasts get/set calls to
EPICS Channel Access servers. The servers can be
connected to live hardware modules or a model server [4].
The simulation mode directs get/set calls directly to the
local AT model [2,3]. This mode is useful to develop and
test control programs prior to deployment and for
programs not intended for online use. In practice, get/set
calls check if the mode is 'online', 'simulator', 'manual', or
'special.' The 'manual' mode prompts the user for manual
data input (e.g. tunes) while the 'special' mode allows the
user to define an in-line function to numerically process
data.

MIDDLE LAYER FUNCTIONS
 The middle layer function toolbox is well established
and continues to expand. At present, it contains about 100
functions.

Get and Set Functions
 These core functions communicate with Channel Access
Servers or the MATLAB Accelerator Toolbox. The two
main functions are getpv (get EPICS PV) and setpv (set
EPICS PV). Both functions accept a variety of input
formats via the Family/Index convention. Rather general
calls are permitted and timing requests are possible. It is
important to note that the MCA toolbox communicates
with the .val field of an EPICS record. Nevertheless, each
Accelerator Object family can contain many PV channel
names for a given hardware device. A quadrupole magnet
family, for instance, can have setpoint, monitor, voltage,

and status PV channel names that refer to the .val field in
the associated EPICS records.

Utility Functions
 Utility functions allow easy conversion between fields
in an Accelerator Object family. Examples include
family2common (convert family name to element
common names), common2dev (convert common names
to numerical device indices) and common2channel
(convert common names to PV channel names).
getfamilydata is a particularly important utility function
used to access information from an Accelerator Object
family.

Shortcut Functions
 Shortcut functions are designed to reduce number of
parameters required in a function call. Examples include
getsp and setsp which communicate with setpoint PV's,
and getx/gety which return horizontal and vertical beam
position values. Reference to the channel access handles
is performed in the base routines getpv/setp.

Unit Conversion Functions
 Unit conversions play an important role in modeling the
on-line machine. For this purpose, the middle layer
supplies two functions HW2Physics (hardware-to-
physics) and Physics2HW (physics-to-hardware). Both
functions accept the Family/Index naming convention but
refer to the Accelerator Object database to retrieve the
numerical conversion algorithm and associated
parameters. For SPEAR 3, polynomial current-to-field
transfer functions are used for each magnet family. Each
individual magnet has an additional numerical scaling
factor for detailed modeling applications.

Simulator Functions
 These functions only communicate with the AT model
to return simulated physics parameters. Examples include
getbeta=(calculate beta functions), getchro=(calculate
chromaticity) and getdisp=(calculate dispersion).
MATLAB functions in the AT toolbox can also be used
directly to augment the set.

Special Functions
 Some devices do not conform neatly with the
Family/Index formalism so special functions are created
to access the data. An example is getid/setid for insertion
device gap control. Alternatively, since it is easy to create
Accelerator Object families, special families can be added
for a specific task. The storage ring tunes, for instance,
can be represented by a family structure containing fields
for the common names, channel access handles and
golden tunes. For ramping applications an Accelerator
Object with every magnet involved in the ramp can be
created.

2

DATA MANAGEMENT
 Robust data management for accelerator control and
accelerator measurements can be a challenging task. The
Accelerator Objects framework organizes element names
and attributes in a local database. In principle, much of
the AO data can be loaded from a master site-wide
database if it exists. But this is not always the case -
SPEAR 3 studies in MATLAB commenced years before a
database was available. The Accelerator Data structure
contains machine- and middle layer specific data that
resides outside of the site-wide database. Examples
include calculated physics parameters and directory
locations to store measured data.

APPLICATION PROGRAMS
A primary reason for middle layer software is to

simplify script construction and high-level application
programming. Scripts rely heavily on middle layer
software to perform correlated perturb/measure studies.
Application programs can be dominated by user-interface
software but again benefit from the middle layer for
machine control and data handling. In both cases the
middle layer buffers the user from detailed Channel
Access calls. The middle layer also provides high-level
functions for common accelerator physics tasks.
Examples include:

(1) measrespmat - measure response matrix
(2) getrespmat - read response data from files
(3) measdisp - measure the dispersion function

SUMMARY
 The MATLAB middle layer provides convenient and

easy-to-use ‘glue’ for experimentalists and application
programmers to access online hardware, model programs
and data analysis tools. In conjunction with the inherent
flexibility of MATLAB, the middle layer allows rapid
software development and testing. Due to the machine-
independent nature of the software, it is readily adapted to
other accelerators, particularly storage rings and LINACS
which feature magnet families and repetitive cells. In
principle, the middle layer can be adapted to other
applications in experimental physics and industrial
control.

ACKNOWLEDGEMENTS
 The authors would like to thank D. Robin, H.
Nishimura and C. Steier at the ALS for a fruitful on-going
collaboration - many of the original concepts were
developed under their watch. We are also grateful to M.
Cornacchia, J. Safranek and the SPEAR 3 project for
support in this area.

REFERENCES
[1] A. Terebilo, “Channel Access Toolbox for

MATLAB,” Proc. of 8th ICALEPCS, San Jose, USA,
Nov. 2001.

[2] A. Terebilo “Accelerator Modeling with MATLAB
Accelerator Toolbox,” PAC’01, May 2002, pg. 3203.

[3] A. Terebilo, “Accelerator Toolbox for MATLAB,”
SLAC-PUB-8732 and www-ssrl.slac.stanford.edu/at/.

[4] A. Terebilo, “Simulated Commissioning of SPEAR 3,”
these proceedings.

[5] G. Portmann, et al, “Middle Layer Software for
Accelerator Control”, SSRL Internal, Dec. 2002.

[6] G. Portmann, “ALS Storage Ring Setup and Control
Using MATLAB,” LBL LSAP Note #248, June
1998.

[7] J. Safranek, et al, “Linear Optic Correction Algorithm
in MATLAB,” these proceedings.

[8] J. Corbett, et al, “Orbit Control Using MATLAB,”
PAC’01, Chicago, May 2002, pg. 813,

[9] A. Terebilo, "Global Beam-Based Alignment Method,"
these proceedings.

3

