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Abstract

A differential algebraic integration algorithm is developed for symplectic mapping
through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit
in phase space is obtained by making a canonical transformation to eliminate the
linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-
D magnetic field are then obtained through slice-by-slice symplectic integration. The
particle phase-space coordinates are advanced by using the integrable polynomial
procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion
devices in synchrotron light source or complicated magnetic field in the iteraction
region in high energy colliders.
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1 Introduction

In most storage rings, magnetic field can usually be well approximated by
dominant transverse components. Thus, a single longitudinal component of
the magnetic vector potential As(x, y, s) is sufficient to describe the system.
Because the Hamiltonian can be separated into a term that depends only
on coordinates and another on momenta, the phase-space coordinates can be
advanced with the conventional symplectic integrators (1).
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However, a general 3-D magnetic field can not be represented by a vector
potential As alone. The vector potential needs at least two transverse com-
ponents, e.g. Ax and Ay. The Hamiltonian can no longer be separated into
the coordinate-dependent-only and the momenta-dependent-only terms. This
paper presents a new algorithm to obtain self-consistent symplectic maps for
general 3-D magnetic field. In Sec. 2, a differential algebraic Drift-kick-kick-
drift (DKKD) procedure is presented to obtain the self-consistent reference
orbit and the Hamiltonian expanded around the reference orbit. In Sec. 3, we
discuss sympelctic mapping and particle tracking. The conclusion is given in
Sec. 4.

2 The Hamiltonian and the determination of reference orbit

After being normalized to the mechanical momentum magnitude of a reference
synchronous particle, the dimensionless Hamiltonian for a charged particle in a
3-dimensional magnetic field can be given, in Frenet-Serret coordinate system,
by

H = −As −
(

1 +
x

ρ

) 
(1 + δ)2 − (px − Ax(x, y, s))2 − (py − Ay(x, y, s))2




1/2

,

(1)
where ρ is the radius of curvature, δ is the fractional momentum deviation,
px and py are the canonical conjugate momenta, Ax, Ay, and As are the mag-
netic vector potential components that are functions of the coordinates, x, y, s,
where s is the time-like coordinate along the longitudinal direction while x, y
are the transverse coordinates. Note that eliminating the x

ρ
term would sim-

ply yield the the Hamiltonian in the local Cartesian coordinate system. The
mixing of conjugate momenta (px, pz) with the vector potential Ax and Ay

that are functions of the coordinates (x, y) poses the challenge of obtaining
symplectic Taylor maps for particle tracking. This problem is tackled by us-
ing a differential algebraic drift-kick-kick-drift (DKKD) algorithm to derive
the self-consistent reference orbit and obtain Taylor map with respect to the
reference orbit.

We consider a region of 3D magnetic field, longitudinally located between si

and sf with L = sf − si. The system is divided into N -slices such that the
length of each slice is ∆s = L/N . The entry, mid-point, and exit of the k-th
slice are sk = si +(k− 1)∆s, s̄k = si +(k− 1/2)∆s, and sk+1 = si +k∆s. The
differential algebraic DKKD algorithm is used to obtain the particle’s reference
trajectory: ~z0(δ, s) ≡ (x0(δ, s), px0(δ, s), y0(δ, s), py0(δ, s)). The Hamiltonian is
expanded around this reference orbit.

(1) We evaluate the Hamiltonian H(x, px, y, py, δ; sk), dx/ds = ∂H/∂px and
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dy/ds = ∂H/∂py at the slice-interface sk. The coordinates of reference
orbit are advanced to the mid-point s̄k by

x0(δ, s̄k) = x0(δ, sk) + (∆s/2) · (∂H/∂px)|~z0(δ,sk) , (2)

y0(δ, s̄k) = y0(δ, sk) + (∆s/2) · (∂H/∂py)|~z0(δ,sk) . (3)

(2) We now evaluate H with the updated new reference coordinates, dpx/ds =
−∂H/∂x and dpy/ds = −∂H/∂y at the mid-point of the slice. The con-
jugate momenta of reference orbit at the mid-point are advanced by

px0(δ, s̄k) = px0(δ, sk)− (∆s/2) · (∂H/∂x)|~z0(δ,s̄k) , (4)

py0(δ, s̄k) = py0(δ, sk)− (∆s/2) · (∂H/∂y)|~z0(δ,s̄k) . (5)

(3) The Hamiltonian H(x, px, y, py, δ; s̄k), dpx/ds = −∂H/∂x, and dpy/ds =
−∂H/∂y at the mid-point can be evaluated. Changing the conjugate
phase-space coordinates (X = x − x0, pX = px − px0 , Y = y − y0, pY =
py − py0) at the mid-point s̄k, one can evaluate and save the Hamilto-
nian, H̃(δ, s̄k) = hk + fk. Which describes the dynamics and is Taylor-
expanded around the parameterized reference orbit. It is integrated with
the previous concatenated map by a second-order symplectic integrator
for obtaining the section-map.

(4) With the dpx/ds = −∂H/∂x and dpy/ds = −∂H/∂y obtained at this
mid-point, the conjugate momenta of reference orbit are then advanced
to the end-point sk+1 of the k-th slice by

px0(δ, sk+1) = px0(δ, s̄k)− (∆s/2) · (∂H/∂x)|~z0(δ,s̄k) , (6)

py0(δ, sk+1) = py0(δ, s̄k)− (∆s/2) · (∂H/∂y)|~z0(δ,s̄k) . (7)

(5) The H at the mid-point is re-evaluated with the updated new reference
momenta. The dpx/ds = −∂H/∂x and dpy/ds = −∂H/∂y are also ob-
tained. The coordinates of reference orbit are advanced to the end-point
sk+1 of the k-th slice by

x0(δ, sk+1) = x0(δ, s̄k) + (∆s/2) · (∂H/∂px)|~z0(δ,s̄k) , (8)

y0(δ, sk+1) = y0(δ, s̄k) + (∆s/2) · (∂H/∂py)|~z0(δ,s̄k) . (9)

Using conjugate phase-space coordinates at the end-point sk+1, one eval-
uates the Hamiltonian H(x, px, y, py, δ; sk+1), dpx/ds = −∂H/∂x and
dpy/ds = −∂H/∂y. The integration procedure repeats for the next slice.

In this integration process, an important constraint is the continuity of the
vector potential at the interface of each slice. Since this process uses differential
algebras, the dependence of the reference orbit on δ is included up to a desired
order. The transfer map is given by exp{−∆s : H̃(x, px, y, py, δ, s̄k) :}, where
the canonical phase-space coordinates are with respect to the δ-dependent

3



reference orbit. Note that the reference orbit may also be obtained by solving
the tedious differential equations that turn out to obey the Lorentz force law
after making a canonical transformation with the generating function

F2 = (x− x0)(pX + px0) + (y − y0)(pY + py0),

such that the linear part of the transformed Hamiltonian vanishes (2).

The DKKD integration algorithm does not require symplecticity. It is a natural
method to derive the self-consistent reference orbit and obtain the Hamilto-
nian for symplectic mapping using Lie operator method. One can also use
the Runge-Kutta integration methods to solve the reference orbit and derive
the Hamiltonian. However, the continuity condition must be carefully imple-
mented in order to obtain a proper Hamiltonian for transfer map.

3 Map Concatenation

For convenience, let the state vector ~z represent the transverse particle canon-
ical phase-space coordinates with respect to the reference orbit, i.e. ~z ≡
(x, px, y, py)

†. The Hamiltonian H(~z, δ, s̄) is a polynomial with a minimum
order of 2 and the transfer map that advances the particle phase-space coor-
dinates (with respect to the reference orbit) from the entrance to the exit for
the kth slice is given by exp{−∆s : H(z, δ, s̄k) :}.

One can choose to track particles slice by slice. But this would be quite CPU
time consuming. Instead, one can choose to concatenate all the slice transfer
maps into one for fast tracking. To do so, we first reform each of the slice
transfer maps into two major terms, one for the linear motion and the other
for the nonlinear motion. For example, the kth-slice transfer map would be
reformed as

exp



−∆s :

∑

j=2

Hj(s̄k) :



 = exp {: hk + fk :}

where the linear part hk ≡ −∆s · H2(s̄k) and the nonlinear part fk ≡ −∆s ·∑
j=3 Hj(s̄k) can be separated by a symplectic integrator. Using the second

order symplectic integrator, one obtains

exp {: hk + fk :} = exp
{
:
1

2
hk :

}
exp {: fk :} exp

{
:
1

2
hk :

}
, (10)

and the whole map as

M =
N∏

k=1

{
e: 1

2
hk:e:fk:e: 1

2
hk:

}
= e:h:e:f :, (11)
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where e:h: is the concatenated linear map. The nonlinear map e:f : can be
evaluated by the method of integrable polynomials (3). Therefore, the initial

phase-space coordinates ~Z(si) at the entrance of a subsystem can be directly

mapped to the final coordinates ~Z(sf ) at the exit of the subsystem. One
must keep in mind the continuity condition of mechanical momenta required
at the entrance and the exit. If the transverse vector potentials are zero at
both the entry si and the exit sf , then the transverse canonical momenta
is equal to their corresponding mechanical momenta. Otherwise, one should
make additional transformation between mechanical momenta and canonical
momenta at the entrance and the exit.

We use a quadrupole to illustrate and check the validity of our algorithm.
Conventionally, the vector potential of a quadrupole field is represented by a
single longitudinal component ~A ≡ (Ax, Ay, As) =

(
0, 0, B1

2
(y2 − x2)

)
, where

B1 = ∂By/∂x. To check the slice integration algorithm, the Quadrupole vector

potential is represented by two transverse components, ~A = (B1xs,−B1ys, 0)
for a valid comparison of the slice-by-slice integrated numerical transfer matrix
to the cooresponding analytic one. The parameters in our calculation are K =
B1/B0ρ = 2.870480 m−2, the quadrupole-length L = 0.35 m, and B0ρ =
−5.00346 T-m.

We set the entry position si = 0 such that particle’s mechanical momenta are
the same as the canonical momenta. However, at the exit position, sf = L−,
an additional transformation has to be made for the transfer map from canon-
ical momenta to mechanical momenta that become the canonical momenta at
s = L+ provided that the vector potential outside the quadrupole is 0. This is
because a hard-edge quadrupole prevents us from making vector potential con-
tinuous on both boundaries. If the fringe fields have been included to achieve
vector potential continuity at both boundaries, the additional transformation
at sf = L would not be necessary.

The linear transfer matrix of the quadrupole agrees with the analytic formula
to better than 10−4, provided that N ≥ 20 longitudinal slices are used. One
may gain precision by taking higher order symplectic integrators and a larger
number of slices. For the second order symplectic integrator, we find the error
is proportional to 1/N2 .

4 Conclusion and Discussion

We have developed a slice-by-slice symplectic transfer mapping in a 3D mag-
netic field where the vector potential can not be described by As alone. We
divide the system longitudinally into N-slices and implement a differential al-
gebraic drift-kick-kick-drift (DKKD) procedure to advance the parameterized
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(δ − dependent) reference orbit phase-space coordinates and simultaneously
obtain the Hamiltonian with respect to the reference orbit. Note that the ref-
erence orbit is chosen such that the Taylor expanded Hamiltonian is without
the first order so that all feed-downs from higher-order multipoles are auto-
matically included in the transfer maps. For fast particle tracking, one may
concatenates slice transfer maps into one with a symplectic integrators. That
the reference orbit is actually Taylor expanded in momentum deviation δ of-
fers the path length difference and the dispersion functions. Requirement of
mechanical momenta continuity can be automatically satisfied if one imposes
the continuity condition of the vector potential.
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