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Abstract

We have shown that, due to the ac resistive wall wakefield, the present LCLS undulator design,

with its round copper beam pipe, will result in an unacceptably large energy variation induced

within the bunch over the length of the undulator (0.6%). If, instead, we use a flat, aluminum

chamber, the energy variation can be reduced to within acceptable limits (<∼ 0.2%). Finally we

have shown that the effect of the anomalous skin effect in the beam pipe wall is small, and can be

ignored.
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I. INTRODUCTION

In the Linac Coherent Light Source (LCLS), the relative energy variation (over the bunch)

induced within the undulator region must be kept to a few times the Pierce parameter. If it

becomes larger, part of the beam will not reach saturation. The largest contributor to energy

change in the undulator region is the (longitudinal) resistive wall wakefield of the copper-

coated beam pipe. In this region the LCLS bunch is short (the rms length σz = 20 µm),

and the shape can be described as uniform, but with “horns” of charge added at the head

and tail. FEL simulations that include the effect of the wake show that—for the portion of

beam between the horns—the induced energy variation is acceptable and does not suppress

lasing. Until now, however, for resistive wall wake calculations in the LCLS, a formula that

includes only the dc conductivity of the metal has been used. In this report we perform

more accurate calculations of the wake, ones including also the effect of the ac conductivity

in the beam pipe wall.

Electrical (and thermal) conductivity in normal metals can be described quite well up to

visible frequencies by the so-called Drude-Sommerfeld free electron model of conductivity

(see, e.g. Ref. [1]). This model treats conduction electrons as an ideal gas that follows Fermi-

Dirac statistics, and it includes as parameters both a dc and an ac conductivity. The dc

conductivity of a metal is given by σ = ne2τ/m, with n the density of conduction electrons,

e the charge of the electron, τ the relaxation time (or collision time, or mean free time), and

m the mass of the electron. The ac conductivity, a response to applied oscillating fields, is

given by

σ̃ =
σ

1 − ikcτ
, (1)

where k = ω/c, with ω the frequency of the fields and c the speed of light. Note that for short

bunches one needs to include both types of conductivity. For copper at room temperature

cτ = 8.1 µm; for a typical bunch frequency of k ∼ 1/σz = (20 µm)−1 the second term in the

denominator of Eq. 1 equals 0.4 and is not very small compared to the first term; for the

actual LCLS bunch shape, with its sharp leading edge, the second term becomes even more

important.
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The short-range resistive wall wake in a round beam pipe, including ac conductivity,

was obtained in Ref. [2]. We here apply the results to the bunch in the LCLS undulator

region. To study the effect of a change in shape of the beam pipe cross-section we calculate

next the ac wake between parallel resistive plates (or on the axis of a flat beam pipe). In

Appendix A, we consider another effect that may be important at high frequencies, the (room

temperature) anomalous skin effect, and show that it is, however, small. In Appendix B we

perform a parameter study of the ac wakes for both round and flat beam pipes.

Table I gives selected bunch and beam pipe parameters for the LCLS that will be used

in our calculations. Note that the inner beam pipe surface is nominally copper.

TABLE I: Selected parameters in LCLS undulator.

Beam energy E 14. GeV

Bunch charge eN 1. nC

Rms bunch length σz 20. µm

Beam pipe radius a 2.5 mm

Beam pipe length L 130. m

II. AC CONDUCTIVITY

For a round, metallic beam pipe of radius a and dc conductivity σ the longitudinal

impedance is given by [3]

Z(k) =

(

1

ca

)

2
λ
k
− ika

2

, (2)

with parameter λ given by

λ =

√

2πσ|k|
c

[i + sign(k)] . (3)

(In this report we work in Gaussian units.) The quantity iλ is the propagation constant into

the metal (the field penetrates as ∼ eiλx, with x the distance into the metal); the skin depth

δ = 1/Im(λ). The wakefield is given by the inverse Fourier transform of the impedance:

[2]–[3]:

W (s) =
16

a2

(

e−s/s0

3
cos

√
3s

s0

−
√

2

π

∫ ∞

0

dx x2e−x2s/s0

x6 + 8

)

, (4)
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where s is the distance the test particle is behind the exciting charge; with characteristic

distance

s0 =

(

ca2

2πσ

)
1

3

. (5)

(Positive values indicate voltage loss per unit charge per meter of beam pipe.) Note that

W (s) = 0 for s < 0. For copper σ = 5.8 × 1017/s and, with a = 2.5 mm, s0 = 8.1 µm. The

wake is plotted in Fig. 1. There are two terms in Eq. 4, a resonator term and a non-resonant

term. For s � s0 the second term dominates and becomes the familiar long range result:

W (s) = − 1

2πa

√

c

σ

1

s3/2
. (6)
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FIG. 1: Resistive wall wake assuming a dc conductivity.

The resistive wall wake including ac conductivity was obtained in Ref. [2]. The calculation

is the same as for the dc case, except that σ in the definition of λ (Eq. 3) in the impedance

is replaced by the ac conductivity σ̃ given in Eq. 1. As an aid to the calculations the result

can be written in terms of dimensionless frequency κ = ks0 and relaxation time Γ = cτ/s0

[2]:

λ =
a

s2
0

|κ|1/2(1 + κ2Γ2)−1/4
[

i
√

1 + tλ + sign(κ)
√

1 − tλ
]

, (7)

with

tλ =
|κ|Γ√

1 + κ2Γ2
. (8)

Fig. 2 shows the ac impedance for the LCLS beam pipe (s0 = 8.1 µm, Γ = 1.0), and for

comparison also the dc impedance. We note that the resonant peaks of Re(Z) are much

narrower in the ac than the dc case.
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FIG. 2: Real (blue) and imaginary (red) parts of impedance, including ac conductivity, for

the LCLS undulator beam pipe. Here Γ = 1.0. The impedance assuming a dc conductivity

is shown for comparison.

The wake is obtained by numerically inverse Fourier transforming the impedance. Since

Re(Z) drops more quickly at high frequencies than Im(Z), it may be more convenient to use

the cosine transform:

W (s) =
2c

π

∫ ∞

0

Re[Z(k)] cos ks dk . (9)

For Γ >∼ 1 and s not too large, the wake can be approximated by a simple, resonator wake

[2]:

W (s) ≈ 4

a2
e−s/4Γs0 cos

[

(8/Γ)1/4 s/s0

]

=
4

a2
e−s/4cτ cos

[

√

2kp/a s

]

, (10)

with the plasma frequency of the metal given by kp =
√

4πσ/τ . In Fig. 3 we plot the ac

wake, its high Γ approximation (Eq. 10), and the dc wake, for comparison. We note that the

ac wake rings much longer than the dc wake, and that Eq. 10 approximates the numerical ac

result well over a relatively long distance. One can reduce the wake effect by using a metal

with good dc conductivity and short relaxation time. Such a metal is aluminum, where

σ = 3.8 × 1017/s and cτ = 2.4 µm; s0 = 9.3 µm and Γ = 0.26 for a = 2.5 mm. In Fig. 4 we

plot the ac wakes of copper and aluminum, and the dc wake of copper. We note that the ac

wake of aluminum is more rapidly damped than the ac wake of copper.

Given the wakefield, the relative energy change induced within a bunch is obtained from
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FIG. 3: The ac wake, its high Γ approximation, and the dc wake over the short range (top)

and the longer range (bottom). Here Γ = 1.0.

the convolution

∆E

E
(s) = −reNL

γ

∫ ∞

0

W (s′)λz(s − s′) ds′ , (11)

with re = 2.8 × 10−15m the classical electron radius, N the bunch population, L the length

of the beam pipe, γ the Lorentz energy factor, and λz the longitudinal bunch distribution.

(Note that a positive result indicates energy gain.) Using bunch properties given in Table I,

and the bunch shape obtained from numerical simulations [4], we have calculated the voltage

induced in the LCLS undulator beam pipe (see Fig. 5). Frame (a) gives the induced voltage

assuming Cu-dc, Cu-ac, and Al-ac; frame (c) shows the longitudinal bunch shape, with head

to the left. We see that particles within the horns have large energy variation; let us ignore

these and focus on particles between the horns. Let us define as figure of merit δE, the

total variation in energy change (maximum energy change minus minimum energy change)

over that 30 µm length of beam that gives the minimum result. We see that with Cu-dc,
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FIG. 4: The ac and dc wakes for copper, and the ac wake for aluminum, for the LCLS

undulator beam pipe.

δE = 0.16% (compare: the Pierce parameter is 5 × 10−4), which appears to be acceptable

according to FEL simulations [5]. The corresponding result for Cu-ac is large, 0.57%; for

Al-ac it is 0.34%, which is better but still large. Finally, to get an idea of the dependence

of the results on beam pipe radius we have repeated the calculations for double the radius,

to a = 5 mm, and obtain (see Fig. 5b): for Cu-dc, δE = 0.07%, for Cu-ac, .017%, for Al-ac,

0.11%.

The LCLS bunch shape has leading and trailing horns, with a 3 kA flat region in between.

To show the importance of the horns to the large ringing in the induced voltage, we repeat

the induced energy calculation of Fig. 5, but now for a bunch with a uniform distribution,

of peak current 3 kA and total length 60 µm (see Fig. 6; the vertical scale is the same as

in Fig. 5). We note a significant reduction in induced energy variation. If we, for example,

consider the middle 30 µm stretch of beam we now have energy deviation δE: for Cu-dc

0.05%, Cu-ac 0.23%, Al-ac 0.15%. If somehow the size of the leading horn can be reduced,

we see that much can be gained.

Another effect that, in principle, can be important at high frequencies is the anomalous

skin effect (ASE). It, in theory, applies whenever the mean free path ` = vF τ (vF is the

Fermi velocity) becomes large compared to the classical skin depth, given by

δsk =

√

c

2πσk
. (12)

7



 −40  −20 0 20

0.02

0.04

0.06

 −40  −20 0 20

 −0.5

0

0.5

 −40  −20 0 20

 −0.5

0

0.5

s/µm

λz*µm

∆E/E/%

s/µm(head) (tail)

Al-ac

Cu-dc Cu-ac

s/µm

∆E/E/%

Al-ac

Cu-dc

Cu-ac

a= 2.5 mm

a= 5 mm

a)

c)

b)

FIG. 5: Energy deviation induced in the LCLS bunch in the undulator with nominal beam

pipe radius (a), and for a = 5 mm (b); the longitudinal bunch shape is given in (c).
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FIG. 6: Energy deviation induced by a uniform bunch distribution with peak current 3 kA

and total length 60 µm.
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At k = (20 µm)−1 the skin depth and mean free path for copper are both 40 nm. The LCLS

bunch, however, contains much higher frequencies due to the horns (for the leading horn

k ∼ [2.5 µm]−1), and one might expect ASE to be important. Nevertheless, ASE turns out

to be important only at a low temperatures [6]. The reason is that (at room temperatures

and) high frequencies, the condition for normal conductivity is that the path travelled by

an electron during one period of field be small compared to the penetration depth, which

is now approximately c
√

τ/2πσ (the ac conductivity σ̃ ≈ σ/kcτ is used in the equation

for skin depth, Eq. 12); for any metal, as the frequency is increased, this will eventually

be satisfied, and at frequencies lower than this point normal metals tend not to be very

anomalous. Nevertheless, in Appendix A, following the theory of Reuter and Sondheimer

[6], we obtain the wake, including the effect of ASE, for LCLS parameters. We show that,

indeed, ASE is only a small perturbation on the ac wake results.

III. FLAT BEAM PIPE

Suppose, instead of a round beam pipe, we consider one with a flat or elliptical cross-

section (wider than high) keeping the vertical aperture fixed. Could we in this manner

reduce the wake effect in the LCLS undulator beam pipe? One would think that this might

help: if we take the extreme case of two parallel plates, the long-range wake is the same

as for the round case (if the distance between plates is 2a), but the wake at the origin is

reduced by the factor π2/16 [7]. To investigate the benefit one might obtain from beam pipe

cross-section change, we calculate here the impedance and wake, including ac conductivity,

between two parallel plates (or at the center of a very flat, rectangular beam pipe) for

LCLS parameters. Note that one consequence of having a non-round beam pipe is that the

wakefield will depend on the beam’s transverse position, though we confine ourselves here

to beams on the symmetry plane.

Henke and Napoly obtained the dc impedance and short range resistive wall wake between

two parallel plates [7]. Their result for impedance, in our notation, is [10]

Z(k) =
1

c

∫ ∞

−∞

dq

[

λ

k
cosh2(qa) − ik

q
cosh(qa) sinh(qa)

]−1

, (13)
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where the parameter λ is the same as given before. We have simplified their equation by

dropping small order terms. Note that the impedance looks similar to the round case, except

that now we have an integral to perform numerically.

We have repeated the impedance and wake calculations for a flat chamber, for both dc and

ac cases. The impedance for copper is given in Fig. 7 (compare with the round case, shown

in Fig. 2; the scales are the same). Note that for the ac case the peaks in Re(Z) are lower

and wider, than for the round case. The wakefields for Cu-ac, Cu-dc, and Al-ac are shown

in Fig. 8 (compare with Fig. 4a). The wakes at the origin are smaller by a factor π2/16, and

the ac wakes damp more quickly (their Q factor is lower) and the oscillation period is longer

than in the round pipe case. Note that the same behavior was found when comparing the

wakes for flat and round geometry of a beam pipe with small, periodic corrugations [8]. In

Appendix B we fit the short range ac wakes for both round and flat beam pipes to a simple

damped oscillator, in order to quantify the short range wake behavior with Γ. We find, for

example, in going from round to flat for the LCLS beam pipe with aluminum the effective

frequency reduces from ks0 = 1.83 to 1.31, and the Q factor from 1.66 to 1.33. Finally,

in Fig. 9 we give the energy deviation induced in the LCLS bunch for the flat chamber

(compare with Fig. 5a). For a 30 µm stretch of beam between the horns, the (minimum

total) deviation in induced energy change for the ac results is ∼ 35% better than for the

round beam pipe: for Cu-ac δE = 0.39%, for Al-ac δE = 0.20% (for Cu-dc it is 0.14%). The

Al-ac deviation is about the same as for Cu-dc (round or flat), and acceptable. A summary

of our results for the LCLS beam shape, for both round and flat beam pipes, is given in

Table II.
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TABLE II: Total variation in energy change (maximum change minus minimum change)

induced within the bunch within the 130 m LCLS undulator, δE, for different assumptions

about the beam pipe shape and conductivity. Nominally the vertical aperture 2a = 5 mm.

In our calculations we consider the LCLS double horned bunch distribution; our results are

for that 30 µm stretch of beam between the horns that minimizes the total variation. Note

that Cu-dc results are not physically realizable.

Pipe Shape Cu-dc Cu-ac Al-ac

Round 0.16% 0.57% 0.34%

Flat 0.14% 0.39% 0.20%

Round, a = 5 mm 0.07% 0.17% 0.11%

V. CONCLUSIONS

We have shown that, due to the ac resistive wall wakefield, the present LCLS undulator

design, with its round copper beam pipe, will result in an unacceptably large energy variation

induced within the bunch over the length of the undulator (0.6%). We have also shown that

if, instead, we use a flat, aluminum chamber, the variation in induced energy can be reduced

to within acceptable limits (<∼ 0.2%). And finally we have shown that the effect of the

anomalous skin effect in the beam pipe wall is small, and can be ignored.
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FIG. 7: For a flat chamber, the real and imaginary parts of impedance, including ac con-

ductivity, for the LCLS undulator beam pipe. Here Γ = 1.0. The impedance assuming a dc

conductivity is shown for comparison.
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FIG. 8: For a flat chamber, the ac and dc wakes for copper, and the ac wake for aluminum,

for the LCLS undulator beam pipe.

In our calculations, however, we have assumed ideal metal surfaces. We caution that the

effect on dc conductivity or relaxation time of impurities, oxides, or roughness in the surface

layer of the beam pipe wall may increase the induced energy variation by some amount.

Therefore, it would seem prudent to have in the design space between the allowable energy

variation and that expected from wakefield calculations. The ringing in the wake which

causes the problem is driven strongly by the leading horn in the bunch distribution. One

way to alleviate the problem (though it may not be feasable) would be to smooth out the

leading horn in the charge distribution. If this is not possible, it may be advisable to rethink

basic LCLS parameters, such as bunch charge, undulator gap, etc., in order to introduce

overhead in the design.

VI. APPENDIX A: ANOMALOUS SKIN EFFECT

The general theory of the anomalous skin effect (ASE) was derived by Reuter and Sond-

heimer (R-S) [6]. R-S give their solution in terms of the surface impedance, defined as

Zs = Rs + iXs = 4πE/cH, where E and H are the tangential electric and magnetic fields on

the metal surface. First note that the classical (non-ASE) surface impedance is given by

Rs,cl =

√

2πk

cσ

√

−kcτ +
√

1 + k2c2τ 2 (14)
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FIG. 9: For a flat chamber, the energy deviation induced in the LCLS bunch in the undulator

(top); the bunch shape is given in the bottom frame.

Xs,cl =

√

2πk

cσ

√

kcτ +
√

1 + k2c2τ 2 . (15)

The ASE surface impedance is

Rs

Rs,cl

=
4

π

√

2α

3

kcτRe(I) − Im(I)

(1 + k2c2τ 2)
√

−kcτ +
√

1 + k2c2τ 2
(16)

Xs

Xs,cl

=
4

π

√

2α

3

Re(I) + kcτ Im(I)

(1 + k2c2τ 2)
√

kcτ +
√

1 + k2c2τ 2
(17)

with

I =

∫ ∞

0

dt

t2 + 2iα
(1+ikcτ)3

[(1+t2) tan−1 t−t]
t3

. (18)

R-S’s ASE strength parameter is defined as α = 3
2
(`/δsk)

2. We can define a dimensionless

anomalous strength parameter, one that is independent of frequency, Λ ≡ α/kcτ . Finally,

note that the equations here are for specular (mirror) reflection off the metal surface. For-

mulas have been derived also for diffuse reflection, though, according to R-S, the quantitive

difference is small.
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The impedance for a round beam pipe is obtained by inserting

λ =
4π|k|/c

Rs sgn(k) − iXs

(19)

into Eq. 2. The wakefield is then obtained, as before, by numerically taking the inverse

Fourier transform of Z. In Fig. 10 we plot the ratios Rs/Rs,cl (solid) and Xs/Xs,cl (dashes)

vs. frequency for two values of the anomalous skin effect parameter Λ. For Λ on the order of

unity we see that the effect is small. For copper at room temperature Λ = 3.4 and the peak

of Rs/Rs,cl = 1.2. In Figs. 11–12 we plot the impedance and wakefield when the anomalous

skin effect is included in calculations, and compare with the non-ASE results. We note that

the anomalous skin effect does not change the results significantly.

 −1 0 1 2

1

2

3

Rs/Rs,cl

log10(kcτ)

(Xs/Xs,cl)

Λ= 100

Λ= 1

FIG. 10: The ratios Rs/Rs,cl (solid) and Xs/Xs,cl (dashes) vs. frequency for two values of

the anomalous skin effect parameter Λ.

Finally, note that ASE behaves quite differently at low temperatures (sometimes called

the extreme anomalous regime [EASE]) than at room temperature. Although the formalism

given here is still correct, the equations simplify greatly. For the EASE regime, where the

anomalous skin effect is important, the impedance and wake of a beam pipe have been

obtained by B. Podobedov[9].

VII. APPENDIX B: PARAMETER STUDY OF AC WAKES

We here explore the Γ dependence of the short range ac wake, for both round and flat

beam pipes, by fitting to a simple function. Note that a similar study was done for the
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FIG. 11: Impedance of round, copper LCLS beam pipe when including the anomalous skin

effect (blue), or ac conductivity only (red). Note s0 = 8.1 µm, Γ = 1.0, and Λ = 3.4.

5 10 15 20 25

 −0.5

0

0.5

1
W*(a2/4)

ac wake

anom. wake

s/s0

FIG. 12: Wake of round, copper LCLS beam pipe when including the anomalous skin effect

(blue), or ac conductivity only (red). Note s0 = 8.1 µm, Γ = 1.0, and Λ = 3.4.

round case in Ref. [2].

The short range ac wakes have a dependence on s that is similar to a damped oscillator.

To quantify the Γ dependence of the short range wakes we, therefore, fit to a simple damped

oscillator model: W = 4a−2e−krs/2Qr cos(krs), with kr and Qr the fitting parameters, for the

round case; for the flat case, the model wake is a factor π2/16 smaller. The fitting is actually

performed in frequency space, and we fit (up to ks0 = 6) Re(Z), that has been numerically

obtained as described in the text, to the real part of the Fourier transform of the damped

resonator model. As goodness of fit indicator we take rerr, the square root of the estimated

variance, divided by the peak of Re(Z).
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In Fig. 13 we show again the wakes of Figs. 4 and 8 (the solid curves) and compare with

the fits to the resonator model (the dashes). We see that the fits are reasonably good over

the short range; for larger Γ values (consider the Cu-ac curves), the fits become better.
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FIG. 13: The ac and dc wakes for copper, and the ac wake for aluminum for the LCLS

undulator beam pipe, for the round (left) and flat (right) case. Dashes show how well the

simple resonator fit works. For Cu s0 = 8.1 µm, Al s0 = 9.3 µm; for Cu-dc Γ = 0, Cu-ac

Γ = 1.0, Al-ac Γ = 0.26.

In Fig. 14 we summarize our fitting results. Shown are the fitted kr and Qr, and the

goodness of fit parameter rerr for both round and flat beam pipes. Also shown, by the

dashed curves, are the large Γ approximations for the round case, krs0 = (8/Γ)1/4 and

Qr = Γ(8/Γ)1/4 (see Eq. 10), which we see agree well for Γ >∼ 1. We see that, for both

types of beam pipes, as Γ increases the fitted kr drops, Qr increases, and the fit becomes

better (rerr drops). Comparing the flat to the round case, we note that the frequency kr

is smaller (by ∼ 1/
√

2) and Qr is also smaller. For the flat case, by fitting we obtain the

approximation Qr ≈ 2.4 log(Γ + 1.5). For example, for the LCLS undulator copper beam

pipe (Γ = 1), from going from round to flat, the wake frequency drops from krs0 = 1.6 to

1.2, and the damping from Qr = 3.5 to 2.2.
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