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Abstract
In a broad class of dark energy models, the universe may collapse within a finite time tc. Here

we study a representative model of dark energy with a linear potential, V (φ) = V0(1 + αφ). This

model is the simplest doomsday model, in which the universe collapses rather quickly after it stops

expanding. Observational data from type Ia supernovae (SNe Ia), cosmic microwave background

anisotropy (CMB), and large scale structure (LSS) are complementary in constraining dark energy

models. Using the new SN Ia data (Riess sample), the CMB data from WMAP, and the LSS data

from 2dF, we find that the collapse time of the universe is tc >∼ 42 (24) gigayears from today at 68%

(95%) confidence.
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I. INTRODUCTION

The existence of dark energy [1, 2] is one of the most significant cosmological discoveries
ever made. The nature of this dark energy has remained a mystery. Viable models of dark
energy include a cosmological constant, quintessence [3, 4, 5], or modified Friedmann equations
[6]. The only available model of dark energy based on string theory describes a metastable
cosmological constant with an exponentially large decay time [7]. See [8] for reviews with more
complete lists of references.

Although current observational data seem to favor a cosmological constant [9, 10, 11, 12],
there are two good reasons to continue dark energy studies. First, the measured dark energy
density1 as an arbitrary function of time, X(z) ≡ ρX(z)/ρX(0), has large uncertainties [10,
14, 15], hence it does not rule out dark energy models with ρX(z) that do not vary greatly
with time [16]. Second, even if ρX(z) were measured to be a constant at high accuracy in
future observations, we still need to find physically well motivated models that give an effective
cosmological constant with an incredibly small value Λ ∼ 10−29 g/cm3.

One of the first (and by far the simplest) models of dark energy, which we are going to discuss
in our paper, was proposed in [4] in order to address the cosmological constant problem. In
this model the cosmological constant was replaced by the energy density of a slowly varying
scalar field φ with the linear effective potential

V (φ) = V0(1 + αφ). (1)

Here we use the units Mp = (8πG)−1/2 = 1. If the slope of the potential is sufficiently small,
αV0 . 10−120 in Planck units, the field φ practically does not change during the last 1010 years,
its kinetic energy is very small, so its total potential energy V (φ) acts nearly like a cosmological
constant. The anomalous flatness of the effective potential in this scenario is a standard feature
of most of the models of dark energy [3, 4, 5].

Even though the energy density of the field φ in this model practically does not change at the
present time, it changed substantially during inflation. Since φ is a massless field, it experienced
quantum jumps with the amplitude H/2π during each time interval H−1. These jumps moved
the field φ in all possible directions. As a result, the universe became divided into an infinitely
large number of exponentially large ‘universes’ containing all possible values of the field φ,
and, consequently, all possible values of the effective cosmological constant Λ(φ) = V (φ). This
quantity may range from −M4

p to +M4
p in different parts of the universe, but we can live only

in the ‘universes’ with |Λ| . 10−28 g/cm3.

Indeed, if Λ . −10−28 g/cm3, the universe collapses within a time much smaller than the
present age of the universe ∼ 1010 years [4, 17, 18]. On the other hand, if Λ ≫ 10−28 g/cm3,
the universe at present would expand exponentially fast, energy density of matter would be
exponentially small, and life as we know it would be impossible [4, 17]. This means that we
can live only in those parts of the universe where the cosmological constant does not differ too
much from its presently observed value |Λ| ∼ 10−29 g/cm3. This approach constituted the basis
for many subsequent attempts to solve the cosmological constant problem using the anthropic
principle in inflationary cosmology [18, 19, 20, 21, 22].

1 The dark energy density is better constrained by data than the dark energy equation of state, since it is more

closely related to data.[13]
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There are several other models of a slowly rolling scalar field which may allow one to solve
the cosmological constant problem. For example, one may consider models with quadratic
potential m2φ2/2−Λ [3, 20], with potentials V0e

αφ −Λ [23], potentials unbounded from below
in N = 8 supergravity [22], or potentials depending on two different fields αV0φ + βξn [24].
In all of these models the anthropic solution of the cosmological constant problem is based on
the assumption that the effective potential continuously changes in a sufficiently broad interval
near V = 0. In all of these models the scalar fields eventually roll down to negative values of V ,
and the universe experiences global collapse, just as the universe with a negative cosmological
constant. A detailed description of this process can be found in [25].

Thus, in all of the models mentioned above, the anthropic solution of the cosmological con-
stant problem goes hand in hand with the prediction of the global collapse of the universe.2 This
makes it especially interesting whether there could be any observational evidence in favor of
these models, and what kind of bounds on the lifetime of the universe one could obtain by
cosmological observations.

Talking about the future observations, even if the results to be obtained by JDEM and
Planck satellites will favor the simplest cosmological constant model, they will not necessarily
imply that the universe is going to expand forever. They will only place some model-dependent
limits on the possible time of the doomsday. For example, in the context of the simplest linear
model (1), such data would only imply that the collapse of the universe cannot happen earlier
than tc ∼ 40 gigayears from now, at the 95% confidence level [29].

The actual data to be obtained many years from now may alter these estimates. It is
important to understand what we can say about the possible doomsday time on the basis of the
presently available data. There were several attempts to study this question [9, 10, 23, 29, 30],
but the results of these investigations appear to be strongly model-dependent. Our approach
will be similar to that of Ref. [9], where the constraint on the doomsday time tc & 30 Gyrs
was obtained for models with the potential V0e

φ/2 − Λ. However, this constraint would change
significantly if one considered a more general function V0e

αφ−Λ depending on three parameters,
α, V0, and Λ, in addition to the initial value of the field φ.

In this paper we are going to study the observational constraints on the lifetime of the uni-
verse in the simplest but rather general class of models where the effective potential with respect
to the slowly rolling field φ can be represented by the linear function (1) in the cosmologically
interesting interval |V (φ)| . 10−28 g/cm3 [4]. An advantage of this model (see also [31]) is that
it depends only on one parameter αV0. This can be made manifest by a shift φ → φ − V0/α
which reduces the potential (1) to an even simpler expression αV0φ. This will allow us to obtain
more definite constraints on the doomsday tc.

We will use the Markov Chain Monte Carlo (MCMC) technique, which will allow us to
compare observational data with the model (1) with different values of α. Even for this sim-
ple model, we still need an additional input from the theory. The simplest and perhaps the
most reasonable approach is to say that since we do not know anything about the origin of

2 One can avoid this conclusion in the models where the cosmological constant can take an exponentially large

number of discrete values near V = 0 [26, 27, 28]. In the string theory based models of this type, instead of

the global collapse one faces another catastrophe: a spontaneous decompactification of the four-dimensional

space [7].
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the parameter α, we will consider all values of α being equally probable, and use flat prior
probability distribution p(α) = const as an input in the MCMC calculations. But various
theoretical arguments may give different prior probability distributions p(α), which may affect
the results. For example, one may argue that if there is some reason why the parameter αV0 in
(1) is smaller than 10−120, in Planck units, then perhaps it is many orders of magnitude smaller
than 10−120 [32]. This is a very strong argument which suggests that p(α) may be strongly
peaked at small α, in which case the theory will have almost exactly the same observational
consequences as the simple cosmological constant model. On the other hand, instead of the
model (1) one may consider models with potentials αV0φ+βξn. During inflation, each of these
two fields will fluctuate, so that in different parts of the universe with |V | . 10−28 g/cm3 one
will have different combinations of the fields φ and ξ, and the slope of the effective potential
in the steepest descent direction will also take different values. Such models in the observa-
tionally important region |V | . 10−28 g/cm3 behave just as the linear model (1), but the prior
probability distribution to live in a part of the universe with a given effective slope αV0 will
depend on the parameter n [24].

That is why in our calculations we will examine the linear model (1) using the simplest
prior probability p(α) = const, as well as two other possibilities, p(α) ∝ α and p(α) ∝ α−1/2.
Whereas the resulting constraints on the lower bound on the doomsday time tc appears not to
be very sensitive to the choice of p(α), one should keep in mind that, in general, predictions of
the fate of the universe depend not only on the choice of the potential, but also on the prior
probability for the parameters of the model.

In Sec. II of our paper we will describe our analysis technique and the data used. We present
our results in Sec. III. In Sec. IV we will make some methodological comments, comparing the
results of the MCMC calculations with the Fisher matrix approach. Sec. V contains a critical
discussion of the possibility to obtain model-independent constraints on the doomsday time.
We summarize our results and discuss their implications in Sec. VI.

II. METHOD

A. Evolving the scalar field

Following Ref.[29], we assume a flat universe, Ωtot = Ωm + Ωφ = 1, which is consistent with
current observational data [33, 34]. Note that since the expansion rate of the universe today,
H0, depends on Ωm, V0 and α, the only independent parameters in this model are (Ωm, α, H0).

The usual equations of motion are

φ̈ + 3H(a)φ̇ +
∂V

∂φ
= 0, (2)

ä

a
=

8πG

3

[

V (φ) − φ̇2 −
1

2

ρ0
m

a3

]

, (3)

where a is the cosmic scale factor, ρ0
m is the matter density today, and the dots denote derivatives
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with respect to the cosmic time t. The Hubble parameter is

H2(a) ≡

(

ȧ

a

)2

=
8πG

3

[

ρ0
m

a3
+

φ̇2

2
+ V0(1 + αφ)

]

, (4)

It is not straightforward to solve the usual equations of motion for a given set of (Ωm, α,
H0), since Ωm depends on H0, which in turn is only known once we have solved the equations
for a(t) and found its derivative at a = 1.

We rewrite the equations of motion as

d2φ

dτ 2
+ 3E∗(z)

dφ

dτ
+ α = 0, (5)

1

a

d2a

dτ 2
= 1 + αφ −

(

dφ

dτ

)2

−
1

2

Ω∗

m

a3
, (6)

(

1

a

da

aτ

)2

= E2

∗
(z) ≡

Ω∗

m

a3
+

1

2

(

dφ

dτ

)2

+ 1 + αφ, (7)

where

τ ≡

√

8πGV0

3
t, φ ≡

√

8πG

3
φ, α ≡

√

3

8πG
α, Ω∗

m ≡
ρ0

m

V0

. (8)

Note that the equations of motion (Eqs.[5]-[7]) only depend on (Ω∗

m, α).

At τ → 0, a → 0, we take φ = dφ/dt = 0 [29]. Evolving the equations of motion to a = 1
(z = 0) gives us

H0 =

√

8πGV0

3
E∗(z = 0), Ωm =

Ω∗

m

E2
∗
(z = 0)

. (9)

B. Prior distributions of parameters

In the linear model of Eq.(1), the expansion rate of the universe depends on the parameters
(ρ0

m, V0, α) (see Eq.(4)). We assume uniform priors for ρ0
m and V0. It can be shown that

choosing uniform prior for V0 is equivalent to choosing uniform prior for the initial value of
the scalar field φ after inflation, which is the standard assumption made in [4, 24]. For α, we
consider three different priors (see Ref.[24] for justifications):

P (α) ∝ 1; P (α) ∝ α−0.5; P (α) ∝ α (10)

which correspond to n = 2, 3, 3/2 in Eq.(29) of Ref.[24].

Using the Bayes’ Theorem, we can take the prior in α into consideration by replacing the
usual χ2 with

χ̃2 = χ2 − 2 ln P (α). (11)
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C. Data used

The measured distance-redshift relations of type Ia supernovae (SNe Ia) provide the founda-
tion for testing dark energy models. In a flat Universe, the dimensionless luminosity distance

dL(z) = cH−1

0 (1 + z)Γ(z), Γ(z) =

∫ z

0

dz′/E(z′), (12)

where
E(z) = E∗(z)/E∗(z = 0) (13)

with E∗(z) given by Eq.(7).

The observational data we use in this paper are the same as in [10]. We use the “gold” set of
157 SNe Ia (the Riess sample) published in [9] and analyze it using flux-averaging statistics [14,
35] to reduce the bias due to weak gravitational lensing by intervening matter [36]. A Fortran
code that uses flux-averaging statistics to compute the likelihood of an arbitrary dark energy
model (given the SN Ia data from [9]) can be found at http://www.nhn.ou.edu/∼wang/SNcode/
[10, 14, 35].

We only use CMB and LSS data that are not sensitive to the assumptions made about dark
energy [10, 37].

The only CMB data we use is the measurement of the CMB shift parameter [38],

R ≡ Ω1/2

m Γ(zCMB) = 1.716 ± 0.062 (14)

from CMB (WMAP, CBI, ACBAR) [33, 39], where zCMB = 1089.

The only large-scale structure information we use is the linear growth rate f(z2dF ) = 0.51±
0.11 measured by the 2dF galaxy redshift survey (2dFGRS) [40], where z2dF ≃ 0.15 is the
effective redshift of this survey and f ≡ (d lnD/d lna) is determined by solving the equation
for the linear growth rate D,

D′′(τ) + 2E(z)D′(τ) −
3

2
Ωm(1 + z)3D = 0, (15)

where primes denote d/d(H0t).

We use the Markov Chain Monte Carlo (MCMC) technique in the likelihood analysis (based
on the MCMC engine of [41]), and obtain a few million samples of (Ω∗

m, α, H0). This method
samples from the full posterior distribution of the parameters, and from these samples the
marginalized posterior distributions of the parameters (i.e., their probability distribution func-
tions [pdf]) can be estimated.

III. RESULTS

In models that lead to a Big Crunch, the Hubble parameter H(z) ∝ E(z) will decrease with
time until E(z) = 0 at t = tturn, when the universe stops expanding and starts to collapse.
Fig.1 of Ref.[29] shows the cosmic scale factor in five models (the linear potential model with
five different parameter choices). Clearly, the universe collapses rather quickly after it stops
expanding.
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FIG. 1: The constraints on the linear model parameters from current SN data only (Riess sample gold set, flux-

averaged with ∆z = 0.05) (dashed lines), SN together with CMB data (dotted lines), SN together with CMB

and LSS data (solid lines). Uniform priors on (ρ0

m, V0, α) are assumed. The first row shows the probability

distribution functions of the set of independent parameters V0, ρ0
m, and α The second row shows derived

parameters Ωm, h, and the time to collapse from today tc.

Fig.1 shows the constraints on the linear model from current observational data, assuming
uniform priors on (ρ0

m, V0, α). The first row of figures in Fig.1 shows the probability distribution
functions of the set of independent parameters V0, ρ0

m, and α. The second row of figures in
Fig.1 shows derived parameters Ωm, h, and the time to collapse from today tc. The dashed
lines denote results using SN data only, the dotted lines denote results using SN together with
CMB data, the solid lines denote results using SN together with CMB and LSS data.

Table 1 lists the mean and the 68% and 95% confidence ranges of Ωm, h, α, and tc from
Fig.1.
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Table 1

The constraints on the linear potential dark energy model from current data

SN onlya SN plus CMBb SN plus CMB and LSSc

Ωm .25 [.19, .30][.12, .35] .26 [.22, .30][.18, .35] .26 [.22, .30][.19, .33]

hd .651 [.642, .660][.634, .668] .651 [.643, .660][.635, .668] .652 [.644, .661][.635, .668]

α
(

3

8πG

)1/2
0.00 [−1.30, 1.30][−1.60, 1.60] 0.00 [−1.20, 1.20][−1.60, 1.60] 0.00 [−1.20, 1.20][−1.60, 1.60]

tc/[Gyr]e 56.01 [35.75, —] [19.18, —] 67.48 [42.95, —] [23.61, —] 65.66 [41.92, —] [23.74, —]

[—, 108.18] [—, 2704.01] [—, 134.34] [—, 4095.18] [—, 130.52] [—, 3652.01]

χ2

min/Nf
dof 25.98/23 26.04 /24 26.16/25

a Riess sample gold set (157 SNe Ia), flux-averaged with ∆z = .05.
b CMB shift parameter R ≡ Ω

1/2

m Γ(zCMB) = 1.716 ± 0.062.
c The linear growth rate f(z2dF ) = 0.51 ± 0.11.
d Statistical error only, not including the contribution from the much larger SN Ia absolute magnitude error of

σint
h ≃ 0.05 [14].

e For tc, we list median, the 68% and 95% lower bounds and the 68% and 95% upper bounds.
f The number of degrees of freedom.

0 0.25 0.5 0.75 1 1.25 1.5
0

10

20

30

40

50

Α

tc�t0

FIG. 2: The ratio of the collapse time from today, tc, and the age of the universe today, t0, as a function of

the linear potential parameter |α|. Fig.4.

Note that only the median, 68% and 95% confidence lower and upper limits of the collapse
time from today tc are given, since α = 0 is the cosmological constant model with tc → ∞ (the
mean of tc is not well defined for this reason). Computationally, we have to make a cutoff in tc
for all models that are longer lived than the computation limit. The dependence of tc/t0 on α
is shown in Fig.2, where t0 is the age of the universe today.

Fig.3 shows the effect of assuming different priors for α, using only SN data (Riess sample
gold set, flux-averaged with ∆z = 0.05). The parameters are the same as in Fig.1. The solid,
dashed, and dotted lines correspond to priors of p(α) ∝ 1, α−0.5, and α respectively. Table 2
shows how assuming different priors for α changes the median, 68% and 95% lower and upper
bounds on the collapse time from today tc.
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FIG. 3: The effect of assuming different priors for α, using only SN data (Riess sample gold set, flux-averaged

with ∆z = 0.05). The parameters are the same as in Fig.1. The solid, dashed, and dotted lines correspond to

priors of p(α) ∝ 1, α−0.5, and α respectively.

Table 2

Effect of assuming different priors for α on the collapse time from today tc (in Gyrs)

P (α) ∝ 1 α−0.5 α

median 56.01 96.92 35.04

68% lower bound 35.75 38.77 27.41

95% lower bound 19.18 19.38 17.91

68% upper bound 108.18 523.35 48.75

95% upper bound 2704.01 714260.81 186.42

IV. MCMC VERSUS FISHER MATRIX

In this section we compare the joint confidence regions from our MCMC calculations to
that of the popular Fisher matrix estimates. The Fisher matrix approach is an easy way to
estimate the confidence regions in an n-dimensional parameter space pi, (i = 1, 2, ..., n), and it
is especially powerful in the case when the probability distributions are close to the Gaussian
distribution. The Fisher matrix is the inverse of the covariance matrix in this n-dimensional
parameter space, see [42]:

F ≡ C−1.
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FIG. 4: The probability distribution function for the set of parameters |α| and Ωm with uniform prior on α

(left figure) and with the prior proportional to α−0.5 (right figure).

It is easy to calculate the covariance matrix C using the MCMC data and marginalizing over
additional parameters. We will consider the distribution and confidence regions for α and
Ωm. In our case, the distribution of the parameter α (slope of the potential) is significantly
non-Gaussian (see Fig.1). There are a few facts that we have to take into account. First,
the symmetry of the picture is dictated by the fact that the −α and α slopes in Eq.(1) are
indistinguishable. It also leads to a paradoxical statement that Ωm and α parameters become
uncorrelated (the corresponding off-diagonal elements of the Fisher matrix are 0). Second, the
actual parameter that we are trying to measure, and, hopefully, distinguish from 0 (cosmological
constant case) is actually |α|. This means that in our estimations for joint confidence regions
we have to consider absolute value |α| rather than α. In Fig.4 the two-dimensional probability
distribution functions for the set of parameters |α| and Ωm are presented for two different cases
- SN plus CMB and LSS data with uniform priors on (ρ0

m, V0, α) (right plot) and SN data with
p(α) ∝ α−0.5 (left plot). In both cases the probability distributions are non-Gaussian.

The confidence regions form the Fisher matrix and MCMC method are shown in Fig.5 for

0.4 0.8 1.2 1.6 2.0

0.108

0.196

0.284

Ωm

α

0.46

0.372

FIG. 5: The confidence region for the set of parameters |α| and Ωm. The purple contours are MCMC 68% and

95% regions and red solid (dashed) ellipsoids correspond to 68% (95%) Fisher matrix estimations.
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SN with CMB and LSS data and uniform priors on (ρ0
m, V0, α) (left plot in Fig.4). The MCMC

confidence regions are presented by two uneven contours for 1-σ (68%) and 2-σ (95%) values.
Two Fisher ellipses (red solid ellipse corresponds to 68% confidence region and red dashed
ellipse corresponds to 95% region) are shown as well. It is clear that due to the non-Gaussian
nature of the distribution the Fisher ellipses could be used only for very rough estimations of
the confidence regions. In fact, according to Fig.5, α = 0 (the cosmological constant case)
would be excluded at 1-σ level for the Fisher matrix approach, that is clearly not the case from
the MCMC results. The 2-σ regions for both cases give similar results for α = 0 and 10%
discrepancy for the upper bound on |α|.

V. PREDICTIONS FROM MODEL-INDEPENDENT BOUNDS ON THE PAST

EVOLUTION

We now derive complementary bounds on the cosmic doomsday by finding linear poten-
tial models that fit completely under the 68% and 95% confidence contours of the model-
independent reconstruction of dark energy density ρX(z) from Ref.[10].

The idea is to map out the boundaries of the past behavior of ρX(z) in a model-independent
way based on SN Ia and other observations, in this case by the means of splines. Splines have
the advantage over polynomials, for instance, that they do not have the tendency to wiggle in
between measurement points. While the results will depend somewhat on the type of splines
used, i.e. on the number of parameters (the more parameters one uses, the more information
is extracted from the data, but the weaker the constraints will become), it is important to
realize how this approach differs from earlier, conventional, model-dependent studies. The
splines approach is able to model any arbitrary function, not making any assumption about
the functional form of ρX(z) or wX(z), contrary to the practice prevailing in present literature
of using two parameter fits.3

As a starting point for our study, we take the model-independent boundaries on the past
evolution of ρX(z)/ρX(0) obtained in [10]. Next, we solve the differential equations for the
evolution history of the universe with the linear potential for all possible initial conditions for
the scalar field consistent with the 95% and 68% confidence regions of Ωm, and fit their cor-
responding past ρX(z)/ρX(0) history into the above envelope. The model parameters yielding
the shortest lifetime, but still not being in violation anywhere with this envelope, determine the
minimal lifetime obtainable by this method. These limiting cases, together with the boundaries,
are graphically represented in Fig.6.

Our approach is different from [10] in that we recognize that an accurate prediction of the
future can only be obtained by a model-specific extrapolation. One can study the past model-
independently, yet whatever the conclusion from it is, the future will always depend on the
specific underlying physical model. Even in the absence of knowledge of the exact physics—as
it is the case presently with dark energy—one is forced to assume a specific physical model to
obtain a prediction on the future lifetime of the universe. In our case, the model is the scalar
field linear potential.

We use the Hubble time H−1

0
as the time scale in our calculations. To translate the lifetime

3 Refs. [10] and [43] show the perils of such practice.
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FIG. 6: The model-independent constraints on the past of ρX(z)/ρX(0) and how they constrain the linear

model. The bounds are represented by thick lines, while the corresponding linear model is shown by thin lines

with same color and same texture (same dashing). Green denotes the 3-parameter spline bound and its linear

model, while red shows the 4-parameter splines. The dashed lines depict the 68% confidence level, while the

solid lines stand for 95%. Since the 3-parameter constraint contours always lie inside the 4-parameter spline at

a given confidence level, one can argue that the 3-spline investigation is sufficient for this analysis, yielding a

minimal future lifetime of 20.6 Gyr at 95% confidence level.

into Gyr, we need the value of the Hubble constant H0. The Hubble constant, as obtained from
the model-independent analysis in [10], has a mean value of H0 = 63.7km/s/Mpc, corresponding
to a Hubble time H−1

0 = 15.36Gyr, for the 3-parameter splines, while H0 = 63.5km/s/Mpc
(H−1

0
= 15.41Gyr) for the 4-parameter spline.4

Even the 95% error bars of the distribution for h do not cause an uncertainty of more than
5.7%, corresponding to 0.87Gyr, thus we will neglect this uncertainty in our lifetime calculation
in this section.

In this manner, we obtain for the future lifetime of the universe:

Table 3

The lower bound on future lifetime of the universe

Spline Type Confidence Level Future Lifetime

4-parameter 95% lower bound 18.1 Gyr

68% lower bound 22.2 Gyr

3-parameter 95% lower bound 20.6 Gyr

68% lower bound 25.3 Gyr

These results turn out to be a little weaker than our model-specific analysis above. This
is not unexpected; it will be very difficult, if not impossible, to close the gap and raise the

4 These Hubble constant values are fully consistent with other direct measurements. SN Ia data typically give

a H0 value consisitent with H0 = 60 ± 10 km s−1 Mpc−1 [44]. The Hubble Key Project (based on Cepheid

distances) gives H0 = 72 ± 8 km s−1 Mpc−1 [45]. Note that CMB data do not give a direct measurement of

H0.
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model-independent analysis to the same accuracy level as the model-dependent one. After all,
no assumption about the model in the past is made.

The model-independent analysis also depends on the number of free parameters used. The
difference in results between the 3-parameter and the 4-parameter spline is roughly 10%. As
usual, stronger constraints are achieved by fewer parameters at the cost of less flexibility. Since
the 3-parameter spline contour lies completely within the 4-parameter one, one can argue that
for the studied sample of supernovae using 3-parameter splines is sufficient.

We conclude that the results obtained by the model-independent study of the past are some-
what less stringent than our results obtained in Sec. III. Indeed, constraining the parameters
of a given model directly is the most precise way to proceed. However, it is quite convenient
to have a model-independent analysis of the past, and then apply it to any particular model
for a quick estimate of the lifetime of the universe. This method provides a useful shortcut,
which lets one to obtain approximate results without having to employ the whole machinery of
MCMC that we have used to obtain our results in Sec. III.

VI. DISCUSSION AND SUMMARY

We have studied a representative dark energy model with a linear potential, V (φ) = V0(1 +
αφ), assuming a flat universe. This model has the interesting property of dooming the universe
to a Big Crunch for α 6= 0. It is the simplest doomsday model, in which the universe collapses
rather quickly after it stops expanding.

Since this model has only one free parameter, αV0, it is well constrained even by SN Ia data
alone (Riess sample), see Fig.1.

We studied this model using current SN Ia (Riess sample), CMB (WMAP, CBI, and
ACBAR), and LSS (2dF) data. We have used flux-averaging to minimize the effect of weak
lensing [14, 35], and included CMB and galaxy survey data in a consistent manner [10]. We
found that in the context of the model with V (φ) = V0(1 + αφ), observations imply that the
cosmic doomsday is more than about 42 billion years from today at 68% confidence, and more
than about 24 billion years from today at at the 95% confidence level.

These results represent a stronger bound on the doomsday time than the estimate of tc & 11
Gyr based on the previously available observational data [29]. When the data from SNAP and
Planck satellites become available, it will be possible to further strengthen our bound up to
tc & 40 Gyr at 95% confidence [29].

Note that these timescales have been derived assuming a uniform prior on α (the parameter
of the linear model). Changing the prior on α can change the bounds on the cosmic doomsday.
We found that taking different priors, p(α) ∼ α and p(α) ∼ α−0.5, altered the value of tc
obtained for p(α) = const only by about 10%. If one assumes that α must be exponentially
small, we would conclude that the universe will live for an exponentially long time [20, 24].
This means that when one evaluates the cosmological consequences of a given model, one should
specify not only its Lagrangian and the cosmological initial conditions, but also the theoretical
expectations for the values of the parameters in the model.

Interestingly, we were able to obtain not only the lower bound on the doomsday time, but
the upper bound as well. For the uniform prior on α the full bound on the doomsday time
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is 24 Gyr < tc < 3652 Gyr at the 95% confidence level (SN Ia plus CMB and LSS data, see
Table 1). In other words, if one believes that the dark energy is described by the simplest
linear model, and the parameter α can take any value with equal probability, then our universe
most probably will not collapse earlier than in 24 billion years, but it will most probably live
no longer than 3.65 × 103 billion years. Note that this doomsday prediction is a consequence
of our assumption that dark energy is described by the linear model (1), and that all values
of the parameter α are equally probable. On the other hand, as we already mentioned, this
model is rather generic; it is the simplest representative of a broad class of the dark energy
models where the effective cosmological constant can change continuously and the cosmological
constant problem can be solved using anthropic considerations [4, 20, 22, 24]. To improve
our constraints on the cosmic doomsday time in this class of models one would need further
cosmological observations and a deeper understanding of the theory of dark energy.
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